Properties

Label 432.9.e.c.161.2
Level $432$
Weight $9$
Character 432.161
Analytic conductor $175.988$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(161,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.161"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-5278] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.2
Root \(2.44949i\) of defining polynomial
Character \(\chi\) \(=\) 432.161
Dual form 432.9.e.c.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+705.453i q^{5} -2639.00 q^{7} +24690.9i q^{11} +13919.0 q^{13} -81127.1i q^{17} +77041.0 q^{19} -447963. i q^{23} -107039. q^{25} -585526. i q^{29} -1.67424e6 q^{31} -1.86169e6i q^{35} +27359.0 q^{37} -1.30509e6i q^{41} -1.99920e6 q^{43} +7.24853e6i q^{47} +1.19952e6 q^{49} -2.40559e6i q^{53} -1.74182e7 q^{55} -2.23311e7i q^{59} +2.49283e7 q^{61} +9.81920e6i q^{65} -1.19983e7 q^{67} +2.18690e6i q^{71} +3.80304e7 q^{73} -6.51592e7i q^{77} +2.00184e6 q^{79} -3.44332e7i q^{83} +5.72314e7 q^{85} -462072. i q^{89} -3.67322e7 q^{91} +5.43488e7i q^{95} +5.24165e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5278 q^{7} + 27838 q^{13} + 154082 q^{19} - 214078 q^{25} - 3348484 q^{31} + 54718 q^{37} - 3998404 q^{43} + 2399040 q^{49} - 34836480 q^{55} + 49856638 q^{61} - 23996638 q^{67} + 76060798 q^{73}+ \cdots + 104832958 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 705.453i 1.12872i 0.825527 + 0.564362i \(0.190878\pi\)
−0.825527 + 0.564362i \(0.809122\pi\)
\(6\) 0 0
\(7\) −2639.00 −1.09913 −0.549563 0.835452i \(-0.685206\pi\)
−0.549563 + 0.835452i \(0.685206\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 24690.9i 1.68642i 0.537585 + 0.843209i \(0.319337\pi\)
−0.537585 + 0.843209i \(0.680663\pi\)
\(12\) 0 0
\(13\) 13919.0 0.487343 0.243671 0.969858i \(-0.421648\pi\)
0.243671 + 0.969858i \(0.421648\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 81127.1i − 0.971338i −0.874143 0.485669i \(-0.838576\pi\)
0.874143 0.485669i \(-0.161424\pi\)
\(18\) 0 0
\(19\) 77041.0 0.591163 0.295582 0.955317i \(-0.404487\pi\)
0.295582 + 0.955317i \(0.404487\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 447963.i − 1.60078i −0.599482 0.800388i \(-0.704627\pi\)
0.599482 0.800388i \(-0.295373\pi\)
\(24\) 0 0
\(25\) −107039. −0.274020
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 585526.i − 0.827855i −0.910310 0.413927i \(-0.864157\pi\)
0.910310 0.413927i \(-0.135843\pi\)
\(30\) 0 0
\(31\) −1.67424e6 −1.81289 −0.906445 0.422324i \(-0.861214\pi\)
−0.906445 + 0.422324i \(0.861214\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1.86169e6i − 1.24061i
\(36\) 0 0
\(37\) 27359.0 0.0145980 0.00729900 0.999973i \(-0.497677\pi\)
0.00729900 + 0.999973i \(0.497677\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.30509e6i − 0.461854i −0.972971 0.230927i \(-0.925824\pi\)
0.972971 0.230927i \(-0.0741758\pi\)
\(42\) 0 0
\(43\) −1.99920e6 −0.584767 −0.292383 0.956301i \(-0.594448\pi\)
−0.292383 + 0.956301i \(0.594448\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.24853e6i 1.48545i 0.669596 + 0.742726i \(0.266467\pi\)
−0.669596 + 0.742726i \(0.733533\pi\)
\(48\) 0 0
\(49\) 1.19952e6 0.208077
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2.40559e6i − 0.304873i −0.988313 0.152437i \(-0.951288\pi\)
0.988313 0.152437i \(-0.0487120\pi\)
\(54\) 0 0
\(55\) −1.74182e7 −1.90350
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 2.23311e7i − 1.84290i −0.388494 0.921451i \(-0.627005\pi\)
0.388494 0.921451i \(-0.372995\pi\)
\(60\) 0 0
\(61\) 2.49283e7 1.80042 0.900210 0.435457i \(-0.143413\pi\)
0.900210 + 0.435457i \(0.143413\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.81920e6i 0.550076i
\(66\) 0 0
\(67\) −1.19983e7 −0.595417 −0.297708 0.954657i \(-0.596222\pi\)
−0.297708 + 0.954657i \(0.596222\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.18690e6i 0.0860590i 0.999074 + 0.0430295i \(0.0137009\pi\)
−0.999074 + 0.0430295i \(0.986299\pi\)
\(72\) 0 0
\(73\) 3.80304e7 1.33918 0.669591 0.742730i \(-0.266470\pi\)
0.669591 + 0.742730i \(0.266470\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6.51592e7i − 1.85359i
\(78\) 0 0
\(79\) 2.00184e6 0.0513950 0.0256975 0.999670i \(-0.491819\pi\)
0.0256975 + 0.999670i \(0.491819\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 3.44332e7i − 0.725545i −0.931878 0.362773i \(-0.881830\pi\)
0.931878 0.362773i \(-0.118170\pi\)
\(84\) 0 0
\(85\) 5.72314e7 1.09637
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 462072.i − 0.00736460i −0.999993 0.00368230i \(-0.998828\pi\)
0.999993 0.00368230i \(-0.00117212\pi\)
\(90\) 0 0
\(91\) −3.67322e7 −0.535651
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.43488e7i 0.667261i
\(96\) 0 0
\(97\) 5.24165e7 0.592081 0.296040 0.955175i \(-0.404334\pi\)
0.296040 + 0.955175i \(0.404334\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.10599e7i 0.875068i 0.899202 + 0.437534i \(0.144148\pi\)
−0.899202 + 0.437534i \(0.855852\pi\)
\(102\) 0 0
\(103\) −6.91980e7 −0.614815 −0.307408 0.951578i \(-0.599462\pi\)
−0.307408 + 0.951578i \(0.599462\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.35366e7i 0.484718i 0.970187 + 0.242359i \(0.0779212\pi\)
−0.970187 + 0.242359i \(0.922079\pi\)
\(108\) 0 0
\(109\) −1.23077e7 −0.0871907 −0.0435953 0.999049i \(-0.513881\pi\)
−0.0435953 + 0.999049i \(0.513881\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.52725e8i 1.55001i 0.631955 + 0.775005i \(0.282253\pi\)
−0.631955 + 0.775005i \(0.717747\pi\)
\(114\) 0 0
\(115\) 3.16017e8 1.80684
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.14094e8i 1.06762i
\(120\) 0 0
\(121\) −3.95280e8 −1.84401
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00057e8i 0.819432i
\(126\) 0 0
\(127\) −1.96635e8 −0.755868 −0.377934 0.925833i \(-0.623365\pi\)
−0.377934 + 0.925833i \(0.623365\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 5.84609e7i − 0.198509i −0.995062 0.0992545i \(-0.968354\pi\)
0.995062 0.0992545i \(-0.0316458\pi\)
\(132\) 0 0
\(133\) −2.03311e8 −0.649763
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5.91484e8i − 1.67904i −0.543331 0.839519i \(-0.682837\pi\)
0.543331 0.839519i \(-0.317163\pi\)
\(138\) 0 0
\(139\) 5.22321e8 1.39919 0.699597 0.714537i \(-0.253363\pi\)
0.699597 + 0.714537i \(0.253363\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.43672e8i 0.821864i
\(144\) 0 0
\(145\) 4.13061e8 0.934420
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 4.91574e8i − 0.997341i −0.866792 0.498670i \(-0.833822\pi\)
0.866792 0.498670i \(-0.166178\pi\)
\(150\) 0 0
\(151\) 8.44622e8 1.62463 0.812315 0.583218i \(-0.198207\pi\)
0.812315 + 0.583218i \(0.198207\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 1.18110e9i − 2.04625i
\(156\) 0 0
\(157\) −6.72002e8 −1.10604 −0.553022 0.833167i \(-0.686525\pi\)
−0.553022 + 0.833167i \(0.686525\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.18217e9i 1.75945i
\(162\) 0 0
\(163\) 2.35500e8 0.333611 0.166805 0.985990i \(-0.446655\pi\)
0.166805 + 0.985990i \(0.446655\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 5.87131e8i − 0.754865i −0.926037 0.377432i \(-0.876807\pi\)
0.926037 0.377432i \(-0.123193\pi\)
\(168\) 0 0
\(169\) −6.21992e8 −0.762497
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.13993e9i − 1.27261i −0.771437 0.636305i \(-0.780462\pi\)
0.771437 0.636305i \(-0.219538\pi\)
\(174\) 0 0
\(175\) 2.82476e8 0.301182
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.40519e9i 1.36875i 0.729131 + 0.684374i \(0.239924\pi\)
−0.729131 + 0.684374i \(0.760076\pi\)
\(180\) 0 0
\(181\) 2.00063e9 1.86402 0.932012 0.362426i \(-0.118051\pi\)
0.932012 + 0.362426i \(0.118051\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.93005e7i 0.0164771i
\(186\) 0 0
\(187\) 2.00310e9 1.63808
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.50002e9i − 1.12710i −0.826082 0.563550i \(-0.809435\pi\)
0.826082 0.563550i \(-0.190565\pi\)
\(192\) 0 0
\(193\) 2.53788e9 1.82912 0.914559 0.404452i \(-0.132538\pi\)
0.914559 + 0.404452i \(0.132538\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.55082e9i − 1.02967i −0.857290 0.514834i \(-0.827854\pi\)
0.857290 0.514834i \(-0.172146\pi\)
\(198\) 0 0
\(199\) −2.67114e9 −1.70328 −0.851638 0.524130i \(-0.824390\pi\)
−0.851638 + 0.524130i \(0.824390\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.54520e9i 0.909916i
\(204\) 0 0
\(205\) 9.20678e8 0.521306
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.90221e9i 0.996949i
\(210\) 0 0
\(211\) 2.85862e9 1.44220 0.721101 0.692830i \(-0.243636\pi\)
0.721101 + 0.692830i \(0.243636\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 1.41034e9i − 0.660041i
\(216\) 0 0
\(217\) 4.41832e9 1.99259
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 1.12921e9i − 0.473375i
\(222\) 0 0
\(223\) −2.67732e8 −0.108263 −0.0541317 0.998534i \(-0.517239\pi\)
−0.0541317 + 0.998534i \(0.517239\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.15769e9i 1.18923i 0.804010 + 0.594616i \(0.202696\pi\)
−0.804010 + 0.594616i \(0.797304\pi\)
\(228\) 0 0
\(229\) −1.99790e7 −0.00726495 −0.00363248 0.999993i \(-0.501156\pi\)
−0.00363248 + 0.999993i \(0.501156\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.55234e9i 1.20529i 0.798011 + 0.602644i \(0.205886\pi\)
−0.798011 + 0.602644i \(0.794114\pi\)
\(234\) 0 0
\(235\) −5.11350e9 −1.67667
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 3.10051e9i − 0.950258i −0.879916 0.475129i \(-0.842401\pi\)
0.879916 0.475129i \(-0.157599\pi\)
\(240\) 0 0
\(241\) −1.41544e9 −0.419587 −0.209794 0.977746i \(-0.567279\pi\)
−0.209794 + 0.977746i \(0.567279\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.46205e8i 0.234861i
\(246\) 0 0
\(247\) 1.07233e9 0.288099
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 6.36947e8i − 0.160475i −0.996776 0.0802376i \(-0.974432\pi\)
0.996776 0.0802376i \(-0.0255679\pi\)
\(252\) 0 0
\(253\) 1.10606e10 2.69958
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.39390e9i 0.319520i 0.987156 + 0.159760i \(0.0510721\pi\)
−0.987156 + 0.159760i \(0.948928\pi\)
\(258\) 0 0
\(259\) −7.22004e7 −0.0160450
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.27753e9i 1.31210i 0.754719 + 0.656048i \(0.227773\pi\)
−0.754719 + 0.656048i \(0.772227\pi\)
\(264\) 0 0
\(265\) 1.69703e9 0.344118
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 7.75652e9i − 1.48135i −0.671863 0.740676i \(-0.734506\pi\)
0.671863 0.740676i \(-0.265494\pi\)
\(270\) 0 0
\(271\) 8.57427e9 1.58972 0.794859 0.606794i \(-0.207545\pi\)
0.794859 + 0.606794i \(0.207545\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 2.64288e9i − 0.462112i
\(276\) 0 0
\(277\) −5.55250e9 −0.943125 −0.471562 0.881833i \(-0.656310\pi\)
−0.471562 + 0.881833i \(0.656310\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3.32759e9i − 0.533708i −0.963737 0.266854i \(-0.914016\pi\)
0.963737 0.266854i \(-0.0859842\pi\)
\(282\) 0 0
\(283\) 4.46395e9 0.695942 0.347971 0.937505i \(-0.386871\pi\)
0.347971 + 0.937505i \(0.386871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.44413e9i 0.507635i
\(288\) 0 0
\(289\) 3.94151e8 0.0565030
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.95567e9i 0.672407i 0.941789 + 0.336203i \(0.109143\pi\)
−0.941789 + 0.336203i \(0.890857\pi\)
\(294\) 0 0
\(295\) 1.57536e10 2.08013
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 6.23519e9i − 0.780127i
\(300\) 0 0
\(301\) 5.27589e9 0.642732
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.75858e10i 2.03218i
\(306\) 0 0
\(307\) 9.36938e9 1.05477 0.527385 0.849627i \(-0.323173\pi\)
0.527385 + 0.849627i \(0.323173\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.46419e10i 1.56515i 0.622555 + 0.782576i \(0.286095\pi\)
−0.622555 + 0.782576i \(0.713905\pi\)
\(312\) 0 0
\(313\) 1.17993e10 1.22936 0.614681 0.788776i \(-0.289285\pi\)
0.614681 + 0.788776i \(0.289285\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.51923e10i 1.50448i 0.658890 + 0.752239i \(0.271026\pi\)
−0.658890 + 0.752239i \(0.728974\pi\)
\(318\) 0 0
\(319\) 1.44571e10 1.39611
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 6.25011e9i − 0.574219i
\(324\) 0 0
\(325\) −1.48988e9 −0.133542
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 1.91289e10i − 1.63270i
\(330\) 0 0
\(331\) 9.30582e9 0.775252 0.387626 0.921817i \(-0.373295\pi\)
0.387626 + 0.921817i \(0.373295\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 8.46425e9i − 0.672062i
\(336\) 0 0
\(337\) −8.54025e9 −0.662142 −0.331071 0.943606i \(-0.607410\pi\)
−0.331071 + 0.943606i \(0.607410\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 4.13385e10i − 3.05729i
\(342\) 0 0
\(343\) 1.20478e10 0.870423
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.30473e10i − 0.899918i −0.893049 0.449959i \(-0.851439\pi\)
0.893049 0.449959i \(-0.148561\pi\)
\(348\) 0 0
\(349\) 1.89904e9 0.128007 0.0640034 0.997950i \(-0.479613\pi\)
0.0640034 + 0.997950i \(0.479613\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 1.53302e10i − 0.987302i −0.869660 0.493651i \(-0.835662\pi\)
0.869660 0.493651i \(-0.164338\pi\)
\(354\) 0 0
\(355\) −1.54276e9 −0.0971370
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 2.20067e10i − 1.32488i −0.749113 0.662442i \(-0.769520\pi\)
0.749113 0.662442i \(-0.230480\pi\)
\(360\) 0 0
\(361\) −1.10482e10 −0.650526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.68287e10i 1.51157i
\(366\) 0 0
\(367\) −2.74499e9 −0.151313 −0.0756565 0.997134i \(-0.524105\pi\)
−0.0756565 + 0.997134i \(0.524105\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.34836e9i 0.335094i
\(372\) 0 0
\(373\) −6.25799e9 −0.323295 −0.161648 0.986849i \(-0.551681\pi\)
−0.161648 + 0.986849i \(0.551681\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 8.14994e9i − 0.403449i
\(378\) 0 0
\(379\) 7.38075e9 0.357720 0.178860 0.983875i \(-0.442759\pi\)
0.178860 + 0.983875i \(0.442759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.01521e10i 0.936538i 0.883586 + 0.468269i \(0.155122\pi\)
−0.883586 + 0.468269i \(0.844878\pi\)
\(384\) 0 0
\(385\) 4.59667e10 2.09219
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 9.41663e9i − 0.411242i −0.978632 0.205621i \(-0.934079\pi\)
0.978632 0.205621i \(-0.0659214\pi\)
\(390\) 0 0
\(391\) −3.63419e10 −1.55489
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.41220e9i 0.0580109i
\(396\) 0 0
\(397\) −3.66441e9 −0.147517 −0.0737585 0.997276i \(-0.523499\pi\)
−0.0737585 + 0.997276i \(0.523499\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.03474e10i 1.17367i 0.809708 + 0.586833i \(0.199625\pi\)
−0.809708 + 0.586833i \(0.800375\pi\)
\(402\) 0 0
\(403\) −2.33038e10 −0.883499
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.75517e8i 0.0246183i
\(408\) 0 0
\(409\) 2.91939e10 1.04328 0.521638 0.853167i \(-0.325321\pi\)
0.521638 + 0.853167i \(0.325321\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.89318e10i 2.02558i
\(414\) 0 0
\(415\) 2.42910e10 0.818941
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.62166e9i 0.279727i 0.990171 + 0.139864i \(0.0446664\pi\)
−0.990171 + 0.139864i \(0.955334\pi\)
\(420\) 0 0
\(421\) 2.35374e10 0.749257 0.374628 0.927175i \(-0.377770\pi\)
0.374628 + 0.927175i \(0.377770\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.68376e9i 0.266166i
\(426\) 0 0
\(427\) −6.57858e10 −1.97889
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.81034e9i 0.284299i 0.989845 + 0.142149i \(0.0454013\pi\)
−0.989845 + 0.142149i \(0.954599\pi\)
\(432\) 0 0
\(433\) −4.87335e10 −1.38636 −0.693180 0.720764i \(-0.743791\pi\)
−0.693180 + 0.720764i \(0.743791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 3.45115e10i − 0.946320i
\(438\) 0 0
\(439\) −1.89161e10 −0.509300 −0.254650 0.967033i \(-0.581960\pi\)
−0.254650 + 0.967033i \(0.581960\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.14896e10i 1.85621i 0.372315 + 0.928106i \(0.378564\pi\)
−0.372315 + 0.928106i \(0.621436\pi\)
\(444\) 0 0
\(445\) 3.25970e8 0.00831261
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 3.44073e10i − 0.846574i −0.905996 0.423287i \(-0.860876\pi\)
0.905996 0.423287i \(-0.139124\pi\)
\(450\) 0 0
\(451\) 3.22237e10 0.778879
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 2.59129e10i − 0.604603i
\(456\) 0 0
\(457\) 6.84276e10 1.56880 0.784398 0.620258i \(-0.212972\pi\)
0.784398 + 0.620258i \(0.212972\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.91110e10i 1.30877i 0.756160 + 0.654387i \(0.227073\pi\)
−0.756160 + 0.654387i \(0.772927\pi\)
\(462\) 0 0
\(463\) −2.39209e10 −0.520540 −0.260270 0.965536i \(-0.583812\pi\)
−0.260270 + 0.965536i \(0.583812\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.73549e10i 1.20588i 0.797787 + 0.602939i \(0.206004\pi\)
−0.797787 + 0.602939i \(0.793996\pi\)
\(468\) 0 0
\(469\) 3.16636e10 0.654438
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 4.93620e10i − 0.986162i
\(474\) 0 0
\(475\) −8.24639e9 −0.161990
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 5.08983e10i − 0.966855i −0.875385 0.483427i \(-0.839392\pi\)
0.875385 0.483427i \(-0.160608\pi\)
\(480\) 0 0
\(481\) 3.80810e8 0.00711423
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.69774e10i 0.668296i
\(486\) 0 0
\(487\) −7.54226e9 −0.134087 −0.0670433 0.997750i \(-0.521357\pi\)
−0.0670433 + 0.997750i \(0.521357\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 1.05897e11i − 1.82204i −0.412360 0.911021i \(-0.635295\pi\)
0.412360 0.911021i \(-0.364705\pi\)
\(492\) 0 0
\(493\) −4.75020e10 −0.804127
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 5.77124e9i − 0.0945897i
\(498\) 0 0
\(499\) 3.06212e10 0.493879 0.246939 0.969031i \(-0.420575\pi\)
0.246939 + 0.969031i \(0.420575\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 5.46233e10i − 0.853308i −0.904415 0.426654i \(-0.859692\pi\)
0.904415 0.426654i \(-0.140308\pi\)
\(504\) 0 0
\(505\) −6.42385e10 −0.987710
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 2.27411e10i − 0.338797i −0.985548 0.169399i \(-0.945817\pi\)
0.985548 0.169399i \(-0.0541826\pi\)
\(510\) 0 0
\(511\) −1.00362e11 −1.47193
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 4.88159e10i − 0.693957i
\(516\) 0 0
\(517\) −1.78972e11 −2.50509
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 7.23199e10i − 0.981538i −0.871290 0.490769i \(-0.836716\pi\)
0.871290 0.490769i \(-0.163284\pi\)
\(522\) 0 0
\(523\) 1.34399e11 1.79634 0.898168 0.439652i \(-0.144898\pi\)
0.898168 + 0.439652i \(0.144898\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.35826e11i 1.76093i
\(528\) 0 0
\(529\) −1.22360e11 −1.56248
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 1.81655e10i − 0.225081i
\(534\) 0 0
\(535\) −4.48221e10 −0.547113
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.96172e10i 0.350904i
\(540\) 0 0
\(541\) 2.43319e10 0.284044 0.142022 0.989863i \(-0.454640\pi\)
0.142022 + 0.989863i \(0.454640\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 8.68249e9i − 0.0984143i
\(546\) 0 0
\(547\) 8.61341e9 0.0962113 0.0481056 0.998842i \(-0.484682\pi\)
0.0481056 + 0.998842i \(0.484682\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 4.51095e10i − 0.489397i
\(552\) 0 0
\(553\) −5.28286e9 −0.0564896
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.83454e10i 1.02172i 0.859663 + 0.510862i \(0.170674\pi\)
−0.859663 + 0.510862i \(0.829326\pi\)
\(558\) 0 0
\(559\) −2.78269e10 −0.284982
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.84563e10i 0.183701i 0.995773 + 0.0918503i \(0.0292781\pi\)
−0.995773 + 0.0918503i \(0.970722\pi\)
\(564\) 0 0
\(565\) −1.78286e11 −1.74953
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 1.42645e11i − 1.36085i −0.732820 0.680423i \(-0.761796\pi\)
0.732820 0.680423i \(-0.238204\pi\)
\(570\) 0 0
\(571\) −9.46568e10 −0.890445 −0.445223 0.895420i \(-0.646875\pi\)
−0.445223 + 0.895420i \(0.646875\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.79495e10i 0.438644i
\(576\) 0 0
\(577\) −6.51933e10 −0.588165 −0.294083 0.955780i \(-0.595014\pi\)
−0.294083 + 0.955780i \(0.595014\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.08691e10i 0.797465i
\(582\) 0 0
\(583\) 5.93962e10 0.514144
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 3.95169e10i − 0.332836i −0.986055 0.166418i \(-0.946780\pi\)
0.986055 0.166418i \(-0.0532201\pi\)
\(588\) 0 0
\(589\) −1.28985e11 −1.07171
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.40557e11i 1.13667i 0.822798 + 0.568334i \(0.192412\pi\)
−0.822798 + 0.568334i \(0.807588\pi\)
\(594\) 0 0
\(595\) −1.51034e11 −1.20505
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 1.30685e11i − 1.01512i −0.861615 0.507562i \(-0.830547\pi\)
0.861615 0.507562i \(-0.169453\pi\)
\(600\) 0 0
\(601\) −1.22569e10 −0.0939468 −0.0469734 0.998896i \(-0.514958\pi\)
−0.0469734 + 0.998896i \(0.514958\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 2.78851e11i − 2.08138i
\(606\) 0 0
\(607\) −7.91136e10 −0.582769 −0.291385 0.956606i \(-0.594116\pi\)
−0.291385 + 0.956606i \(0.594116\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.00892e11i 0.723924i
\(612\) 0 0
\(613\) −1.81518e10 −0.128552 −0.0642760 0.997932i \(-0.520474\pi\)
−0.0642760 + 0.997932i \(0.520474\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.73990e11i 1.20056i 0.799791 + 0.600278i \(0.204943\pi\)
−0.799791 + 0.600278i \(0.795057\pi\)
\(618\) 0 0
\(619\) 5.88216e10 0.400658 0.200329 0.979729i \(-0.435799\pi\)
0.200329 + 0.979729i \(0.435799\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.21941e9i 0.00809462i
\(624\) 0 0
\(625\) −1.82943e11 −1.19893
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 2.21956e9i − 0.0141796i
\(630\) 0 0
\(631\) −1.13829e11 −0.718020 −0.359010 0.933334i \(-0.616886\pi\)
−0.359010 + 0.933334i \(0.616886\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1.38717e11i − 0.853166i
\(636\) 0 0
\(637\) 1.66961e10 0.101405
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.36215e11i 1.39918i 0.714542 + 0.699592i \(0.246635\pi\)
−0.714542 + 0.699592i \(0.753365\pi\)
\(642\) 0 0
\(643\) −1.51704e11 −0.887469 −0.443735 0.896158i \(-0.646347\pi\)
−0.443735 + 0.896158i \(0.646347\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.87726e9i 0.0506596i 0.999679 + 0.0253298i \(0.00806359\pi\)
−0.999679 + 0.0253298i \(0.991936\pi\)
\(648\) 0 0
\(649\) 5.51374e11 3.10791
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 2.30726e11i − 1.26895i −0.772944 0.634475i \(-0.781217\pi\)
0.772944 0.634475i \(-0.218783\pi\)
\(654\) 0 0
\(655\) 4.12414e10 0.224062
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 1.18370e11i − 0.627624i −0.949485 0.313812i \(-0.898394\pi\)
0.949485 0.313812i \(-0.101606\pi\)
\(660\) 0 0
\(661\) −2.26005e11 −1.18389 −0.591946 0.805977i \(-0.701640\pi\)
−0.591946 + 0.805977i \(0.701640\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 1.43427e11i − 0.733403i
\(666\) 0 0
\(667\) −2.62294e11 −1.32521
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.15502e11i 3.03626i
\(672\) 0 0
\(673\) 2.90839e11 1.41773 0.708864 0.705345i \(-0.249208\pi\)
0.708864 + 0.705345i \(0.249208\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.30605e10i 0.300194i 0.988671 + 0.150097i \(0.0479586\pi\)
−0.988671 + 0.150097i \(0.952041\pi\)
\(678\) 0 0
\(679\) −1.38327e11 −0.650771
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 6.54747e10i − 0.300878i −0.988619 0.150439i \(-0.951931\pi\)
0.988619 0.150439i \(-0.0480687\pi\)
\(684\) 0 0
\(685\) 4.17264e11 1.89517
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 3.34835e10i − 0.148578i
\(690\) 0 0
\(691\) 7.28879e10 0.319700 0.159850 0.987141i \(-0.448899\pi\)
0.159850 + 0.987141i \(0.448899\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.68473e11i 1.57931i
\(696\) 0 0
\(697\) −1.05878e11 −0.448616
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.18377e10i 0.0904347i 0.998977 + 0.0452173i \(0.0143980\pi\)
−0.998977 + 0.0452173i \(0.985602\pi\)
\(702\) 0 0
\(703\) 2.10776e9 0.00862980
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 2.40307e11i − 0.961809i
\(708\) 0 0
\(709\) −2.96192e11 −1.17216 −0.586082 0.810252i \(-0.699330\pi\)
−0.586082 + 0.810252i \(0.699330\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.49998e11i 2.90203i
\(714\) 0 0
\(715\) −2.42444e11 −0.927659
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 4.64816e11i − 1.73927i −0.493699 0.869633i \(-0.664356\pi\)
0.493699 0.869633i \(-0.335644\pi\)
\(720\) 0 0
\(721\) 1.82614e11 0.675759
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.26741e10i 0.226849i
\(726\) 0 0
\(727\) 3.87014e11 1.38544 0.692722 0.721204i \(-0.256411\pi\)
0.692722 + 0.721204i \(0.256411\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.62189e11i 0.568006i
\(732\) 0 0
\(733\) −1.14514e11 −0.396684 −0.198342 0.980133i \(-0.563556\pi\)
−0.198342 + 0.980133i \(0.563556\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.96249e11i − 1.00412i
\(738\) 0 0
\(739\) −9.88171e10 −0.331325 −0.165663 0.986183i \(-0.552976\pi\)
−0.165663 + 0.986183i \(0.552976\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 3.23957e11i − 1.06300i −0.847060 0.531498i \(-0.821629\pi\)
0.847060 0.531498i \(-0.178371\pi\)
\(744\) 0 0
\(745\) 3.46782e11 1.12572
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 1.67673e11i − 0.532766i
\(750\) 0 0
\(751\) −2.57803e11 −0.810454 −0.405227 0.914216i \(-0.632808\pi\)
−0.405227 + 0.914216i \(0.632808\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.95841e11i 1.83376i
\(756\) 0 0
\(757\) −2.74781e11 −0.836765 −0.418382 0.908271i \(-0.637403\pi\)
−0.418382 + 0.908271i \(0.637403\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 7.89821e10i − 0.235499i −0.993043 0.117750i \(-0.962432\pi\)
0.993043 0.117750i \(-0.0375681\pi\)
\(762\) 0 0
\(763\) 3.24800e10 0.0958335
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 3.10827e11i − 0.898125i
\(768\) 0 0
\(769\) −2.57601e11 −0.736619 −0.368309 0.929703i \(-0.620063\pi\)
−0.368309 + 0.929703i \(0.620063\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 2.55605e11i − 0.715898i −0.933741 0.357949i \(-0.883476\pi\)
0.933741 0.357949i \(-0.116524\pi\)
\(774\) 0 0
\(775\) 1.79209e11 0.496768
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 1.00545e11i − 0.273031i
\(780\) 0 0
\(781\) −5.39965e10 −0.145132
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 4.74066e11i − 1.24842i
\(786\) 0 0
\(787\) −3.59939e11 −0.938274 −0.469137 0.883125i \(-0.655435\pi\)
−0.469137 + 0.883125i \(0.655435\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 6.66941e11i − 1.70366i
\(792\) 0 0
\(793\) 3.46977e11 0.877422
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.68262e10i 0.165620i 0.996565 + 0.0828101i \(0.0263895\pi\)
−0.996565 + 0.0828101i \(0.973610\pi\)
\(798\) 0 0
\(799\) 5.88052e11 1.44288
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.39003e11i 2.25842i
\(804\) 0 0
\(805\) −8.33968e11 −1.98594
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.52798e11i 0.356717i 0.983966 + 0.178358i \(0.0570786\pi\)
−0.983966 + 0.178358i \(0.942921\pi\)
\(810\) 0 0
\(811\) 7.47417e11 1.72774 0.863872 0.503712i \(-0.168033\pi\)
0.863872 + 0.503712i \(0.168033\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.66134e11i 0.376555i
\(816\) 0 0
\(817\) −1.54021e11 −0.345693
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 2.16174e10i − 0.0475807i −0.999717 0.0237903i \(-0.992427\pi\)
0.999717 0.0237903i \(-0.00757341\pi\)
\(822\) 0 0
\(823\) 2.96832e11 0.647011 0.323505 0.946226i \(-0.395139\pi\)
0.323505 + 0.946226i \(0.395139\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 7.77124e11i − 1.66138i −0.556737 0.830689i \(-0.687947\pi\)
0.556737 0.830689i \(-0.312053\pi\)
\(828\) 0 0
\(829\) −6.11841e10 −0.129545 −0.0647725 0.997900i \(-0.520632\pi\)
−0.0647725 + 0.997900i \(0.520632\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 9.73136e10i − 0.202113i
\(834\) 0 0
\(835\) 4.14193e11 0.852034
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 6.90886e11i − 1.39431i −0.716922 0.697153i \(-0.754450\pi\)
0.716922 0.697153i \(-0.245550\pi\)
\(840\) 0 0
\(841\) 1.57406e11 0.314656
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 4.38786e11i − 0.860649i
\(846\) 0 0
\(847\) 1.04314e12 2.02680
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 1.22558e10i − 0.0233681i
\(852\) 0 0
\(853\) 8.06772e11 1.52389 0.761947 0.647640i \(-0.224244\pi\)
0.761947 + 0.647640i \(0.224244\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.13922e11i − 0.396581i −0.980143 0.198290i \(-0.936461\pi\)
0.980143 0.198290i \(-0.0635389\pi\)
\(858\) 0 0
\(859\) 6.27657e11 1.15279 0.576395 0.817171i \(-0.304459\pi\)
0.576395 + 0.817171i \(0.304459\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.94626e11i 0.531163i 0.964088 + 0.265581i \(0.0855639\pi\)
−0.964088 + 0.265581i \(0.914436\pi\)
\(864\) 0 0
\(865\) 8.04170e11 1.43643
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.94272e10i 0.0866736i
\(870\) 0 0
\(871\) −1.67005e11 −0.290172
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 5.27949e11i − 0.900658i
\(876\) 0 0
\(877\) −4.69118e11 −0.793019 −0.396510 0.918031i \(-0.629779\pi\)
−0.396510 + 0.918031i \(0.629779\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.66926e11i 0.941072i 0.882381 + 0.470536i \(0.155939\pi\)
−0.882381 + 0.470536i \(0.844061\pi\)
\(882\) 0 0
\(883\) 9.08701e11 1.49478 0.747392 0.664384i \(-0.231306\pi\)
0.747392 + 0.664384i \(0.231306\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.97506e11i 0.803718i 0.915701 + 0.401859i \(0.131636\pi\)
−0.915701 + 0.401859i \(0.868364\pi\)
\(888\) 0 0
\(889\) 5.18919e11 0.830793
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.58434e11i 0.878145i
\(894\) 0 0
\(895\) −9.91297e11 −1.54494
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.80312e11i 1.50081i
\(900\) 0 0
\(901\) −1.95159e11 −0.296135
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.41135e12i 2.10397i
\(906\) 0 0
\(907\) −1.35983e11 −0.200935 −0.100468 0.994940i \(-0.532034\pi\)
−0.100468 + 0.994940i \(0.532034\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.18939e11i 0.317870i 0.987289 + 0.158935i \(0.0508060\pi\)
−0.987289 + 0.158935i \(0.949194\pi\)
\(912\) 0 0
\(913\) 8.50184e11 1.22357
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.54278e11i 0.218186i
\(918\) 0 0
\(919\) 8.19281e11 1.14860 0.574302 0.818643i \(-0.305273\pi\)
0.574302 + 0.818643i \(0.305273\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.04395e10i 0.0419403i
\(924\) 0 0
\(925\) −2.92848e9 −0.00400014
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 9.73932e11i − 1.30757i −0.756679 0.653786i \(-0.773180\pi\)
0.756679 0.653786i \(-0.226820\pi\)
\(930\) 0 0
\(931\) 9.24122e10 0.123007
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.41309e12i 1.84894i
\(936\) 0 0
\(937\) 2.32658e11 0.301828 0.150914 0.988547i \(-0.451778\pi\)
0.150914 + 0.988547i \(0.451778\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 5.47479e11i − 0.698247i −0.937077 0.349124i \(-0.886479\pi\)
0.937077 0.349124i \(-0.113521\pi\)
\(942\) 0 0
\(943\) −5.84631e11 −0.739324
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.39829e11i 0.173859i 0.996214 + 0.0869293i \(0.0277054\pi\)
−0.996214 + 0.0869293i \(0.972295\pi\)
\(948\) 0 0
\(949\) 5.29345e11 0.652641
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.90654e11i 0.231140i 0.993299 + 0.115570i \(0.0368694\pi\)
−0.993299 + 0.115570i \(0.963131\pi\)
\(954\) 0 0
\(955\) 1.05819e12 1.27219
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.56093e12i 1.84547i
\(960\) 0 0
\(961\) 1.95020e12 2.28657
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.79036e12i 2.06457i
\(966\) 0 0
\(967\) −1.03836e12 −1.18752 −0.593760 0.804642i \(-0.702357\pi\)
−0.593760 + 0.804642i \(0.702357\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1.21983e12i − 1.37222i −0.727500 0.686108i \(-0.759318\pi\)
0.727500 0.686108i \(-0.240682\pi\)
\(972\) 0 0
\(973\) −1.37840e12 −1.53789
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.46272e12i − 1.60539i −0.596387 0.802697i \(-0.703398\pi\)
0.596387 0.802697i \(-0.296602\pi\)
\(978\) 0 0
\(979\) 1.14089e10 0.0124198
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 8.69146e11i − 0.930847i −0.885088 0.465424i \(-0.845902\pi\)
0.885088 0.465424i \(-0.154098\pi\)
\(984\) 0 0
\(985\) 1.09403e12 1.16221
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.95568e11i 0.936081i
\(990\) 0 0
\(991\) −1.22632e11 −0.127148 −0.0635738 0.997977i \(-0.520250\pi\)
−0.0635738 + 0.997977i \(0.520250\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1.88437e12i − 1.92253i
\(996\) 0 0
\(997\) 1.15490e11 0.116886 0.0584431 0.998291i \(-0.481386\pi\)
0.0584431 + 0.998291i \(0.481386\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.e.c.161.2 2
3.2 odd 2 inner 432.9.e.c.161.1 2
4.3 odd 2 108.9.c.c.53.2 yes 2
12.11 even 2 108.9.c.c.53.1 2
36.7 odd 6 324.9.g.c.53.1 4
36.11 even 6 324.9.g.c.53.2 4
36.23 even 6 324.9.g.c.269.1 4
36.31 odd 6 324.9.g.c.269.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.9.c.c.53.1 2 12.11 even 2
108.9.c.c.53.2 yes 2 4.3 odd 2
324.9.g.c.53.1 4 36.7 odd 6
324.9.g.c.53.2 4 36.11 even 6
324.9.g.c.269.1 4 36.23 even 6
324.9.g.c.269.2 4 36.31 odd 6
432.9.e.c.161.1 2 3.2 odd 2 inner
432.9.e.c.161.2 2 1.1 even 1 trivial