Properties

Label 324.9.g.c.53.1
Level $324$
Weight $9$
Character 324.53
Analytic conductor $131.991$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,9,Mod(53,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.53"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-5278] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(131.990669660\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{5} \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 324.53
Dual form 324.9.g.c.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-610.940 - 352.727i) q^{5} +(-1319.50 - 2285.44i) q^{7} +(-21382.9 + 12345.4i) q^{11} +(-6959.50 + 12054.2i) q^{13} -81127.1i q^{17} -77041.0 q^{19} +(-387947. - 223981. i) q^{23} +(53519.5 + 92698.5i) q^{25} +(-507080. + 292763. i) q^{29} +(-837121. + 1.44994e6i) q^{31} +1.86169e6i q^{35} +27359.0 q^{37} +(1.13024e6 + 652544. i) q^{41} +(-999601. - 1.73136e6i) q^{43} +(-6.27741e6 + 3.62427e6i) q^{47} +(-599760. + 1.03881e6i) q^{49} -2.40559e6i q^{53} +1.74182e7 q^{55} +(-1.93393e7 - 1.11656e7i) q^{59} +(-1.24642e7 - 2.15886e7i) q^{61} +(8.50368e6 - 4.90960e6i) q^{65} +(-5.99916e6 + 1.03908e7i) q^{67} -2.18690e6i q^{71} +3.80304e7 q^{73} +(5.64295e7 + 3.25796e7i) q^{77} +(1.00092e6 + 1.73365e6i) q^{79} +(2.98200e7 - 1.72166e7i) q^{83} +(-2.86157e7 + 4.95638e7i) q^{85} -462072. i q^{89} +3.67322e7 q^{91} +(4.70674e7 + 2.71744e7i) q^{95} +(-2.62082e7 - 4.53940e7i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5278 q^{7} - 27838 q^{13} - 308164 q^{19} + 214078 q^{25} - 3348484 q^{31} + 109436 q^{37} - 3998404 q^{43} - 2399040 q^{49} + 69672960 q^{55} - 49856638 q^{61} - 23996638 q^{67} + 152121596 q^{73}+ \cdots - 104832958 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −610.940 352.727i −0.977504 0.564362i −0.0759886 0.997109i \(-0.524211\pi\)
−0.901516 + 0.432746i \(0.857545\pi\)
\(6\) 0 0
\(7\) −1319.50 2285.44i −0.549563 0.951870i −0.998304 0.0582090i \(-0.981461\pi\)
0.448742 0.893661i \(-0.351872\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −21382.9 + 12345.4i −1.46048 + 0.843209i −0.999033 0.0439579i \(-0.986003\pi\)
−0.461448 + 0.887167i \(0.652670\pi\)
\(12\) 0 0
\(13\) −6959.50 + 12054.2i −0.243671 + 0.422051i −0.961757 0.273903i \(-0.911685\pi\)
0.718086 + 0.695955i \(0.245019\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 81127.1i 0.971338i −0.874143 0.485669i \(-0.838576\pi\)
0.874143 0.485669i \(-0.161424\pi\)
\(18\) 0 0
\(19\) −77041.0 −0.591163 −0.295582 0.955317i \(-0.595513\pi\)
−0.295582 + 0.955317i \(0.595513\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −387947. 223981.i −1.38631 0.800388i −0.393415 0.919361i \(-0.628706\pi\)
−0.992897 + 0.118973i \(0.962040\pi\)
\(24\) 0 0
\(25\) 53519.5 + 92698.5i 0.137010 + 0.237308i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −507080. + 292763.i −0.716943 + 0.413927i −0.813627 0.581388i \(-0.802510\pi\)
0.0966833 + 0.995315i \(0.469177\pi\)
\(30\) 0 0
\(31\) −837121. + 1.44994e6i −0.906445 + 1.57001i −0.0874793 + 0.996166i \(0.527881\pi\)
−0.818966 + 0.573842i \(0.805452\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.86169e6i 1.24061i
\(36\) 0 0
\(37\) 27359.0 0.0145980 0.00729900 0.999973i \(-0.497677\pi\)
0.00729900 + 0.999973i \(0.497677\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.13024e6 + 652544.i 0.399977 + 0.230927i 0.686474 0.727154i \(-0.259158\pi\)
−0.286497 + 0.958081i \(0.592491\pi\)
\(42\) 0 0
\(43\) −999601. 1.73136e6i −0.292383 0.506423i 0.681989 0.731362i \(-0.261115\pi\)
−0.974373 + 0.224939i \(0.927782\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.27741e6 + 3.62427e6i −1.28644 + 0.742726i −0.978017 0.208524i \(-0.933134\pi\)
−0.308422 + 0.951250i \(0.599801\pi\)
\(48\) 0 0
\(49\) −599760. + 1.03881e6i −0.104038 + 0.180200i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.40559e6i 0.304873i −0.988313 0.152437i \(-0.951288\pi\)
0.988313 0.152437i \(-0.0487120\pi\)
\(54\) 0 0
\(55\) 1.74182e7 1.90350
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.93393e7 1.11656e7i −1.59600 0.921451i −0.992247 0.124280i \(-0.960338\pi\)
−0.603753 0.797171i \(-0.706329\pi\)
\(60\) 0 0
\(61\) −1.24642e7 2.15886e7i −0.900210 1.55921i −0.827221 0.561876i \(-0.810080\pi\)
−0.0729882 0.997333i \(-0.523254\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.50368e6 4.90960e6i 0.476380 0.275038i
\(66\) 0 0
\(67\) −5.99916e6 + 1.03908e7i −0.297708 + 0.515646i −0.975611 0.219505i \(-0.929556\pi\)
0.677903 + 0.735152i \(0.262889\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.18690e6i 0.0860590i −0.999074 0.0430295i \(-0.986299\pi\)
0.999074 0.0430295i \(-0.0137009\pi\)
\(72\) 0 0
\(73\) 3.80304e7 1.33918 0.669591 0.742730i \(-0.266470\pi\)
0.669591 + 0.742730i \(0.266470\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.64295e7 + 3.25796e7i 1.60525 + 0.926793i
\(78\) 0 0
\(79\) 1.00092e6 + 1.73365e6i 0.0256975 + 0.0445094i 0.878588 0.477580i \(-0.158486\pi\)
−0.852891 + 0.522090i \(0.825153\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.98200e7 1.72166e7i 0.628341 0.362773i −0.151768 0.988416i \(-0.548497\pi\)
0.780109 + 0.625643i \(0.215163\pi\)
\(84\) 0 0
\(85\) −2.86157e7 + 4.95638e7i −0.548187 + 0.949487i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 462072.i 0.00736460i −0.999993 0.00368230i \(-0.998828\pi\)
0.999993 0.00368230i \(-0.00117212\pi\)
\(90\) 0 0
\(91\) 3.67322e7 0.535651
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.70674e7 + 2.71744e7i 0.577865 + 0.333630i
\(96\) 0 0
\(97\) −2.62082e7 4.53940e7i −0.296040 0.512757i 0.679186 0.733966i \(-0.262333\pi\)
−0.975226 + 0.221209i \(0.929000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.88602e7 4.55299e7i 0.757831 0.437534i −0.0706856 0.997499i \(-0.522519\pi\)
0.828516 + 0.559965i \(0.189185\pi\)
\(102\) 0 0
\(103\) −3.45990e7 + 5.99272e7i −0.307408 + 0.532446i −0.977794 0.209566i \(-0.932795\pi\)
0.670387 + 0.742012i \(0.266128\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.35366e7i 0.484718i −0.970187 0.242359i \(-0.922079\pi\)
0.970187 0.242359i \(-0.0779212\pi\)
\(108\) 0 0
\(109\) −1.23077e7 −0.0871907 −0.0435953 0.999049i \(-0.513881\pi\)
−0.0435953 + 0.999049i \(0.513881\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.18866e8 1.26363e8i −1.34235 0.775005i −0.355196 0.934792i \(-0.615586\pi\)
−0.987152 + 0.159787i \(0.948919\pi\)
\(114\) 0 0
\(115\) 1.58008e8 + 2.73678e8i 0.903418 + 1.56477i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.85411e8 + 1.07047e8i −0.924588 + 0.533811i
\(120\) 0 0
\(121\) 1.97640e8 3.42322e8i 0.922004 1.59696i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00057e8i 0.819432i
\(126\) 0 0
\(127\) 1.96635e8 0.755868 0.377934 0.925833i \(-0.376635\pi\)
0.377934 + 0.925833i \(0.376635\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.06286e7 2.92304e7i −0.171914 0.0992545i 0.411574 0.911376i \(-0.364979\pi\)
−0.583488 + 0.812122i \(0.698312\pi\)
\(132\) 0 0
\(133\) 1.01656e8 + 1.76073e8i 0.324881 + 0.562711i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.12240e8 + 2.95742e8i −1.45409 + 0.839519i −0.998710 0.0507787i \(-0.983830\pi\)
−0.455379 + 0.890298i \(0.650496\pi\)
\(138\) 0 0
\(139\) 2.61160e8 4.52343e8i 0.699597 1.21174i −0.269009 0.963138i \(-0.586696\pi\)
0.968606 0.248601i \(-0.0799706\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.43672e8i 0.821864i
\(144\) 0 0
\(145\) 4.13061e8 0.934420
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.25715e8 + 2.45787e8i 0.863723 + 0.498670i 0.865257 0.501328i \(-0.167155\pi\)
−0.00153453 + 0.999999i \(0.500488\pi\)
\(150\) 0 0
\(151\) 4.22311e8 + 7.31464e8i 0.812315 + 1.40697i 0.911240 + 0.411877i \(0.135127\pi\)
−0.0989242 + 0.995095i \(0.531540\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.02286e9 5.90550e8i 1.77211 1.02313i
\(156\) 0 0
\(157\) 3.36001e8 5.81971e8i 0.553022 0.957862i −0.445033 0.895514i \(-0.646808\pi\)
0.998055 0.0623475i \(-0.0198587\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.18217e9i 1.75945i
\(162\) 0 0
\(163\) −2.35500e8 −0.333611 −0.166805 0.985990i \(-0.553345\pi\)
−0.166805 + 0.985990i \(0.553345\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.08470e8 2.93565e8i −0.653732 0.377432i 0.136153 0.990688i \(-0.456526\pi\)
−0.789885 + 0.613256i \(0.789860\pi\)
\(168\) 0 0
\(169\) 3.10996e8 + 5.38661e8i 0.381248 + 0.660342i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.87212e8 + 5.69967e8i −1.10211 + 0.636305i −0.936775 0.349932i \(-0.886205\pi\)
−0.165338 + 0.986237i \(0.552871\pi\)
\(174\) 0 0
\(175\) 1.41238e8 2.44631e8i 0.150591 0.260831i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.40519e9i 1.36875i −0.729131 0.684374i \(-0.760076\pi\)
0.729131 0.684374i \(-0.239924\pi\)
\(180\) 0 0
\(181\) 2.00063e9 1.86402 0.932012 0.362426i \(-0.118051\pi\)
0.932012 + 0.362426i \(0.118051\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.67147e7 9.65024e6i −0.0142696 0.00823856i
\(186\) 0 0
\(187\) 1.00155e9 + 1.73473e9i 0.819041 + 1.41862i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.29905e9 7.50008e8i 0.976097 0.563550i 0.0750073 0.997183i \(-0.476102\pi\)
0.901089 + 0.433633i \(0.142769\pi\)
\(192\) 0 0
\(193\) −1.26894e9 + 2.19787e9i −0.914559 + 1.58406i −0.107014 + 0.994258i \(0.534129\pi\)
−0.807545 + 0.589806i \(0.799204\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.55082e9i 1.02967i −0.857290 0.514834i \(-0.827854\pi\)
0.857290 0.514834i \(-0.172146\pi\)
\(198\) 0 0
\(199\) 2.67114e9 1.70328 0.851638 0.524130i \(-0.175610\pi\)
0.851638 + 0.524130i \(0.175610\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.33819e9 + 7.72602e8i 0.788011 + 0.454958i
\(204\) 0 0
\(205\) −4.60339e8 7.97331e8i −0.260653 0.451464i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.64736e9 9.51104e8i 0.863383 0.498474i
\(210\) 0 0
\(211\) 1.42931e9 2.47563e9i 0.721101 1.24898i −0.239458 0.970907i \(-0.576970\pi\)
0.960559 0.278077i \(-0.0896969\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.41034e9i 0.660041i
\(216\) 0 0
\(217\) 4.41832e9 1.99259
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.77923e8 + 5.64604e8i 0.409954 + 0.236687i
\(222\) 0 0
\(223\) −1.33866e8 2.31863e8i −0.0541317 0.0937588i 0.837690 0.546146i \(-0.183906\pi\)
−0.891821 + 0.452387i \(0.850572\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.73464e9 + 1.57885e9i −1.02990 + 0.594616i −0.916957 0.398985i \(-0.869362\pi\)
−0.112947 + 0.993601i \(0.536029\pi\)
\(228\) 0 0
\(229\) 9.98952e6 1.73024e7i 0.00363248 0.00629163i −0.864203 0.503143i \(-0.832177\pi\)
0.867836 + 0.496851i \(0.165510\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.55234e9i 1.20529i 0.798011 + 0.602644i \(0.205886\pi\)
−0.798011 + 0.602644i \(0.794114\pi\)
\(234\) 0 0
\(235\) 5.11350e9 1.67667
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.68512e9 1.55025e9i −0.822947 0.475129i 0.0284846 0.999594i \(-0.490932\pi\)
−0.851432 + 0.524465i \(0.824265\pi\)
\(240\) 0 0
\(241\) 7.07719e8 + 1.22580e9i 0.209794 + 0.363373i 0.951649 0.307186i \(-0.0993874\pi\)
−0.741856 + 0.670560i \(0.766054\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.32835e8 4.23103e8i 0.203396 0.117431i
\(246\) 0 0
\(247\) 5.36167e8 9.28668e8i 0.144050 0.249501i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.36947e8i 0.160475i 0.996776 + 0.0802376i \(0.0255679\pi\)
−0.996776 + 0.0802376i \(0.974432\pi\)
\(252\) 0 0
\(253\) 1.10606e10 2.69958
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.20715e9 6.96949e8i −0.276713 0.159760i 0.355222 0.934782i \(-0.384405\pi\)
−0.631934 + 0.775022i \(0.717739\pi\)
\(258\) 0 0
\(259\) −3.61002e7 6.25274e7i −0.00802252 0.0138954i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.43650e9 + 3.13877e9i −1.13631 + 0.656048i −0.945514 0.325582i \(-0.894440\pi\)
−0.190795 + 0.981630i \(0.561107\pi\)
\(264\) 0 0
\(265\) −8.48517e8 + 1.46967e9i −0.172059 + 0.298015i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.75652e9i 1.48135i −0.671863 0.740676i \(-0.734506\pi\)
0.671863 0.740676i \(-0.265494\pi\)
\(270\) 0 0
\(271\) −8.57427e9 −1.58972 −0.794859 0.606794i \(-0.792455\pi\)
−0.794859 + 0.606794i \(0.792455\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.28881e9 1.32144e9i −0.400201 0.231056i
\(276\) 0 0
\(277\) 2.77625e9 + 4.80860e9i 0.471562 + 0.816770i 0.999471 0.0325314i \(-0.0103569\pi\)
−0.527908 + 0.849301i \(0.677024\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.88177e9 + 1.66379e9i −0.462205 + 0.266854i −0.712971 0.701194i \(-0.752651\pi\)
0.250766 + 0.968048i \(0.419318\pi\)
\(282\) 0 0
\(283\) 2.23197e9 3.86589e9i 0.347971 0.602704i −0.637918 0.770104i \(-0.720204\pi\)
0.985889 + 0.167401i \(0.0535374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.44413e9i 0.507635i
\(288\) 0 0
\(289\) 3.94151e8 0.0565030
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.29174e9 2.47784e9i −0.582321 0.336203i 0.179734 0.983715i \(-0.442476\pi\)
−0.762055 + 0.647512i \(0.775810\pi\)
\(294\) 0 0
\(295\) 7.87678e9 + 1.36430e10i 1.04007 + 1.80145i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.39984e9 3.11760e9i 0.675610 0.390063i
\(300\) 0 0
\(301\) −2.63795e9 + 4.56906e9i −0.321366 + 0.556622i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.75858e10i 2.03218i
\(306\) 0 0
\(307\) −9.36938e9 −1.05477 −0.527385 0.849627i \(-0.676827\pi\)
−0.527385 + 0.849627i \(0.676827\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.26803e10 + 7.32096e9i 1.35546 + 0.782576i 0.989008 0.147860i \(-0.0472385\pi\)
0.366454 + 0.930436i \(0.380572\pi\)
\(312\) 0 0
\(313\) −5.89967e9 1.02185e10i −0.614681 1.06466i −0.990440 0.137942i \(-0.955951\pi\)
0.375759 0.926717i \(-0.377382\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.31569e10 7.59614e9i 1.30292 0.752239i 0.322013 0.946735i \(-0.395641\pi\)
0.980903 + 0.194496i \(0.0623072\pi\)
\(318\) 0 0
\(319\) 7.22857e9 1.25202e10i 0.698055 1.20907i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.25011e9i 0.574219i
\(324\) 0 0
\(325\) −1.48988e9 −0.133542
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.65661e10 + 9.56444e9i 1.41396 + 0.816349i
\(330\) 0 0
\(331\) 4.65291e9 + 8.05908e9i 0.387626 + 0.671387i 0.992130 0.125215i \(-0.0399620\pi\)
−0.604504 + 0.796602i \(0.706629\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.33026e9 4.23213e9i 0.582023 0.336031i
\(336\) 0 0
\(337\) 4.27012e9 7.39607e9i 0.331071 0.573432i −0.651651 0.758519i \(-0.725923\pi\)
0.982722 + 0.185087i \(0.0592568\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.13385e10i 3.05729i
\(342\) 0 0
\(343\) −1.20478e10 −0.870423
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.12993e10 6.52366e9i −0.779352 0.449959i 0.0568484 0.998383i \(-0.481895\pi\)
−0.836201 + 0.548424i \(0.815228\pi\)
\(348\) 0 0
\(349\) −9.49522e8 1.64462e9i −0.0640034 0.110857i 0.832248 0.554403i \(-0.187054\pi\)
−0.896251 + 0.443546i \(0.853720\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.32764e10 + 7.66512e9i −0.855029 + 0.493651i −0.862344 0.506322i \(-0.831005\pi\)
0.00731550 + 0.999973i \(0.497671\pi\)
\(354\) 0 0
\(355\) −7.71379e8 + 1.33607e9i −0.0485685 + 0.0841231i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.20067e10i 1.32488i 0.749113 + 0.662442i \(0.230480\pi\)
−0.749113 + 0.662442i \(0.769520\pi\)
\(360\) 0 0
\(361\) −1.10482e10 −0.650526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.32343e10 1.34143e10i −1.30906 0.755784i
\(366\) 0 0
\(367\) −1.37249e9 2.37723e9i −0.0756565 0.131041i 0.825715 0.564087i \(-0.190772\pi\)
−0.901372 + 0.433047i \(0.857439\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.49785e9 + 3.17418e9i −0.290200 + 0.167547i
\(372\) 0 0
\(373\) 3.12899e9 5.41958e9i 0.161648 0.279982i −0.773812 0.633415i \(-0.781653\pi\)
0.935460 + 0.353433i \(0.114986\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.14994e9i 0.403449i
\(378\) 0 0
\(379\) −7.38075e9 −0.357720 −0.178860 0.983875i \(-0.557241\pi\)
−0.178860 + 0.983875i \(0.557241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.74522e10 + 1.00761e10i 0.811066 + 0.468269i 0.847326 0.531073i \(-0.178211\pi\)
−0.0362600 + 0.999342i \(0.511544\pi\)
\(384\) 0 0
\(385\) −2.29834e10 3.98084e10i −1.04609 1.81189i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.15504e9 + 4.70832e9i −0.356146 + 0.205621i −0.667389 0.744710i \(-0.732588\pi\)
0.311243 + 0.950330i \(0.399255\pi\)
\(390\) 0 0
\(391\) −1.81710e10 + 3.14730e10i −0.777447 + 1.34658i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.41220e9i 0.0580109i
\(396\) 0 0
\(397\) −3.66441e9 −0.147517 −0.0737585 0.997276i \(-0.523499\pi\)
−0.0737585 + 0.997276i \(0.523499\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.62816e10 1.51737e10i −1.01642 0.586833i −0.103358 0.994644i \(-0.532959\pi\)
−0.913066 + 0.407811i \(0.866292\pi\)
\(402\) 0 0
\(403\) −1.16519e10 2.01817e10i −0.441750 0.765133i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.85015e8 + 3.37759e8i −0.0213201 + 0.0123092i
\(408\) 0 0
\(409\) −1.45970e10 + 2.52827e10i −0.521638 + 0.903503i 0.478046 + 0.878335i \(0.341345\pi\)
−0.999683 + 0.0251680i \(0.991988\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.89318e10i 2.02558i
\(414\) 0 0
\(415\) −2.42910e10 −0.818941
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.46657e9 + 4.31083e9i 0.242251 + 0.139864i 0.616211 0.787581i \(-0.288667\pi\)
−0.373960 + 0.927445i \(0.622000\pi\)
\(420\) 0 0
\(421\) −1.17687e10 2.03840e10i −0.374628 0.648876i 0.615643 0.788025i \(-0.288896\pi\)
−0.990271 + 0.139150i \(0.955563\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.52036e9 4.34188e9i 0.230506 0.133083i
\(426\) 0 0
\(427\) −3.28929e10 + 5.69722e10i −0.989443 + 1.71377i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.81034e9i 0.284299i −0.989845 0.142149i \(-0.954599\pi\)
0.989845 0.142149i \(-0.0454013\pi\)
\(432\) 0 0
\(433\) −4.87335e10 −1.38636 −0.693180 0.720764i \(-0.743791\pi\)
−0.693180 + 0.720764i \(0.743791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.98878e10 + 1.72557e10i 0.819537 + 0.473160i
\(438\) 0 0
\(439\) −9.45805e9 1.63818e10i −0.254650 0.441066i 0.710151 0.704050i \(-0.248627\pi\)
−0.964800 + 0.262983i \(0.915294\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.19118e10 + 3.57448e10i −1.60753 + 0.928106i −0.617606 + 0.786487i \(0.711898\pi\)
−0.989921 + 0.141619i \(0.954769\pi\)
\(444\) 0 0
\(445\) −1.62985e8 + 2.82298e8i −0.00415631 + 0.00719893i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.44073e10i 0.846574i −0.905996 0.423287i \(-0.860876\pi\)
0.905996 0.423287i \(-0.139124\pi\)
\(450\) 0 0
\(451\) −3.22237e10 −0.778879
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.24412e10 1.29564e10i −0.523601 0.302301i
\(456\) 0 0
\(457\) −3.42138e10 5.92600e10i −0.784398 1.35862i −0.929358 0.369179i \(-0.879639\pi\)
0.144961 0.989437i \(-0.453694\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.11916e10 2.95555e10i 1.13343 0.654387i 0.188635 0.982047i \(-0.439594\pi\)
0.944795 + 0.327661i \(0.106260\pi\)
\(462\) 0 0
\(463\) −1.19605e10 + 2.07161e10i −0.260270 + 0.450801i −0.966314 0.257368i \(-0.917145\pi\)
0.706044 + 0.708168i \(0.250478\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.73549e10i 1.20588i −0.797787 0.602939i \(-0.793996\pi\)
0.797787 0.602939i \(-0.206004\pi\)
\(468\) 0 0
\(469\) 3.16636e10 0.654438
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.27488e10 + 2.46810e10i 0.854041 + 0.493081i
\(474\) 0 0
\(475\) −4.12320e9 7.14158e9i −0.0809952 0.140288i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.40792e10 2.54491e10i 0.837321 0.483427i −0.0190320 0.999819i \(-0.506058\pi\)
0.856353 + 0.516392i \(0.172725\pi\)
\(480\) 0 0
\(481\) −1.90405e8 + 3.29791e8i −0.00355712 + 0.00616110i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.69774e10i 0.668296i
\(486\) 0 0
\(487\) 7.54226e9 0.134087 0.0670433 0.997750i \(-0.478643\pi\)
0.0670433 + 0.997750i \(0.478643\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.17096e10 5.29486e10i −1.57793 0.911021i −0.995147 0.0983960i \(-0.968629\pi\)
−0.582787 0.812625i \(-0.698038\pi\)
\(492\) 0 0
\(493\) 2.37510e10 + 4.11380e10i 0.402063 + 0.696394i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.99804e9 + 2.88562e9i −0.0819170 + 0.0472948i
\(498\) 0 0
\(499\) 1.53106e10 2.65187e10i 0.246939 0.427711i −0.715736 0.698371i \(-0.753909\pi\)
0.962675 + 0.270660i \(0.0872418\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.46233e10i 0.853308i 0.904415 + 0.426654i \(0.140308\pi\)
−0.904415 + 0.426654i \(0.859692\pi\)
\(504\) 0 0
\(505\) −6.42385e10 −0.987710
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.96944e10 + 1.13705e10i 0.293407 + 0.169399i 0.639477 0.768810i \(-0.279151\pi\)
−0.346070 + 0.938209i \(0.612484\pi\)
\(510\) 0 0
\(511\) −5.01811e10 8.69162e10i −0.735964 1.27473i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.22758e10 2.44080e10i 0.600985 0.346979i
\(516\) 0 0
\(517\) 8.94862e10 1.54995e11i 1.25255 2.16947i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.23199e10i 0.981538i −0.871290 0.490769i \(-0.836716\pi\)
0.871290 0.490769i \(-0.163284\pi\)
\(522\) 0 0
\(523\) −1.34399e11 −1.79634 −0.898168 0.439652i \(-0.855102\pi\)
−0.898168 + 0.439652i \(0.855102\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.17629e11 + 6.79132e10i 1.52501 + 0.880464i
\(528\) 0 0
\(529\) 6.11798e10 + 1.05967e11i 0.781241 + 1.35315i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.57318e10 + 9.08276e9i −0.194926 + 0.112541i
\(534\) 0 0
\(535\) −2.24111e10 + 3.88171e10i −0.273557 + 0.473814i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.96172e10i 0.350904i
\(540\) 0 0
\(541\) 2.43319e10 0.284044 0.142022 0.989863i \(-0.454640\pi\)
0.142022 + 0.989863i \(0.454640\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.51926e9 + 4.34124e9i 0.0852293 + 0.0492072i
\(546\) 0 0
\(547\) 4.30671e9 + 7.45944e9i 0.0481056 + 0.0833214i 0.889076 0.457760i \(-0.151348\pi\)
−0.840970 + 0.541082i \(0.818015\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.90660e10 2.25548e10i 0.423831 0.244699i
\(552\) 0 0
\(553\) 2.64143e9 4.57509e9i 0.0282448 0.0489214i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.83454e10i 1.02172i 0.859663 + 0.510862i \(0.170674\pi\)
−0.859663 + 0.510862i \(0.829326\pi\)
\(558\) 0 0
\(559\) 2.78269e10 0.284982
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.59836e10 + 9.22814e9i 0.159089 + 0.0918503i 0.577431 0.816439i \(-0.304055\pi\)
−0.418342 + 0.908290i \(0.637389\pi\)
\(564\) 0 0
\(565\) 8.91428e10 + 1.54400e11i 0.874767 + 1.51514i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.23535e11 + 7.13227e10i −1.17853 + 0.680423i −0.955673 0.294429i \(-0.904870\pi\)
−0.222853 + 0.974852i \(0.571537\pi\)
\(570\) 0 0
\(571\) −4.73284e10 + 8.19752e10i −0.445223 + 0.771148i −0.998068 0.0621358i \(-0.980209\pi\)
0.552845 + 0.833284i \(0.313542\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.79495e10i 0.438644i
\(576\) 0 0
\(577\) −6.51933e10 −0.588165 −0.294083 0.955780i \(-0.595014\pi\)
−0.294083 + 0.955780i \(0.595014\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.86950e10 4.54346e10i −0.690625 0.398733i
\(582\) 0 0
\(583\) 2.96981e10 + 5.14386e10i 0.257072 + 0.445261i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.42227e10 1.97585e10i 0.288245 0.166418i −0.348905 0.937158i \(-0.613447\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(588\) 0 0
\(589\) 6.44926e10 1.11705e11i 0.535857 0.928132i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.40557e11i 1.13667i 0.822798 + 0.568334i \(0.192412\pi\)
−0.822798 + 0.568334i \(0.807588\pi\)
\(594\) 0 0
\(595\) 1.51034e11 1.20505
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.13177e11 6.53426e10i −0.879124 0.507562i −0.00875424 0.999962i \(-0.502787\pi\)
−0.870369 + 0.492399i \(0.836120\pi\)
\(600\) 0 0
\(601\) 6.12844e9 + 1.06148e10i 0.0469734 + 0.0813603i 0.888556 0.458768i \(-0.151709\pi\)
−0.841583 + 0.540128i \(0.818376\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.41492e11 + 1.39426e11i −1.80253 + 1.04069i
\(606\) 0 0
\(607\) −3.95568e10 + 6.85144e10i −0.291385 + 0.504693i −0.974137 0.225957i \(-0.927449\pi\)
0.682753 + 0.730649i \(0.260783\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.00892e11i 0.723924i
\(612\) 0 0
\(613\) −1.81518e10 −0.128552 −0.0642760 0.997932i \(-0.520474\pi\)
−0.0642760 + 0.997932i \(0.520474\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.50679e11 8.69948e10i −1.03971 0.600278i −0.119960 0.992779i \(-0.538277\pi\)
−0.919752 + 0.392501i \(0.871610\pi\)
\(618\) 0 0
\(619\) 2.94108e10 + 5.09410e10i 0.200329 + 0.346980i 0.948634 0.316374i \(-0.102466\pi\)
−0.748305 + 0.663354i \(0.769132\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.05604e9 + 6.09704e8i −0.00701015 + 0.00404731i
\(624\) 0 0
\(625\) 9.14713e10 1.58433e11i 0.599466 1.03831i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.21956e9i 0.0141796i
\(630\) 0 0
\(631\) 1.13829e11 0.718020 0.359010 0.933334i \(-0.383114\pi\)
0.359010 + 0.933334i \(0.383114\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.20132e11 6.93583e10i −0.738864 0.426583i
\(636\) 0 0
\(637\) −8.34806e9 1.44593e10i −0.0507023 0.0878190i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.04568e11 1.18107e11i 1.21173 0.699592i 0.248593 0.968608i \(-0.420032\pi\)
0.963136 + 0.269016i \(0.0866984\pi\)
\(642\) 0 0
\(643\) −7.58520e10 + 1.31380e11i −0.443735 + 0.768571i −0.997963 0.0637936i \(-0.979680\pi\)
0.554228 + 0.832365i \(0.313013\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.87726e9i 0.0506596i −0.999679 0.0253298i \(-0.991936\pi\)
0.999679 0.0253298i \(-0.00806359\pi\)
\(648\) 0 0
\(649\) 5.51374e11 3.10791
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.99815e11 + 1.15363e11i 1.09894 + 0.634475i 0.935943 0.352152i \(-0.114550\pi\)
0.162999 + 0.986626i \(0.447883\pi\)
\(654\) 0 0
\(655\) 2.06207e10 + 3.57161e10i 0.112031 + 0.194043i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.02511e11 5.91849e10i 0.543538 0.313812i −0.202974 0.979184i \(-0.565061\pi\)
0.746512 + 0.665372i \(0.231727\pi\)
\(660\) 0 0
\(661\) 1.13003e11 1.95726e11i 0.591946 1.02528i −0.402024 0.915629i \(-0.631693\pi\)
0.993970 0.109652i \(-0.0349736\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.43427e11i 0.733403i
\(666\) 0 0
\(667\) 2.62294e11 1.32521
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.33040e11 + 3.07751e11i 2.62948 + 1.51813i
\(672\) 0 0
\(673\) −1.45420e11 2.51874e11i −0.708864 1.22779i −0.965279 0.261222i \(-0.915875\pi\)
0.256415 0.966567i \(-0.417459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.46120e10 3.15302e10i 0.259976 0.150097i −0.364348 0.931263i \(-0.618708\pi\)
0.624324 + 0.781166i \(0.285375\pi\)
\(678\) 0 0
\(679\) −6.91635e10 + 1.19795e11i −0.325385 + 0.563584i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.54747e10i 0.300878i 0.988619 + 0.150439i \(0.0480687\pi\)
−0.988619 + 0.150439i \(0.951931\pi\)
\(684\) 0 0
\(685\) 4.17264e11 1.89517
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.89975e10 + 1.67417e10i 0.128672 + 0.0742889i
\(690\) 0 0
\(691\) 3.64439e10 + 6.31227e10i 0.159850 + 0.276869i 0.934815 0.355136i \(-0.115566\pi\)
−0.774964 + 0.632005i \(0.782232\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.19107e11 + 1.84236e11i −1.36772 + 0.789653i
\(696\) 0 0
\(697\) 5.29390e10 9.16931e10i 0.224308 0.388513i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.18377e10i 0.0904347i 0.998977 + 0.0452173i \(0.0143980\pi\)
−0.998977 + 0.0452173i \(0.985602\pi\)
\(702\) 0 0
\(703\) −2.10776e9 −0.00862980
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.08112e11 1.20154e11i −0.832951 0.480904i
\(708\) 0 0
\(709\) 1.48096e11 + 2.56510e11i 0.586082 + 1.01512i 0.994740 + 0.102436i \(0.0326636\pi\)
−0.408658 + 0.912688i \(0.634003\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.49517e11 3.74999e11i 2.51323 1.45102i
\(714\) 0 0
\(715\) −1.21222e11 + 2.09963e11i −0.463829 + 0.803376i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.64816e11i 1.73927i 0.493699 + 0.869633i \(0.335644\pi\)
−0.493699 + 0.869633i \(0.664356\pi\)
\(720\) 0 0
\(721\) 1.82614e11 0.675759
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.42774e10 3.13371e10i −0.196457 0.113424i
\(726\) 0 0
\(727\) 1.93507e11 + 3.35164e11i 0.692722 + 1.19983i 0.970942 + 0.239313i \(0.0769222\pi\)
−0.278220 + 0.960517i \(0.589744\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.40460e11 + 8.10947e10i −0.491908 + 0.284003i
\(732\) 0 0
\(733\) 5.72572e10 9.91724e10i 0.198342 0.343538i −0.749649 0.661836i \(-0.769778\pi\)
0.947991 + 0.318297i \(0.103111\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.96249e11i 1.00412i
\(738\) 0 0
\(739\) 9.88171e10 0.331325 0.165663 0.986183i \(-0.447024\pi\)
0.165663 + 0.986183i \(0.447024\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.80555e11 1.61978e11i −0.920581 0.531498i −0.0367607 0.999324i \(-0.511704\pi\)
−0.883820 + 0.467826i \(0.845037\pi\)
\(744\) 0 0
\(745\) −1.73391e11 3.00322e11i −0.562862 0.974905i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.45209e11 + 8.38366e10i −0.461389 + 0.266383i
\(750\) 0 0
\(751\) −1.28902e11 + 2.23264e11i −0.405227 + 0.701874i −0.994348 0.106171i \(-0.966141\pi\)
0.589121 + 0.808045i \(0.299474\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.95841e11i 1.83376i
\(756\) 0 0
\(757\) −2.74781e11 −0.836765 −0.418382 0.908271i \(-0.637403\pi\)
−0.418382 + 0.908271i \(0.637403\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.84005e10 + 3.94910e10i 0.203948 + 0.117750i 0.598496 0.801126i \(-0.295765\pi\)
−0.394547 + 0.918876i \(0.629099\pi\)
\(762\) 0 0
\(763\) 1.62400e10 + 2.81285e10i 0.0479168 + 0.0829942i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.69184e11 1.55413e11i 0.777799 0.449063i
\(768\) 0 0
\(769\) 1.28801e11 2.23089e11i 0.368309 0.637930i −0.620992 0.783817i \(-0.713270\pi\)
0.989301 + 0.145886i \(0.0466034\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.55605e11i 0.715898i −0.933741 0.357949i \(-0.883476\pi\)
0.933741 0.357949i \(-0.116524\pi\)
\(774\) 0 0
\(775\) −1.79209e11 −0.496768
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.70748e10 5.02726e10i −0.236452 0.136515i
\(780\) 0 0
\(781\) 2.69983e10 + 4.67624e10i 0.0725658 + 0.125688i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.10553e11 + 2.37033e11i −1.08116 + 0.624209i
\(786\) 0 0
\(787\) −1.79969e11 + 3.11716e11i −0.469137 + 0.812569i −0.999378 0.0352783i \(-0.988768\pi\)
0.530241 + 0.847847i \(0.322102\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.66941e11i 1.70366i
\(792\) 0 0
\(793\) 3.46977e11 0.877422
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.78732e10 3.34131e10i −0.143431 0.0828101i 0.426567 0.904456i \(-0.359723\pi\)
−0.569998 + 0.821646i \(0.693056\pi\)
\(798\) 0 0
\(799\) 2.94026e11 + 5.09268e11i 0.721438 + 1.24957i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8.13201e11 + 4.69502e11i −1.95585 + 1.12921i
\(804\) 0 0
\(805\) 4.16984e11 7.22237e11i 0.992969 1.71987i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.52798e11i 0.356717i 0.983966 + 0.178358i \(0.0570786\pi\)
−0.983966 + 0.178358i \(0.942921\pi\)
\(810\) 0 0
\(811\) −7.47417e11 −1.72774 −0.863872 0.503712i \(-0.831967\pi\)
−0.863872 + 0.503712i \(0.831967\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.43876e11 + 8.30670e10i 0.326106 + 0.188277i
\(816\) 0 0
\(817\) 7.70103e10 + 1.33386e11i 0.172846 + 0.299379i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.87212e10 + 1.08087e10i −0.0412061 + 0.0237903i −0.520462 0.853885i \(-0.674240\pi\)
0.479255 + 0.877675i \(0.340907\pi\)
\(822\) 0 0
\(823\) 1.48416e11 2.57064e11i 0.323505 0.560328i −0.657703 0.753277i \(-0.728472\pi\)
0.981209 + 0.192949i \(0.0618053\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.77124e11i 1.66138i 0.556737 + 0.830689i \(0.312053\pi\)
−0.556737 + 0.830689i \(0.687947\pi\)
\(828\) 0 0
\(829\) −6.11841e10 −0.129545 −0.0647725 0.997900i \(-0.520632\pi\)
−0.0647725 + 0.997900i \(0.520632\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.42760e10 + 4.86568e10i 0.175035 + 0.101056i
\(834\) 0 0
\(835\) 2.07097e11 + 3.58702e11i 0.426017 + 0.737884i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.98324e11 3.45443e11i 1.20750 0.697153i 0.245291 0.969449i \(-0.421116\pi\)
0.962214 + 0.272296i \(0.0877830\pi\)
\(840\) 0 0
\(841\) −7.87028e10 + 1.36317e11i −0.157328 + 0.272500i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.38786e11i 0.860649i
\(846\) 0 0
\(847\) −1.04314e12 −2.02680
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.06138e10 6.12791e9i −0.0202374 0.0116841i
\(852\) 0 0
\(853\) −4.03386e11 6.98685e11i −0.761947 1.31973i −0.941846 0.336045i \(-0.890911\pi\)
0.179899 0.983685i \(-0.442423\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.85262e11 + 1.06961e11i −0.343449 + 0.198290i −0.661796 0.749684i \(-0.730206\pi\)
0.318347 + 0.947974i \(0.396872\pi\)
\(858\) 0 0
\(859\) 3.13829e11 5.43567e11i 0.576395 0.998345i −0.419494 0.907758i \(-0.637792\pi\)
0.995889 0.0905867i \(-0.0288742\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.94626e11i 0.531163i −0.964088 0.265581i \(-0.914436\pi\)
0.964088 0.265581i \(-0.0855639\pi\)
\(864\) 0 0
\(865\) 8.04170e11 1.43643
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.28052e10 2.47136e10i −0.0750615 0.0433368i
\(870\) 0 0
\(871\) −8.35023e10 1.44630e11i −0.145086 0.251297i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.57218e11 2.63975e11i 0.779993 0.450329i
\(876\) 0 0
\(877\) 2.34559e11 4.06268e11i 0.396510 0.686775i −0.596783 0.802403i \(-0.703555\pi\)
0.993293 + 0.115628i \(0.0368880\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.66926e11i 0.941072i 0.882381 + 0.470536i \(0.155939\pi\)
−0.882381 + 0.470536i \(0.844061\pi\)
\(882\) 0 0
\(883\) −9.08701e11 −1.49478 −0.747392 0.664384i \(-0.768694\pi\)
−0.747392 + 0.664384i \(0.768694\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.30853e11 + 2.48753e11i 0.696040 + 0.401859i 0.805871 0.592091i \(-0.201697\pi\)
−0.109831 + 0.993950i \(0.535031\pi\)
\(888\) 0 0
\(889\) −2.59460e11 4.49397e11i −0.415397 0.719488i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.83618e11 2.79217e11i 0.760496 0.439072i
\(894\) 0 0
\(895\) −4.95648e11 + 8.58488e11i −0.772470 + 1.33796i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.80312e11i 1.50081i
\(900\) 0 0
\(901\) −1.95159e11 −0.296135
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.22226e12 7.05674e11i −1.82209 1.05199i
\(906\) 0 0
\(907\) −6.79916e10 1.17765e11i −0.100468 0.174015i 0.811410 0.584478i \(-0.198701\pi\)
−0.911877 + 0.410463i \(0.865367\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.89607e11 + 1.09469e11i −0.275283 + 0.158935i −0.631286 0.775550i \(-0.717473\pi\)
0.356003 + 0.934485i \(0.384139\pi\)
\(912\) 0 0
\(913\) −4.25092e11 + 7.36281e11i −0.611787 + 1.05965i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.54278e11i 0.218186i
\(918\) 0 0
\(919\) −8.19281e11 −1.14860 −0.574302 0.818643i \(-0.694727\pi\)
−0.574302 + 0.818643i \(0.694727\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.63614e10 + 1.52198e10i 0.0363213 + 0.0209701i
\(924\) 0 0
\(925\) 1.46424e9 + 2.53614e9i 0.00200007 + 0.00346422i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.43450e11 + 4.86966e11i −1.13239 + 0.653786i −0.944535 0.328410i \(-0.893487\pi\)
−0.187856 + 0.982197i \(0.560154\pi\)
\(930\) 0 0
\(931\) 4.62061e10 8.00313e10i 0.0615036 0.106527i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.41309e12i 1.84894i
\(936\) 0 0
\(937\) 2.32658e11 0.301828 0.150914 0.988547i \(-0.451778\pi\)
0.150914 + 0.988547i \(0.451778\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.74131e11 + 2.73740e11i 0.604700 + 0.349124i 0.770888 0.636970i \(-0.219813\pi\)
−0.166189 + 0.986094i \(0.553146\pi\)
\(942\) 0 0
\(943\) −2.92315e11 5.06305e11i −0.369662 0.640274i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.21095e11 + 6.99143e10i −0.150566 + 0.0869293i −0.573390 0.819282i \(-0.694372\pi\)
0.422824 + 0.906212i \(0.361039\pi\)
\(948\) 0 0
\(949\) −2.64673e11 + 4.58426e11i −0.326320 + 0.565203i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.90654e11i 0.231140i 0.993299 + 0.115570i \(0.0368694\pi\)
−0.993299 + 0.115570i \(0.963131\pi\)
\(954\) 0 0
\(955\) −1.05819e12 −1.27219
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.35180e12 + 7.80463e11i 1.59823 + 0.922736i
\(960\) 0 0
\(961\) −9.75098e11 1.68892e12i −1.14329 1.98023i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.55049e12 8.95178e11i 1.78797 1.03229i
\(966\) 0 0
\(967\) −5.19179e11 + 8.99244e11i −0.593760 + 1.02842i 0.399960 + 0.916532i \(0.369024\pi\)
−0.993721 + 0.111890i \(0.964309\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.21983e12i 1.37222i 0.727500 + 0.686108i \(0.240682\pi\)
−0.727500 + 0.686108i \(0.759318\pi\)
\(972\) 0 0
\(973\) −1.37840e12 −1.53789
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.26675e12 + 7.31358e11i 1.39031 + 0.802697i 0.993349 0.115138i \(-0.0367311\pi\)
0.396962 + 0.917835i \(0.370064\pi\)
\(978\) 0 0
\(979\) 5.70447e9 + 9.88044e9i 0.00620990 + 0.0107559i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.52702e11 4.34573e11i 0.806137 0.465424i −0.0394753 0.999221i \(-0.512569\pi\)
0.845613 + 0.533797i \(0.179235\pi\)
\(984\) 0 0
\(985\) −5.47016e11 + 9.47460e11i −0.581106 + 1.00650i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.95568e11i 0.936081i
\(990\) 0 0
\(991\) 1.22632e11 0.127148 0.0635738 0.997977i \(-0.479750\pi\)
0.0635738 + 0.997977i \(0.479750\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.63191e12 9.42184e11i −1.66496 0.961265i
\(996\) 0 0
\(997\) −5.77449e10 1.00017e11i −0.0584431 0.101226i 0.835324 0.549759i \(-0.185280\pi\)
−0.893767 + 0.448532i \(0.851947\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.9.g.c.53.1 4
3.2 odd 2 inner 324.9.g.c.53.2 4
9.2 odd 6 inner 324.9.g.c.269.1 4
9.4 even 3 108.9.c.c.53.2 yes 2
9.5 odd 6 108.9.c.c.53.1 2
9.7 even 3 inner 324.9.g.c.269.2 4
36.23 even 6 432.9.e.c.161.1 2
36.31 odd 6 432.9.e.c.161.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.9.c.c.53.1 2 9.5 odd 6
108.9.c.c.53.2 yes 2 9.4 even 3
324.9.g.c.53.1 4 1.1 even 1 trivial
324.9.g.c.53.2 4 3.2 odd 2 inner
324.9.g.c.269.1 4 9.2 odd 6 inner
324.9.g.c.269.2 4 9.7 even 3 inner
432.9.e.c.161.1 2 36.23 even 6
432.9.e.c.161.2 2 36.31 odd 6