Properties

Label 324.9.g
Level $324$
Weight $9$
Character orbit 324.g
Rep. character $\chi_{324}(53,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $8$
Sturm bound $486$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 8 \)
Sturm bound: \(486\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(324, [\chi])\).

Total New Old
Modular forms 900 64 836
Cusp forms 828 64 764
Eisenstein series 72 0 72

Trace form

\( 64 q - 4615 q^{7} - 8425 q^{13} + 108626 q^{19} + 2838394 q^{25} + 970790 q^{31} + 1702370 q^{37} + 2714960 q^{43} - 32815383 q^{49} + 74574828 q^{55} - 21835225 q^{61} + 46321427 q^{67} - 30700306 q^{73}+ \cdots + 117284045 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(324, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
324.9.g.a 324.g 9.d $2$ $131.991$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 12.9.c.a \(0\) \(0\) \(0\) \(-4034\) $\mathrm{U}(1)[D_{6}]$ \(q+(-4034+4034\zeta_{6})q^{7}+35806\zeta_{6}q^{13}+\cdots\)
324.9.g.b 324.g 9.d $2$ $131.991$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 108.9.c.a \(0\) \(0\) \(0\) \(4273\) $\mathrm{U}(1)[D_{6}]$ \(q+(4273-4273\zeta_{6})q^{7}+20641\zeta_{6}q^{13}+\cdots\)
324.9.g.c 324.g 9.d $4$ $131.991$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 108.9.c.c \(0\) \(0\) \(0\) \(-5278\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{5}+(-2639-2639\beta _{1})q^{7}+\cdots\)
324.9.g.d 324.g 9.d $4$ $131.991$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 36.9.c.a \(0\) \(0\) \(0\) \(-616\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{5}-308\beta _{2}q^{7}+(-244\beta _{1}+244\beta _{3})q^{11}+\cdots\)
324.9.g.e 324.g 9.d $4$ $131.991$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 108.9.c.b \(0\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{5}+(7+7\beta _{1})q^{7}+(19\beta _{2}-19\beta _{3})q^{11}+\cdots\)
324.9.g.f 324.g 9.d $4$ $131.991$ \(\Q(\sqrt{-3}, \sqrt{-110})\) None 12.9.c.b \(0\) \(0\) \(0\) \(6188\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{5}+3094\beta _{2}q^{7}+(-\beta _{1}+\beta _{3})q^{11}+\cdots\)
324.9.g.g 324.g 9.d $12$ $131.991$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 108.9.c.d \(0\) \(0\) \(0\) \(-1470\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{5}q^{5}+(-245+245\beta _{1}-\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\)
324.9.g.h 324.g 9.d $32$ $131.991$ None 324.9.c.b \(0\) \(0\) \(0\) \(-3692\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{9}^{\mathrm{old}}(324, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(324, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)