Properties

Label 4275.2.a.bw.1.5
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4275,2,Mod(1,4275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,3,0,11,0,0,-8,9,0,0,4,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 8x^{5} + 26x^{4} + 11x^{3} - 51x^{2} + 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.57229\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.57229 q^{2} +0.472094 q^{4} -1.87913 q^{7} -2.40231 q^{8} -1.92081 q^{11} -0.248324 q^{13} -2.95453 q^{14} -4.72132 q^{16} +7.06596 q^{17} +1.00000 q^{19} -3.02007 q^{22} -1.20286 q^{23} -0.390437 q^{26} -0.887125 q^{28} -2.58170 q^{29} +8.69676 q^{31} -2.61865 q^{32} +11.1097 q^{34} +7.86387 q^{37} +1.57229 q^{38} -1.52589 q^{41} -4.15375 q^{43} -0.906802 q^{44} -1.89124 q^{46} -5.96879 q^{47} -3.46888 q^{49} -0.117232 q^{52} +7.11918 q^{53} +4.51425 q^{56} -4.05918 q^{58} +11.8573 q^{59} +5.87781 q^{61} +13.6738 q^{62} +5.32535 q^{64} -9.53623 q^{67} +3.33580 q^{68} +9.53623 q^{71} +6.69123 q^{73} +12.3643 q^{74} +0.472094 q^{76} +3.60944 q^{77} -0.348185 q^{79} -2.39913 q^{82} +2.41705 q^{83} -6.53090 q^{86} +4.61438 q^{88} +17.3414 q^{89} +0.466632 q^{91} -0.567862 q^{92} -9.38467 q^{94} +7.70088 q^{97} -5.45408 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} + 11 q^{4} - 8 q^{7} + 9 q^{8} + 4 q^{11} - 8 q^{13} + 4 q^{14} + 19 q^{16} + 4 q^{17} + 7 q^{19} - 12 q^{22} + 10 q^{23} + 20 q^{26} - 14 q^{28} + 6 q^{29} + 4 q^{31} + 31 q^{32} + 2 q^{34}+ \cdots + 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57229 1.11178 0.555888 0.831257i \(-0.312378\pi\)
0.555888 + 0.831257i \(0.312378\pi\)
\(3\) 0 0
\(4\) 0.472094 0.236047
\(5\) 0 0
\(6\) 0 0
\(7\) −1.87913 −0.710244 −0.355122 0.934820i \(-0.615561\pi\)
−0.355122 + 0.934820i \(0.615561\pi\)
\(8\) −2.40231 −0.849345
\(9\) 0 0
\(10\) 0 0
\(11\) −1.92081 −0.579146 −0.289573 0.957156i \(-0.593513\pi\)
−0.289573 + 0.957156i \(0.593513\pi\)
\(12\) 0 0
\(13\) −0.248324 −0.0688726 −0.0344363 0.999407i \(-0.510964\pi\)
−0.0344363 + 0.999407i \(0.510964\pi\)
\(14\) −2.95453 −0.789632
\(15\) 0 0
\(16\) −4.72132 −1.18033
\(17\) 7.06596 1.71375 0.856873 0.515527i \(-0.172404\pi\)
0.856873 + 0.515527i \(0.172404\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −3.02007 −0.643880
\(23\) −1.20286 −0.250813 −0.125406 0.992105i \(-0.540023\pi\)
−0.125406 + 0.992105i \(0.540023\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.390437 −0.0765709
\(27\) 0 0
\(28\) −0.887125 −0.167651
\(29\) −2.58170 −0.479409 −0.239705 0.970846i \(-0.577051\pi\)
−0.239705 + 0.970846i \(0.577051\pi\)
\(30\) 0 0
\(31\) 8.69676 1.56198 0.780992 0.624541i \(-0.214714\pi\)
0.780992 + 0.624541i \(0.214714\pi\)
\(32\) −2.61865 −0.462917
\(33\) 0 0
\(34\) 11.1097 1.90530
\(35\) 0 0
\(36\) 0 0
\(37\) 7.86387 1.29281 0.646406 0.762993i \(-0.276271\pi\)
0.646406 + 0.762993i \(0.276271\pi\)
\(38\) 1.57229 0.255059
\(39\) 0 0
\(40\) 0 0
\(41\) −1.52589 −0.238303 −0.119152 0.992876i \(-0.538017\pi\)
−0.119152 + 0.992876i \(0.538017\pi\)
\(42\) 0 0
\(43\) −4.15375 −0.633441 −0.316720 0.948519i \(-0.602582\pi\)
−0.316720 + 0.948519i \(0.602582\pi\)
\(44\) −0.906802 −0.136706
\(45\) 0 0
\(46\) −1.89124 −0.278848
\(47\) −5.96879 −0.870638 −0.435319 0.900276i \(-0.643364\pi\)
−0.435319 + 0.900276i \(0.643364\pi\)
\(48\) 0 0
\(49\) −3.46888 −0.495554
\(50\) 0 0
\(51\) 0 0
\(52\) −0.117232 −0.0162572
\(53\) 7.11918 0.977894 0.488947 0.872313i \(-0.337381\pi\)
0.488947 + 0.872313i \(0.337381\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.51425 0.603242
\(57\) 0 0
\(58\) −4.05918 −0.532996
\(59\) 11.8573 1.54369 0.771844 0.635812i \(-0.219335\pi\)
0.771844 + 0.635812i \(0.219335\pi\)
\(60\) 0 0
\(61\) 5.87781 0.752576 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(62\) 13.6738 1.73658
\(63\) 0 0
\(64\) 5.32535 0.665669
\(65\) 0 0
\(66\) 0 0
\(67\) −9.53623 −1.16504 −0.582518 0.812818i \(-0.697932\pi\)
−0.582518 + 0.812818i \(0.697932\pi\)
\(68\) 3.33580 0.404525
\(69\) 0 0
\(70\) 0 0
\(71\) 9.53623 1.13174 0.565871 0.824494i \(-0.308540\pi\)
0.565871 + 0.824494i \(0.308540\pi\)
\(72\) 0 0
\(73\) 6.69123 0.783149 0.391575 0.920146i \(-0.371930\pi\)
0.391575 + 0.920146i \(0.371930\pi\)
\(74\) 12.3643 1.43732
\(75\) 0 0
\(76\) 0.472094 0.0541529
\(77\) 3.60944 0.411334
\(78\) 0 0
\(79\) −0.348185 −0.0391739 −0.0195869 0.999808i \(-0.506235\pi\)
−0.0195869 + 0.999808i \(0.506235\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.39913 −0.264940
\(83\) 2.41705 0.265306 0.132653 0.991163i \(-0.457650\pi\)
0.132653 + 0.991163i \(0.457650\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.53090 −0.704245
\(87\) 0 0
\(88\) 4.61438 0.491894
\(89\) 17.3414 1.83818 0.919090 0.394048i \(-0.128926\pi\)
0.919090 + 0.394048i \(0.128926\pi\)
\(90\) 0 0
\(91\) 0.466632 0.0489163
\(92\) −0.567862 −0.0592037
\(93\) 0 0
\(94\) −9.38467 −0.967955
\(95\) 0 0
\(96\) 0 0
\(97\) 7.70088 0.781905 0.390953 0.920411i \(-0.372146\pi\)
0.390953 + 0.920411i \(0.372146\pi\)
\(98\) −5.45408 −0.550945
\(99\) 0 0
\(100\) 0 0
\(101\) 8.41297 0.837122 0.418561 0.908189i \(-0.362535\pi\)
0.418561 + 0.908189i \(0.362535\pi\)
\(102\) 0 0
\(103\) 9.64843 0.950688 0.475344 0.879800i \(-0.342324\pi\)
0.475344 + 0.879800i \(0.342324\pi\)
\(104\) 0.596550 0.0584966
\(105\) 0 0
\(106\) 11.1934 1.08720
\(107\) 0.241744 0.0233703 0.0116852 0.999932i \(-0.496280\pi\)
0.0116852 + 0.999932i \(0.496280\pi\)
\(108\) 0 0
\(109\) 3.05581 0.292694 0.146347 0.989233i \(-0.453248\pi\)
0.146347 + 0.989233i \(0.453248\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.87196 0.838321
\(113\) 16.5767 1.55940 0.779701 0.626152i \(-0.215371\pi\)
0.779701 + 0.626152i \(0.215371\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.21880 −0.113163
\(117\) 0 0
\(118\) 18.6431 1.71624
\(119\) −13.2778 −1.21718
\(120\) 0 0
\(121\) −7.31050 −0.664590
\(122\) 9.24161 0.836696
\(123\) 0 0
\(124\) 4.10569 0.368702
\(125\) 0 0
\(126\) 0 0
\(127\) −21.5565 −1.91283 −0.956416 0.292007i \(-0.905677\pi\)
−0.956416 + 0.292007i \(0.905677\pi\)
\(128\) 13.6103 1.20299
\(129\) 0 0
\(130\) 0 0
\(131\) 18.3504 1.60328 0.801642 0.597804i \(-0.203960\pi\)
0.801642 + 0.597804i \(0.203960\pi\)
\(132\) 0 0
\(133\) −1.87913 −0.162941
\(134\) −14.9937 −1.29526
\(135\) 0 0
\(136\) −16.9746 −1.45556
\(137\) −9.63542 −0.823209 −0.411605 0.911362i \(-0.635032\pi\)
−0.411605 + 0.911362i \(0.635032\pi\)
\(138\) 0 0
\(139\) −14.9629 −1.26914 −0.634568 0.772867i \(-0.718822\pi\)
−0.634568 + 0.772867i \(0.718822\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 14.9937 1.25824
\(143\) 0.476982 0.0398872
\(144\) 0 0
\(145\) 0 0
\(146\) 10.5206 0.870687
\(147\) 0 0
\(148\) 3.71249 0.305165
\(149\) −14.2063 −1.16383 −0.581915 0.813250i \(-0.697696\pi\)
−0.581915 + 0.813250i \(0.697696\pi\)
\(150\) 0 0
\(151\) −2.26811 −0.184577 −0.0922883 0.995732i \(-0.529418\pi\)
−0.0922883 + 0.995732i \(0.529418\pi\)
\(152\) −2.40231 −0.194853
\(153\) 0 0
\(154\) 5.67509 0.457312
\(155\) 0 0
\(156\) 0 0
\(157\) 1.23885 0.0988706 0.0494353 0.998777i \(-0.484258\pi\)
0.0494353 + 0.998777i \(0.484258\pi\)
\(158\) −0.547448 −0.0435526
\(159\) 0 0
\(160\) 0 0
\(161\) 2.26032 0.178138
\(162\) 0 0
\(163\) 4.19752 0.328775 0.164388 0.986396i \(-0.447435\pi\)
0.164388 + 0.986396i \(0.447435\pi\)
\(164\) −0.720362 −0.0562508
\(165\) 0 0
\(166\) 3.80030 0.294961
\(167\) 16.5980 1.28439 0.642195 0.766541i \(-0.278024\pi\)
0.642195 + 0.766541i \(0.278024\pi\)
\(168\) 0 0
\(169\) −12.9383 −0.995257
\(170\) 0 0
\(171\) 0 0
\(172\) −1.96096 −0.149522
\(173\) −0.784955 −0.0596790 −0.0298395 0.999555i \(-0.509500\pi\)
−0.0298395 + 0.999555i \(0.509500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.06874 0.683582
\(177\) 0 0
\(178\) 27.2656 2.04365
\(179\) 23.1704 1.73183 0.865917 0.500188i \(-0.166736\pi\)
0.865917 + 0.500188i \(0.166736\pi\)
\(180\) 0 0
\(181\) 8.11162 0.602932 0.301466 0.953477i \(-0.402524\pi\)
0.301466 + 0.953477i \(0.402524\pi\)
\(182\) 0.733680 0.0543840
\(183\) 0 0
\(184\) 2.88963 0.213027
\(185\) 0 0
\(186\) 0 0
\(187\) −13.5724 −0.992509
\(188\) −2.81783 −0.205512
\(189\) 0 0
\(190\) 0 0
\(191\) 20.7192 1.49919 0.749595 0.661897i \(-0.230248\pi\)
0.749595 + 0.661897i \(0.230248\pi\)
\(192\) 0 0
\(193\) −3.71249 −0.267231 −0.133615 0.991033i \(-0.542659\pi\)
−0.133615 + 0.991033i \(0.542659\pi\)
\(194\) 12.1080 0.869304
\(195\) 0 0
\(196\) −1.63764 −0.116974
\(197\) −7.81160 −0.556554 −0.278277 0.960501i \(-0.589763\pi\)
−0.278277 + 0.960501i \(0.589763\pi\)
\(198\) 0 0
\(199\) 5.87477 0.416451 0.208226 0.978081i \(-0.433231\pi\)
0.208226 + 0.978081i \(0.433231\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 13.2276 0.930692
\(203\) 4.85134 0.340497
\(204\) 0 0
\(205\) 0 0
\(206\) 15.1701 1.05695
\(207\) 0 0
\(208\) 1.17241 0.0812923
\(209\) −1.92081 −0.132865
\(210\) 0 0
\(211\) −9.79251 −0.674144 −0.337072 0.941479i \(-0.609437\pi\)
−0.337072 + 0.941479i \(0.609437\pi\)
\(212\) 3.36092 0.230829
\(213\) 0 0
\(214\) 0.380092 0.0259826
\(215\) 0 0
\(216\) 0 0
\(217\) −16.3423 −1.10939
\(218\) 4.80462 0.325410
\(219\) 0 0
\(220\) 0 0
\(221\) −1.75464 −0.118030
\(222\) 0 0
\(223\) −20.4327 −1.36827 −0.684137 0.729354i \(-0.739821\pi\)
−0.684137 + 0.729354i \(0.739821\pi\)
\(224\) 4.92079 0.328784
\(225\) 0 0
\(226\) 26.0633 1.73371
\(227\) −10.0931 −0.669903 −0.334952 0.942235i \(-0.608720\pi\)
−0.334952 + 0.942235i \(0.608720\pi\)
\(228\) 0 0
\(229\) −14.5637 −0.962397 −0.481198 0.876612i \(-0.659798\pi\)
−0.481198 + 0.876612i \(0.659798\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.20204 0.407184
\(233\) −25.8921 −1.69625 −0.848125 0.529797i \(-0.822268\pi\)
−0.848125 + 0.529797i \(0.822268\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5.59776 0.364383
\(237\) 0 0
\(238\) −20.8766 −1.35323
\(239\) −18.7389 −1.21212 −0.606061 0.795418i \(-0.707251\pi\)
−0.606061 + 0.795418i \(0.707251\pi\)
\(240\) 0 0
\(241\) 28.4586 1.83318 0.916589 0.399831i \(-0.130931\pi\)
0.916589 + 0.399831i \(0.130931\pi\)
\(242\) −11.4942 −0.738876
\(243\) 0 0
\(244\) 2.77488 0.177643
\(245\) 0 0
\(246\) 0 0
\(247\) −0.248324 −0.0158005
\(248\) −20.8923 −1.32666
\(249\) 0 0
\(250\) 0 0
\(251\) −1.22886 −0.0775650 −0.0387825 0.999248i \(-0.512348\pi\)
−0.0387825 + 0.999248i \(0.512348\pi\)
\(252\) 0 0
\(253\) 2.31046 0.145257
\(254\) −33.8931 −2.12664
\(255\) 0 0
\(256\) 10.7486 0.671789
\(257\) −5.56841 −0.347348 −0.173674 0.984803i \(-0.555564\pi\)
−0.173674 + 0.984803i \(0.555564\pi\)
\(258\) 0 0
\(259\) −14.7772 −0.918212
\(260\) 0 0
\(261\) 0 0
\(262\) 28.8522 1.78249
\(263\) −10.7855 −0.665063 −0.332531 0.943092i \(-0.607903\pi\)
−0.332531 + 0.943092i \(0.607903\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.95453 −0.181154
\(267\) 0 0
\(268\) −4.50200 −0.275003
\(269\) 22.8529 1.39337 0.696684 0.717378i \(-0.254658\pi\)
0.696684 + 0.717378i \(0.254658\pi\)
\(270\) 0 0
\(271\) −9.95413 −0.604670 −0.302335 0.953202i \(-0.597766\pi\)
−0.302335 + 0.953202i \(0.597766\pi\)
\(272\) −33.3606 −2.02278
\(273\) 0 0
\(274\) −15.1497 −0.915225
\(275\) 0 0
\(276\) 0 0
\(277\) 14.4026 0.865371 0.432686 0.901545i \(-0.357566\pi\)
0.432686 + 0.901545i \(0.357566\pi\)
\(278\) −23.5260 −1.41100
\(279\) 0 0
\(280\) 0 0
\(281\) −5.34285 −0.318728 −0.159364 0.987220i \(-0.550944\pi\)
−0.159364 + 0.987220i \(0.550944\pi\)
\(282\) 0 0
\(283\) −5.73067 −0.340653 −0.170326 0.985388i \(-0.554482\pi\)
−0.170326 + 0.985388i \(0.554482\pi\)
\(284\) 4.50200 0.267144
\(285\) 0 0
\(286\) 0.749954 0.0443457
\(287\) 2.86733 0.169253
\(288\) 0 0
\(289\) 32.9278 1.93693
\(290\) 0 0
\(291\) 0 0
\(292\) 3.15889 0.184860
\(293\) 27.4793 1.60536 0.802678 0.596412i \(-0.203408\pi\)
0.802678 + 0.596412i \(0.203408\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −18.8915 −1.09804
\(297\) 0 0
\(298\) −22.3365 −1.29392
\(299\) 0.298698 0.0172741
\(300\) 0 0
\(301\) 7.80543 0.449897
\(302\) −3.56613 −0.205208
\(303\) 0 0
\(304\) −4.72132 −0.270786
\(305\) 0 0
\(306\) 0 0
\(307\) −10.7031 −0.610858 −0.305429 0.952215i \(-0.598800\pi\)
−0.305429 + 0.952215i \(0.598800\pi\)
\(308\) 1.70400 0.0970943
\(309\) 0 0
\(310\) 0 0
\(311\) 11.5209 0.653288 0.326644 0.945148i \(-0.394082\pi\)
0.326644 + 0.945148i \(0.394082\pi\)
\(312\) 0 0
\(313\) −18.1596 −1.02644 −0.513221 0.858257i \(-0.671548\pi\)
−0.513221 + 0.858257i \(0.671548\pi\)
\(314\) 1.94782 0.109922
\(315\) 0 0
\(316\) −0.164376 −0.00924688
\(317\) −19.7109 −1.10707 −0.553537 0.832824i \(-0.686722\pi\)
−0.553537 + 0.832824i \(0.686722\pi\)
\(318\) 0 0
\(319\) 4.95895 0.277648
\(320\) 0 0
\(321\) 0 0
\(322\) 3.55388 0.198050
\(323\) 7.06596 0.393160
\(324\) 0 0
\(325\) 0 0
\(326\) 6.59972 0.365525
\(327\) 0 0
\(328\) 3.66565 0.202402
\(329\) 11.2161 0.618365
\(330\) 0 0
\(331\) −1.88788 −0.103767 −0.0518836 0.998653i \(-0.516522\pi\)
−0.0518836 + 0.998653i \(0.516522\pi\)
\(332\) 1.14108 0.0626247
\(333\) 0 0
\(334\) 26.0968 1.42796
\(335\) 0 0
\(336\) 0 0
\(337\) −14.0147 −0.763429 −0.381714 0.924280i \(-0.624666\pi\)
−0.381714 + 0.924280i \(0.624666\pi\)
\(338\) −20.3428 −1.10650
\(339\) 0 0
\(340\) 0 0
\(341\) −16.7048 −0.904616
\(342\) 0 0
\(343\) 19.6724 1.06221
\(344\) 9.97859 0.538010
\(345\) 0 0
\(346\) −1.23418 −0.0663498
\(347\) −1.05107 −0.0564245 −0.0282122 0.999602i \(-0.508981\pi\)
−0.0282122 + 0.999602i \(0.508981\pi\)
\(348\) 0 0
\(349\) 35.4633 1.89831 0.949153 0.314815i \(-0.101943\pi\)
0.949153 + 0.314815i \(0.101943\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.02993 0.268096
\(353\) 5.28721 0.281410 0.140705 0.990052i \(-0.455063\pi\)
0.140705 + 0.990052i \(0.455063\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8.18675 0.433897
\(357\) 0 0
\(358\) 36.4305 1.92541
\(359\) −16.0220 −0.845607 −0.422803 0.906221i \(-0.638954\pi\)
−0.422803 + 0.906221i \(0.638954\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 12.7538 0.670326
\(363\) 0 0
\(364\) 0.220294 0.0115466
\(365\) 0 0
\(366\) 0 0
\(367\) −27.7038 −1.44613 −0.723063 0.690782i \(-0.757267\pi\)
−0.723063 + 0.690782i \(0.757267\pi\)
\(368\) 5.67907 0.296042
\(369\) 0 0
\(370\) 0 0
\(371\) −13.3778 −0.694543
\(372\) 0 0
\(373\) −11.7532 −0.608559 −0.304279 0.952583i \(-0.598416\pi\)
−0.304279 + 0.952583i \(0.598416\pi\)
\(374\) −21.3397 −1.10345
\(375\) 0 0
\(376\) 14.3389 0.739472
\(377\) 0.641096 0.0330181
\(378\) 0 0
\(379\) −7.04988 −0.362128 −0.181064 0.983471i \(-0.557954\pi\)
−0.181064 + 0.983471i \(0.557954\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 32.5766 1.66676
\(383\) 7.01682 0.358543 0.179271 0.983800i \(-0.442626\pi\)
0.179271 + 0.983800i \(0.442626\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.83711 −0.297101
\(387\) 0 0
\(388\) 3.63554 0.184567
\(389\) 38.1712 1.93536 0.967679 0.252185i \(-0.0811492\pi\)
0.967679 + 0.252185i \(0.0811492\pi\)
\(390\) 0 0
\(391\) −8.49933 −0.429830
\(392\) 8.33332 0.420896
\(393\) 0 0
\(394\) −12.2821 −0.618763
\(395\) 0 0
\(396\) 0 0
\(397\) −7.84847 −0.393904 −0.196952 0.980413i \(-0.563104\pi\)
−0.196952 + 0.980413i \(0.563104\pi\)
\(398\) 9.23683 0.463001
\(399\) 0 0
\(400\) 0 0
\(401\) −0.879277 −0.0439090 −0.0219545 0.999759i \(-0.506989\pi\)
−0.0219545 + 0.999759i \(0.506989\pi\)
\(402\) 0 0
\(403\) −2.15961 −0.107578
\(404\) 3.97171 0.197600
\(405\) 0 0
\(406\) 7.62771 0.378557
\(407\) −15.1050 −0.748727
\(408\) 0 0
\(409\) 38.8153 1.91929 0.959647 0.281207i \(-0.0907349\pi\)
0.959647 + 0.281207i \(0.0907349\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.55497 0.224407
\(413\) −22.2814 −1.09639
\(414\) 0 0
\(415\) 0 0
\(416\) 0.650274 0.0318823
\(417\) 0 0
\(418\) −3.02007 −0.147716
\(419\) 31.2248 1.52543 0.762716 0.646734i \(-0.223866\pi\)
0.762716 + 0.646734i \(0.223866\pi\)
\(420\) 0 0
\(421\) −4.46904 −0.217808 −0.108904 0.994052i \(-0.534734\pi\)
−0.108904 + 0.994052i \(0.534734\pi\)
\(422\) −15.3967 −0.749498
\(423\) 0 0
\(424\) −17.1025 −0.830570
\(425\) 0 0
\(426\) 0 0
\(427\) −11.0452 −0.534512
\(428\) 0.114126 0.00551649
\(429\) 0 0
\(430\) 0 0
\(431\) −26.0794 −1.25620 −0.628101 0.778132i \(-0.716167\pi\)
−0.628101 + 0.778132i \(0.716167\pi\)
\(432\) 0 0
\(433\) 15.4199 0.741035 0.370518 0.928825i \(-0.379180\pi\)
0.370518 + 0.928825i \(0.379180\pi\)
\(434\) −25.6949 −1.23339
\(435\) 0 0
\(436\) 1.44263 0.0690895
\(437\) −1.20286 −0.0575404
\(438\) 0 0
\(439\) −26.1326 −1.24724 −0.623620 0.781728i \(-0.714339\pi\)
−0.623620 + 0.781728i \(0.714339\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2.75881 −0.131223
\(443\) −18.7686 −0.891721 −0.445861 0.895102i \(-0.647102\pi\)
−0.445861 + 0.895102i \(0.647102\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −32.1261 −1.52121
\(447\) 0 0
\(448\) −10.0070 −0.472787
\(449\) −18.5078 −0.873438 −0.436719 0.899598i \(-0.643860\pi\)
−0.436719 + 0.899598i \(0.643860\pi\)
\(450\) 0 0
\(451\) 2.93093 0.138012
\(452\) 7.82575 0.368092
\(453\) 0 0
\(454\) −15.8693 −0.744783
\(455\) 0 0
\(456\) 0 0
\(457\) 35.7154 1.67070 0.835348 0.549722i \(-0.185266\pi\)
0.835348 + 0.549722i \(0.185266\pi\)
\(458\) −22.8984 −1.06997
\(459\) 0 0
\(460\) 0 0
\(461\) 30.7787 1.43351 0.716753 0.697327i \(-0.245628\pi\)
0.716753 + 0.697327i \(0.245628\pi\)
\(462\) 0 0
\(463\) −31.1807 −1.44909 −0.724546 0.689226i \(-0.757951\pi\)
−0.724546 + 0.689226i \(0.757951\pi\)
\(464\) 12.1890 0.565860
\(465\) 0 0
\(466\) −40.7099 −1.88585
\(467\) −8.01621 −0.370946 −0.185473 0.982649i \(-0.559382\pi\)
−0.185473 + 0.982649i \(0.559382\pi\)
\(468\) 0 0
\(469\) 17.9198 0.827459
\(470\) 0 0
\(471\) 0 0
\(472\) −28.4849 −1.31112
\(473\) 7.97856 0.366854
\(474\) 0 0
\(475\) 0 0
\(476\) −6.26839 −0.287311
\(477\) 0 0
\(478\) −29.4630 −1.34761
\(479\) 4.00338 0.182919 0.0914596 0.995809i \(-0.470847\pi\)
0.0914596 + 0.995809i \(0.470847\pi\)
\(480\) 0 0
\(481\) −1.95279 −0.0890394
\(482\) 44.7451 2.03808
\(483\) 0 0
\(484\) −3.45124 −0.156875
\(485\) 0 0
\(486\) 0 0
\(487\) 17.5299 0.794358 0.397179 0.917741i \(-0.369989\pi\)
0.397179 + 0.917741i \(0.369989\pi\)
\(488\) −14.1203 −0.639197
\(489\) 0 0
\(490\) 0 0
\(491\) −15.7747 −0.711901 −0.355951 0.934505i \(-0.615843\pi\)
−0.355951 + 0.934505i \(0.615843\pi\)
\(492\) 0 0
\(493\) −18.2422 −0.821586
\(494\) −0.390437 −0.0175666
\(495\) 0 0
\(496\) −41.0602 −1.84366
\(497\) −17.9198 −0.803813
\(498\) 0 0
\(499\) 31.4231 1.40669 0.703347 0.710847i \(-0.251688\pi\)
0.703347 + 0.710847i \(0.251688\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.93212 −0.0862349
\(503\) 15.7396 0.701796 0.350898 0.936414i \(-0.385876\pi\)
0.350898 + 0.936414i \(0.385876\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.63271 0.161494
\(507\) 0 0
\(508\) −10.1767 −0.451518
\(509\) −17.2396 −0.764131 −0.382066 0.924135i \(-0.624787\pi\)
−0.382066 + 0.924135i \(0.624787\pi\)
\(510\) 0 0
\(511\) −12.5737 −0.556227
\(512\) −10.3206 −0.456112
\(513\) 0 0
\(514\) −8.75516 −0.386173
\(515\) 0 0
\(516\) 0 0
\(517\) 11.4649 0.504226
\(518\) −23.2341 −1.02085
\(519\) 0 0
\(520\) 0 0
\(521\) 28.3700 1.24291 0.621457 0.783448i \(-0.286541\pi\)
0.621457 + 0.783448i \(0.286541\pi\)
\(522\) 0 0
\(523\) −31.3645 −1.37148 −0.685738 0.727849i \(-0.740520\pi\)
−0.685738 + 0.727849i \(0.740520\pi\)
\(524\) 8.66313 0.378451
\(525\) 0 0
\(526\) −16.9579 −0.739401
\(527\) 61.4510 2.67685
\(528\) 0 0
\(529\) −21.5531 −0.937093
\(530\) 0 0
\(531\) 0 0
\(532\) −0.887125 −0.0384618
\(533\) 0.378913 0.0164126
\(534\) 0 0
\(535\) 0 0
\(536\) 22.9090 0.989517
\(537\) 0 0
\(538\) 35.9314 1.54911
\(539\) 6.66305 0.286998
\(540\) 0 0
\(541\) −12.6888 −0.545536 −0.272768 0.962080i \(-0.587939\pi\)
−0.272768 + 0.962080i \(0.587939\pi\)
\(542\) −15.6508 −0.672258
\(543\) 0 0
\(544\) −18.5033 −0.793323
\(545\) 0 0
\(546\) 0 0
\(547\) 19.2634 0.823644 0.411822 0.911264i \(-0.364893\pi\)
0.411822 + 0.911264i \(0.364893\pi\)
\(548\) −4.54883 −0.194316
\(549\) 0 0
\(550\) 0 0
\(551\) −2.58170 −0.109984
\(552\) 0 0
\(553\) 0.654284 0.0278230
\(554\) 22.6451 0.962099
\(555\) 0 0
\(556\) −7.06389 −0.299576
\(557\) −21.6253 −0.916294 −0.458147 0.888877i \(-0.651487\pi\)
−0.458147 + 0.888877i \(0.651487\pi\)
\(558\) 0 0
\(559\) 1.03147 0.0436267
\(560\) 0 0
\(561\) 0 0
\(562\) −8.40051 −0.354354
\(563\) 39.1301 1.64914 0.824569 0.565761i \(-0.191418\pi\)
0.824569 + 0.565761i \(0.191418\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −9.01027 −0.378730
\(567\) 0 0
\(568\) −22.9090 −0.961240
\(569\) −10.5271 −0.441320 −0.220660 0.975351i \(-0.570821\pi\)
−0.220660 + 0.975351i \(0.570821\pi\)
\(570\) 0 0
\(571\) 43.1731 1.80674 0.903368 0.428866i \(-0.141087\pi\)
0.903368 + 0.428866i \(0.141087\pi\)
\(572\) 0.225180 0.00941527
\(573\) 0 0
\(574\) 4.50828 0.188172
\(575\) 0 0
\(576\) 0 0
\(577\) 13.8196 0.575316 0.287658 0.957733i \(-0.407123\pi\)
0.287658 + 0.957733i \(0.407123\pi\)
\(578\) 51.7720 2.15343
\(579\) 0 0
\(580\) 0 0
\(581\) −4.54195 −0.188432
\(582\) 0 0
\(583\) −13.6746 −0.566343
\(584\) −16.0744 −0.665164
\(585\) 0 0
\(586\) 43.2054 1.78480
\(587\) −16.3981 −0.676822 −0.338411 0.940998i \(-0.609889\pi\)
−0.338411 + 0.940998i \(0.609889\pi\)
\(588\) 0 0
\(589\) 8.69676 0.358344
\(590\) 0 0
\(591\) 0 0
\(592\) −37.1278 −1.52594
\(593\) −26.5182 −1.08897 −0.544485 0.838770i \(-0.683275\pi\)
−0.544485 + 0.838770i \(0.683275\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.70674 −0.274719
\(597\) 0 0
\(598\) 0.469639 0.0192050
\(599\) 7.85156 0.320806 0.160403 0.987052i \(-0.448721\pi\)
0.160403 + 0.987052i \(0.448721\pi\)
\(600\) 0 0
\(601\) −8.31507 −0.339179 −0.169589 0.985515i \(-0.554244\pi\)
−0.169589 + 0.985515i \(0.554244\pi\)
\(602\) 12.2724 0.500185
\(603\) 0 0
\(604\) −1.07076 −0.0435688
\(605\) 0 0
\(606\) 0 0
\(607\) −26.6353 −1.08109 −0.540546 0.841314i \(-0.681782\pi\)
−0.540546 + 0.841314i \(0.681782\pi\)
\(608\) −2.61865 −0.106200
\(609\) 0 0
\(610\) 0 0
\(611\) 1.48219 0.0599631
\(612\) 0 0
\(613\) −38.7710 −1.56595 −0.782973 0.622056i \(-0.786298\pi\)
−0.782973 + 0.622056i \(0.786298\pi\)
\(614\) −16.8284 −0.679138
\(615\) 0 0
\(616\) −8.67101 −0.349365
\(617\) 23.1535 0.932125 0.466063 0.884752i \(-0.345672\pi\)
0.466063 + 0.884752i \(0.345672\pi\)
\(618\) 0 0
\(619\) 47.6444 1.91499 0.957495 0.288449i \(-0.0931396\pi\)
0.957495 + 0.288449i \(0.0931396\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 18.1141 0.726310
\(623\) −32.5866 −1.30556
\(624\) 0 0
\(625\) 0 0
\(626\) −28.5522 −1.14117
\(627\) 0 0
\(628\) 0.584852 0.0233381
\(629\) 55.5658 2.21555
\(630\) 0 0
\(631\) 29.4039 1.17055 0.585275 0.810835i \(-0.300987\pi\)
0.585275 + 0.810835i \(0.300987\pi\)
\(632\) 0.836449 0.0332721
\(633\) 0 0
\(634\) −30.9912 −1.23082
\(635\) 0 0
\(636\) 0 0
\(637\) 0.861404 0.0341301
\(638\) 7.79690 0.308682
\(639\) 0 0
\(640\) 0 0
\(641\) 11.0401 0.436059 0.218029 0.975942i \(-0.430037\pi\)
0.218029 + 0.975942i \(0.430037\pi\)
\(642\) 0 0
\(643\) 19.6424 0.774622 0.387311 0.921949i \(-0.373404\pi\)
0.387311 + 0.921949i \(0.373404\pi\)
\(644\) 1.06708 0.0420490
\(645\) 0 0
\(646\) 11.1097 0.437107
\(647\) 32.7753 1.28853 0.644265 0.764803i \(-0.277163\pi\)
0.644265 + 0.764803i \(0.277163\pi\)
\(648\) 0 0
\(649\) −22.7756 −0.894020
\(650\) 0 0
\(651\) 0 0
\(652\) 1.98163 0.0776065
\(653\) 10.5395 0.412442 0.206221 0.978505i \(-0.433883\pi\)
0.206221 + 0.978505i \(0.433883\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7.20419 0.281276
\(657\) 0 0
\(658\) 17.6350 0.687484
\(659\) −29.1597 −1.13590 −0.567950 0.823063i \(-0.692263\pi\)
−0.567950 + 0.823063i \(0.692263\pi\)
\(660\) 0 0
\(661\) −48.4368 −1.88397 −0.941987 0.335649i \(-0.891044\pi\)
−0.941987 + 0.335649i \(0.891044\pi\)
\(662\) −2.96829 −0.115366
\(663\) 0 0
\(664\) −5.80651 −0.225336
\(665\) 0 0
\(666\) 0 0
\(667\) 3.10541 0.120242
\(668\) 7.83581 0.303177
\(669\) 0 0
\(670\) 0 0
\(671\) −11.2901 −0.435851
\(672\) 0 0
\(673\) −0.819338 −0.0315831 −0.0157916 0.999875i \(-0.505027\pi\)
−0.0157916 + 0.999875i \(0.505027\pi\)
\(674\) −22.0351 −0.848762
\(675\) 0 0
\(676\) −6.10811 −0.234927
\(677\) −3.76524 −0.144710 −0.0723549 0.997379i \(-0.523051\pi\)
−0.0723549 + 0.997379i \(0.523051\pi\)
\(678\) 0 0
\(679\) −14.4709 −0.555343
\(680\) 0 0
\(681\) 0 0
\(682\) −26.2648 −1.00573
\(683\) −36.9829 −1.41511 −0.707556 0.706657i \(-0.750202\pi\)
−0.707556 + 0.706657i \(0.750202\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 30.9306 1.18094
\(687\) 0 0
\(688\) 19.6112 0.747669
\(689\) −1.76786 −0.0673501
\(690\) 0 0
\(691\) 10.0198 0.381171 0.190585 0.981671i \(-0.438961\pi\)
0.190585 + 0.981671i \(0.438961\pi\)
\(692\) −0.370573 −0.0140871
\(693\) 0 0
\(694\) −1.65259 −0.0627314
\(695\) 0 0
\(696\) 0 0
\(697\) −10.7818 −0.408391
\(698\) 55.7585 2.11049
\(699\) 0 0
\(700\) 0 0
\(701\) 15.6128 0.589688 0.294844 0.955545i \(-0.404732\pi\)
0.294844 + 0.955545i \(0.404732\pi\)
\(702\) 0 0
\(703\) 7.86387 0.296592
\(704\) −10.2290 −0.385519
\(705\) 0 0
\(706\) 8.31302 0.312865
\(707\) −15.8090 −0.594560
\(708\) 0 0
\(709\) 11.5966 0.435519 0.217759 0.976002i \(-0.430125\pi\)
0.217759 + 0.976002i \(0.430125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −41.6593 −1.56125
\(713\) −10.4610 −0.391766
\(714\) 0 0
\(715\) 0 0
\(716\) 10.9386 0.408794
\(717\) 0 0
\(718\) −25.1912 −0.940126
\(719\) 13.1532 0.490532 0.245266 0.969456i \(-0.421125\pi\)
0.245266 + 0.969456i \(0.421125\pi\)
\(720\) 0 0
\(721\) −18.1306 −0.675220
\(722\) 1.57229 0.0585146
\(723\) 0 0
\(724\) 3.82945 0.142320
\(725\) 0 0
\(726\) 0 0
\(727\) −26.7258 −0.991203 −0.495602 0.868550i \(-0.665052\pi\)
−0.495602 + 0.868550i \(0.665052\pi\)
\(728\) −1.12099 −0.0415468
\(729\) 0 0
\(730\) 0 0
\(731\) −29.3502 −1.08556
\(732\) 0 0
\(733\) 1.01889 0.0376337 0.0188169 0.999823i \(-0.494010\pi\)
0.0188169 + 0.999823i \(0.494010\pi\)
\(734\) −43.5584 −1.60777
\(735\) 0 0
\(736\) 3.14987 0.116106
\(737\) 18.3173 0.674725
\(738\) 0 0
\(739\) −30.1705 −1.10984 −0.554920 0.831904i \(-0.687251\pi\)
−0.554920 + 0.831904i \(0.687251\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −21.0338 −0.772177
\(743\) 8.28423 0.303919 0.151959 0.988387i \(-0.451442\pi\)
0.151959 + 0.988387i \(0.451442\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −18.4795 −0.676581
\(747\) 0 0
\(748\) −6.40743 −0.234279
\(749\) −0.454268 −0.0165986
\(750\) 0 0
\(751\) −3.74254 −0.136567 −0.0682836 0.997666i \(-0.521752\pi\)
−0.0682836 + 0.997666i \(0.521752\pi\)
\(752\) 28.1806 1.02764
\(753\) 0 0
\(754\) 1.00799 0.0367088
\(755\) 0 0
\(756\) 0 0
\(757\) 29.6308 1.07695 0.538475 0.842642i \(-0.319001\pi\)
0.538475 + 0.842642i \(0.319001\pi\)
\(758\) −11.0845 −0.402605
\(759\) 0 0
\(760\) 0 0
\(761\) 43.2167 1.56660 0.783302 0.621642i \(-0.213534\pi\)
0.783302 + 0.621642i \(0.213534\pi\)
\(762\) 0 0
\(763\) −5.74226 −0.207884
\(764\) 9.78142 0.353880
\(765\) 0 0
\(766\) 11.0325 0.398619
\(767\) −2.94445 −0.106318
\(768\) 0 0
\(769\) −7.30244 −0.263333 −0.131666 0.991294i \(-0.542033\pi\)
−0.131666 + 0.991294i \(0.542033\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.75264 −0.0630791
\(773\) 42.4163 1.52561 0.762804 0.646630i \(-0.223822\pi\)
0.762804 + 0.646630i \(0.223822\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −18.4999 −0.664107
\(777\) 0 0
\(778\) 60.0162 2.15169
\(779\) −1.52589 −0.0546705
\(780\) 0 0
\(781\) −18.3173 −0.655443
\(782\) −13.3634 −0.477875
\(783\) 0 0
\(784\) 16.3777 0.584917
\(785\) 0 0
\(786\) 0 0
\(787\) −34.5998 −1.23335 −0.616675 0.787218i \(-0.711521\pi\)
−0.616675 + 0.787218i \(0.711521\pi\)
\(788\) −3.68781 −0.131373
\(789\) 0 0
\(790\) 0 0
\(791\) −31.1497 −1.10755
\(792\) 0 0
\(793\) −1.45960 −0.0518319
\(794\) −12.3401 −0.437933
\(795\) 0 0
\(796\) 2.77344 0.0983021
\(797\) 31.9016 1.13001 0.565006 0.825087i \(-0.308874\pi\)
0.565006 + 0.825087i \(0.308874\pi\)
\(798\) 0 0
\(799\) −42.1752 −1.49205
\(800\) 0 0
\(801\) 0 0
\(802\) −1.38248 −0.0488170
\(803\) −12.8526 −0.453557
\(804\) 0 0
\(805\) 0 0
\(806\) −3.39553 −0.119603
\(807\) 0 0
\(808\) −20.2106 −0.711005
\(809\) −7.96516 −0.280040 −0.140020 0.990149i \(-0.544717\pi\)
−0.140020 + 0.990149i \(0.544717\pi\)
\(810\) 0 0
\(811\) −8.45805 −0.297002 −0.148501 0.988912i \(-0.547445\pi\)
−0.148501 + 0.988912i \(0.547445\pi\)
\(812\) 2.29029 0.0803734
\(813\) 0 0
\(814\) −23.7494 −0.832417
\(815\) 0 0
\(816\) 0 0
\(817\) −4.15375 −0.145321
\(818\) 61.0289 2.13383
\(819\) 0 0
\(820\) 0 0
\(821\) −29.8649 −1.04229 −0.521147 0.853467i \(-0.674496\pi\)
−0.521147 + 0.853467i \(0.674496\pi\)
\(822\) 0 0
\(823\) 29.4632 1.02702 0.513512 0.858083i \(-0.328344\pi\)
0.513512 + 0.858083i \(0.328344\pi\)
\(824\) −23.1785 −0.807462
\(825\) 0 0
\(826\) −35.0328 −1.21895
\(827\) 35.7491 1.24312 0.621558 0.783368i \(-0.286500\pi\)
0.621558 + 0.783368i \(0.286500\pi\)
\(828\) 0 0
\(829\) 30.6073 1.06303 0.531517 0.847047i \(-0.321622\pi\)
0.531517 + 0.847047i \(0.321622\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.32241 −0.0458463
\(833\) −24.5110 −0.849254
\(834\) 0 0
\(835\) 0 0
\(836\) −0.906802 −0.0313624
\(837\) 0 0
\(838\) 49.0944 1.69594
\(839\) −20.2431 −0.698868 −0.349434 0.936961i \(-0.613626\pi\)
−0.349434 + 0.936961i \(0.613626\pi\)
\(840\) 0 0
\(841\) −22.3348 −0.770167
\(842\) −7.02662 −0.242153
\(843\) 0 0
\(844\) −4.62299 −0.159130
\(845\) 0 0
\(846\) 0 0
\(847\) 13.7374 0.472021
\(848\) −33.6119 −1.15424
\(849\) 0 0
\(850\) 0 0
\(851\) −9.45911 −0.324254
\(852\) 0 0
\(853\) 36.5320 1.25083 0.625415 0.780292i \(-0.284930\pi\)
0.625415 + 0.780292i \(0.284930\pi\)
\(854\) −17.3662 −0.594258
\(855\) 0 0
\(856\) −0.580745 −0.0198495
\(857\) −22.5292 −0.769584 −0.384792 0.923003i \(-0.625727\pi\)
−0.384792 + 0.923003i \(0.625727\pi\)
\(858\) 0 0
\(859\) 4.59482 0.156773 0.0783866 0.996923i \(-0.475023\pi\)
0.0783866 + 0.996923i \(0.475023\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −41.0044 −1.39662
\(863\) 11.5034 0.391579 0.195789 0.980646i \(-0.437273\pi\)
0.195789 + 0.980646i \(0.437273\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 24.2446 0.823866
\(867\) 0 0
\(868\) −7.71512 −0.261868
\(869\) 0.668797 0.0226874
\(870\) 0 0
\(871\) 2.36807 0.0802390
\(872\) −7.34101 −0.248598
\(873\) 0 0
\(874\) −1.89124 −0.0639721
\(875\) 0 0
\(876\) 0 0
\(877\) 9.18451 0.310139 0.155069 0.987904i \(-0.450440\pi\)
0.155069 + 0.987904i \(0.450440\pi\)
\(878\) −41.0880 −1.38665
\(879\) 0 0
\(880\) 0 0
\(881\) −46.8437 −1.57821 −0.789103 0.614261i \(-0.789454\pi\)
−0.789103 + 0.614261i \(0.789454\pi\)
\(882\) 0 0
\(883\) −29.8269 −1.00375 −0.501877 0.864939i \(-0.667357\pi\)
−0.501877 + 0.864939i \(0.667357\pi\)
\(884\) −0.828357 −0.0278607
\(885\) 0 0
\(886\) −29.5096 −0.991395
\(887\) 20.4681 0.687252 0.343626 0.939107i \(-0.388345\pi\)
0.343626 + 0.939107i \(0.388345\pi\)
\(888\) 0 0
\(889\) 40.5075 1.35858
\(890\) 0 0
\(891\) 0 0
\(892\) −9.64615 −0.322977
\(893\) −5.96879 −0.199738
\(894\) 0 0
\(895\) 0 0
\(896\) −25.5755 −0.854417
\(897\) 0 0
\(898\) −29.0996 −0.971068
\(899\) −22.4524 −0.748830
\(900\) 0 0
\(901\) 50.3038 1.67586
\(902\) 4.60828 0.153439
\(903\) 0 0
\(904\) −39.8223 −1.32447
\(905\) 0 0
\(906\) 0 0
\(907\) 16.6266 0.552076 0.276038 0.961147i \(-0.410978\pi\)
0.276038 + 0.961147i \(0.410978\pi\)
\(908\) −4.76490 −0.158129
\(909\) 0 0
\(910\) 0 0
\(911\) 40.6554 1.34697 0.673487 0.739199i \(-0.264796\pi\)
0.673487 + 0.739199i \(0.264796\pi\)
\(912\) 0 0
\(913\) −4.64269 −0.153651
\(914\) 56.1549 1.85744
\(915\) 0 0
\(916\) −6.87544 −0.227171
\(917\) −34.4828 −1.13872
\(918\) 0 0
\(919\) 23.9633 0.790477 0.395238 0.918579i \(-0.370662\pi\)
0.395238 + 0.918579i \(0.370662\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 48.3930 1.59374
\(923\) −2.36807 −0.0779460
\(924\) 0 0
\(925\) 0 0
\(926\) −49.0252 −1.61107
\(927\) 0 0
\(928\) 6.76057 0.221927
\(929\) 17.6807 0.580085 0.290043 0.957014i \(-0.406331\pi\)
0.290043 + 0.957014i \(0.406331\pi\)
\(930\) 0 0
\(931\) −3.46888 −0.113688
\(932\) −12.2235 −0.400395
\(933\) 0 0
\(934\) −12.6038 −0.412409
\(935\) 0 0
\(936\) 0 0
\(937\) −45.8986 −1.49944 −0.749721 0.661754i \(-0.769812\pi\)
−0.749721 + 0.661754i \(0.769812\pi\)
\(938\) 28.1751 0.919950
\(939\) 0 0
\(940\) 0 0
\(941\) −7.89440 −0.257350 −0.128675 0.991687i \(-0.541072\pi\)
−0.128675 + 0.991687i \(0.541072\pi\)
\(942\) 0 0
\(943\) 1.83542 0.0597695
\(944\) −55.9820 −1.82206
\(945\) 0 0
\(946\) 12.5446 0.407860
\(947\) −51.7953 −1.68312 −0.841561 0.540162i \(-0.818363\pi\)
−0.841561 + 0.540162i \(0.818363\pi\)
\(948\) 0 0
\(949\) −1.66159 −0.0539375
\(950\) 0 0
\(951\) 0 0
\(952\) 31.8975 1.03380
\(953\) −11.5807 −0.375137 −0.187568 0.982252i \(-0.560061\pi\)
−0.187568 + 0.982252i \(0.560061\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.84655 −0.286118
\(957\) 0 0
\(958\) 6.29447 0.203365
\(959\) 18.1062 0.584679
\(960\) 0 0
\(961\) 44.6337 1.43980
\(962\) −3.07034 −0.0989919
\(963\) 0 0
\(964\) 13.4351 0.432716
\(965\) 0 0
\(966\) 0 0
\(967\) −60.5547 −1.94731 −0.973654 0.228032i \(-0.926771\pi\)
−0.973654 + 0.228032i \(0.926771\pi\)
\(968\) 17.5621 0.564467
\(969\) 0 0
\(970\) 0 0
\(971\) 4.19412 0.134596 0.0672978 0.997733i \(-0.478562\pi\)
0.0672978 + 0.997733i \(0.478562\pi\)
\(972\) 0 0
\(973\) 28.1172 0.901395
\(974\) 27.5621 0.883148
\(975\) 0 0
\(976\) −27.7510 −0.888287
\(977\) −12.7754 −0.408720 −0.204360 0.978896i \(-0.565511\pi\)
−0.204360 + 0.978896i \(0.565511\pi\)
\(978\) 0 0
\(979\) −33.3094 −1.06457
\(980\) 0 0
\(981\) 0 0
\(982\) −24.8024 −0.791475
\(983\) 35.8198 1.14247 0.571237 0.820785i \(-0.306464\pi\)
0.571237 + 0.820785i \(0.306464\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −28.6820 −0.913420
\(987\) 0 0
\(988\) −0.117232 −0.00372965
\(989\) 4.99636 0.158875
\(990\) 0 0
\(991\) −19.1653 −0.608807 −0.304404 0.952543i \(-0.598457\pi\)
−0.304404 + 0.952543i \(0.598457\pi\)
\(992\) −22.7738 −0.723069
\(993\) 0 0
\(994\) −28.1751 −0.893660
\(995\) 0 0
\(996\) 0 0
\(997\) −9.88660 −0.313112 −0.156556 0.987669i \(-0.550039\pi\)
−0.156556 + 0.987669i \(0.550039\pi\)
\(998\) 49.4063 1.56393
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bw.1.5 7
3.2 odd 2 1425.2.a.y.1.3 7
5.2 odd 4 855.2.c.g.514.10 14
5.3 odd 4 855.2.c.g.514.5 14
5.4 even 2 4275.2.a.bv.1.3 7
15.2 even 4 285.2.c.b.229.5 14
15.8 even 4 285.2.c.b.229.10 yes 14
15.14 odd 2 1425.2.a.z.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.b.229.5 14 15.2 even 4
285.2.c.b.229.10 yes 14 15.8 even 4
855.2.c.g.514.5 14 5.3 odd 4
855.2.c.g.514.10 14 5.2 odd 4
1425.2.a.y.1.3 7 3.2 odd 2
1425.2.a.z.1.5 7 15.14 odd 2
4275.2.a.bv.1.3 7 5.4 even 2
4275.2.a.bw.1.5 7 1.1 even 1 trivial