Defining parameters
Level: | \( N \) | \(=\) | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4275.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 50 \) | ||
Sturm bound: | \(1200\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4275))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 142 | 482 |
Cusp forms | 577 | 142 | 435 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(12\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(16\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(18\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(10\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(21\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(19\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(21\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(25\) |
Plus space | \(+\) | \(62\) | ||
Minus space | \(-\) | \(80\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4275))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4275))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4275)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(475))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(855))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1425))\)\(^{\oplus 2}\)