Defining parameters
| Level: | \( N \) | \(=\) | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4275.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 50 \) | ||
| Sturm bound: | \(1200\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4275))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 624 | 142 | 482 |
| Cusp forms | 577 | 142 | 435 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(72\) | \(12\) | \(60\) | \(67\) | \(12\) | \(55\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(84\) | \(16\) | \(68\) | \(78\) | \(16\) | \(62\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(80\) | \(18\) | \(62\) | \(74\) | \(18\) | \(56\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(76\) | \(10\) | \(66\) | \(70\) | \(10\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(84\) | \(21\) | \(63\) | \(78\) | \(21\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(72\) | \(19\) | \(53\) | \(66\) | \(19\) | \(47\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(76\) | \(21\) | \(55\) | \(70\) | \(21\) | \(49\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(80\) | \(25\) | \(55\) | \(74\) | \(25\) | \(49\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(296\) | \(62\) | \(234\) | \(273\) | \(62\) | \(211\) | \(23\) | \(0\) | \(23\) | |||||
| Minus space | \(-\) | \(328\) | \(80\) | \(248\) | \(304\) | \(80\) | \(224\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4275))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4275))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4275)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(475))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(855))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1425))\)\(^{\oplus 2}\)