Properties

Label 855.2.c.g.514.5
Level $855$
Weight $2$
Character 855.514
Analytic conductor $6.827$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(514,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.514"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-22,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25x^{12} + 242x^{10} + 1134x^{8} + 2605x^{6} + 2545x^{4} + 552x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 514.5
Root \(-1.57229i\) of defining polynomial
Character \(\chi\) \(=\) 855.514
Dual form 855.2.c.g.514.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.57229i q^{2} -0.472094 q^{4} +(1.72335 - 1.42481i) q^{5} +1.87913i q^{7} -2.40231i q^{8} +(-2.24021 - 2.70960i) q^{10} -1.92081 q^{11} -0.248324i q^{13} +2.95453 q^{14} -4.72132 q^{16} -7.06596i q^{17} -1.00000 q^{19} +(-0.813582 + 0.672643i) q^{20} +3.02007i q^{22} -1.20286i q^{23} +(0.939849 - 4.91087i) q^{25} -0.390437 q^{26} -0.887125i q^{28} +2.58170 q^{29} +8.69676 q^{31} +2.61865i q^{32} -11.1097 q^{34} +(2.67739 + 3.23839i) q^{35} -7.86387i q^{37} +1.57229i q^{38} +(-3.42283 - 4.14001i) q^{40} -1.52589 q^{41} -4.15375i q^{43} +0.906802 q^{44} -1.89124 q^{46} +5.96879i q^{47} +3.46888 q^{49} +(-7.72132 - 1.47772i) q^{50} +0.117232i q^{52} +7.11918i q^{53} +(-3.31022 + 2.73678i) q^{55} +4.51425 q^{56} -4.05918i q^{58} -11.8573 q^{59} +5.87781 q^{61} -13.6738i q^{62} -5.32535 q^{64} +(-0.353813 - 0.427948i) q^{65} +9.53623i q^{67} +3.33580i q^{68} +(5.09169 - 4.20964i) q^{70} +9.53623 q^{71} +6.69123i q^{73} -12.3643 q^{74} +0.472094 q^{76} -3.60944i q^{77} +0.348185 q^{79} +(-8.13646 + 6.72696i) q^{80} +2.39913i q^{82} +2.41705i q^{83} +(-10.0676 - 12.1771i) q^{85} -6.53090 q^{86} +4.61438i q^{88} -17.3414 q^{89} +0.466632 q^{91} +0.567862i q^{92} +9.38467 q^{94} +(-1.72335 + 1.42481i) q^{95} -7.70088i q^{97} -5.45408i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 22 q^{4} - 2 q^{5} + 2 q^{10} + 8 q^{11} - 8 q^{14} + 38 q^{16} - 14 q^{19} - 12 q^{20} - 4 q^{25} + 40 q^{26} - 12 q^{29} + 8 q^{31} - 4 q^{34} + 14 q^{35} + 18 q^{40} - 4 q^{41} - 64 q^{44} - 8 q^{46}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57229i 1.11178i −0.831257 0.555888i \(-0.812378\pi\)
0.831257 0.555888i \(-0.187622\pi\)
\(3\) 0 0
\(4\) −0.472094 −0.236047
\(5\) 1.72335 1.42481i 0.770704 0.637193i
\(6\) 0 0
\(7\) 1.87913i 0.710244i 0.934820 + 0.355122i \(0.115561\pi\)
−0.934820 + 0.355122i \(0.884439\pi\)
\(8\) 2.40231i 0.849345i
\(9\) 0 0
\(10\) −2.24021 2.70960i −0.708416 0.856851i
\(11\) −1.92081 −0.579146 −0.289573 0.957156i \(-0.593513\pi\)
−0.289573 + 0.957156i \(0.593513\pi\)
\(12\) 0 0
\(13\) 0.248324i 0.0688726i −0.999407 0.0344363i \(-0.989036\pi\)
0.999407 0.0344363i \(-0.0109636\pi\)
\(14\) 2.95453 0.789632
\(15\) 0 0
\(16\) −4.72132 −1.18033
\(17\) 7.06596i 1.71375i −0.515527 0.856873i \(-0.672404\pi\)
0.515527 0.856873i \(-0.327596\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −0.813582 + 0.672643i −0.181922 + 0.150408i
\(21\) 0 0
\(22\) 3.02007i 0.643880i
\(23\) 1.20286i 0.250813i −0.992105 0.125406i \(-0.959977\pi\)
0.992105 0.125406i \(-0.0400235\pi\)
\(24\) 0 0
\(25\) 0.939849 4.91087i 0.187970 0.982175i
\(26\) −0.390437 −0.0765709
\(27\) 0 0
\(28\) 0.887125i 0.167651i
\(29\) 2.58170 0.479409 0.239705 0.970846i \(-0.422949\pi\)
0.239705 + 0.970846i \(0.422949\pi\)
\(30\) 0 0
\(31\) 8.69676 1.56198 0.780992 0.624541i \(-0.214714\pi\)
0.780992 + 0.624541i \(0.214714\pi\)
\(32\) 2.61865i 0.462917i
\(33\) 0 0
\(34\) −11.1097 −1.90530
\(35\) 2.67739 + 3.23839i 0.452562 + 0.547388i
\(36\) 0 0
\(37\) 7.86387i 1.29281i −0.762993 0.646406i \(-0.776271\pi\)
0.762993 0.646406i \(-0.223729\pi\)
\(38\) 1.57229i 0.255059i
\(39\) 0 0
\(40\) −3.42283 4.14001i −0.541197 0.654594i
\(41\) −1.52589 −0.238303 −0.119152 0.992876i \(-0.538017\pi\)
−0.119152 + 0.992876i \(0.538017\pi\)
\(42\) 0 0
\(43\) 4.15375i 0.633441i −0.948519 0.316720i \(-0.897418\pi\)
0.948519 0.316720i \(-0.102582\pi\)
\(44\) 0.906802 0.136706
\(45\) 0 0
\(46\) −1.89124 −0.278848
\(47\) 5.96879i 0.870638i 0.900276 + 0.435319i \(0.143364\pi\)
−0.900276 + 0.435319i \(0.856636\pi\)
\(48\) 0 0
\(49\) 3.46888 0.495554
\(50\) −7.72132 1.47772i −1.09196 0.208981i
\(51\) 0 0
\(52\) 0.117232i 0.0162572i
\(53\) 7.11918i 0.977894i 0.872313 + 0.488947i \(0.162619\pi\)
−0.872313 + 0.488947i \(0.837381\pi\)
\(54\) 0 0
\(55\) −3.31022 + 2.73678i −0.446350 + 0.369028i
\(56\) 4.51425 0.603242
\(57\) 0 0
\(58\) 4.05918i 0.532996i
\(59\) −11.8573 −1.54369 −0.771844 0.635812i \(-0.780665\pi\)
−0.771844 + 0.635812i \(0.780665\pi\)
\(60\) 0 0
\(61\) 5.87781 0.752576 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(62\) 13.6738i 1.73658i
\(63\) 0 0
\(64\) −5.32535 −0.665669
\(65\) −0.353813 0.427948i −0.0438851 0.0530804i
\(66\) 0 0
\(67\) 9.53623i 1.16504i 0.812818 + 0.582518i \(0.197932\pi\)
−0.812818 + 0.582518i \(0.802068\pi\)
\(68\) 3.33580i 0.404525i
\(69\) 0 0
\(70\) 5.09169 4.20964i 0.608573 0.503148i
\(71\) 9.53623 1.13174 0.565871 0.824494i \(-0.308540\pi\)
0.565871 + 0.824494i \(0.308540\pi\)
\(72\) 0 0
\(73\) 6.69123i 0.783149i 0.920146 + 0.391575i \(0.128070\pi\)
−0.920146 + 0.391575i \(0.871930\pi\)
\(74\) −12.3643 −1.43732
\(75\) 0 0
\(76\) 0.472094 0.0541529
\(77\) 3.60944i 0.411334i
\(78\) 0 0
\(79\) 0.348185 0.0391739 0.0195869 0.999808i \(-0.493765\pi\)
0.0195869 + 0.999808i \(0.493765\pi\)
\(80\) −8.13646 + 6.72696i −0.909684 + 0.752097i
\(81\) 0 0
\(82\) 2.39913i 0.264940i
\(83\) 2.41705i 0.265306i 0.991163 + 0.132653i \(0.0423496\pi\)
−0.991163 + 0.132653i \(0.957650\pi\)
\(84\) 0 0
\(85\) −10.0676 12.1771i −1.09199 1.32079i
\(86\) −6.53090 −0.704245
\(87\) 0 0
\(88\) 4.61438i 0.491894i
\(89\) −17.3414 −1.83818 −0.919090 0.394048i \(-0.871074\pi\)
−0.919090 + 0.394048i \(0.871074\pi\)
\(90\) 0 0
\(91\) 0.466632 0.0489163
\(92\) 0.567862i 0.0592037i
\(93\) 0 0
\(94\) 9.38467 0.967955
\(95\) −1.72335 + 1.42481i −0.176812 + 0.146182i
\(96\) 0 0
\(97\) 7.70088i 0.781905i −0.920411 0.390953i \(-0.872146\pi\)
0.920411 0.390953i \(-0.127854\pi\)
\(98\) 5.45408i 0.550945i
\(99\) 0 0
\(100\) −0.443697 + 2.31840i −0.0443697 + 0.231840i
\(101\) 8.41297 0.837122 0.418561 0.908189i \(-0.362535\pi\)
0.418561 + 0.908189i \(0.362535\pi\)
\(102\) 0 0
\(103\) 9.64843i 0.950688i 0.879800 + 0.475344i \(0.157676\pi\)
−0.879800 + 0.475344i \(0.842324\pi\)
\(104\) −0.596550 −0.0584966
\(105\) 0 0
\(106\) 11.1934 1.08720
\(107\) 0.241744i 0.0233703i −0.999932 0.0116852i \(-0.996280\pi\)
0.999932 0.0116852i \(-0.00371958\pi\)
\(108\) 0 0
\(109\) −3.05581 −0.292694 −0.146347 0.989233i \(-0.546752\pi\)
−0.146347 + 0.989233i \(0.546752\pi\)
\(110\) 4.30301 + 5.20462i 0.410276 + 0.496241i
\(111\) 0 0
\(112\) 8.87196i 0.838321i
\(113\) 16.5767i 1.55940i 0.626152 + 0.779701i \(0.284629\pi\)
−0.626152 + 0.779701i \(0.715371\pi\)
\(114\) 0 0
\(115\) −1.71384 2.07294i −0.159816 0.193303i
\(116\) −1.21880 −0.113163
\(117\) 0 0
\(118\) 18.6431i 1.71624i
\(119\) 13.2778 1.21718
\(120\) 0 0
\(121\) −7.31050 −0.664590
\(122\) 9.24161i 0.836696i
\(123\) 0 0
\(124\) −4.10569 −0.368702
\(125\) −5.37736 9.80224i −0.480966 0.876739i
\(126\) 0 0
\(127\) 21.5565i 1.91283i 0.292007 + 0.956416i \(0.405677\pi\)
−0.292007 + 0.956416i \(0.594323\pi\)
\(128\) 13.6103i 1.20299i
\(129\) 0 0
\(130\) −0.672858 + 0.556297i −0.0590135 + 0.0487905i
\(131\) 18.3504 1.60328 0.801642 0.597804i \(-0.203960\pi\)
0.801642 + 0.597804i \(0.203960\pi\)
\(132\) 0 0
\(133\) 1.87913i 0.162941i
\(134\) 14.9937 1.29526
\(135\) 0 0
\(136\) −16.9746 −1.45556
\(137\) 9.63542i 0.823209i 0.911362 + 0.411605i \(0.135032\pi\)
−0.911362 + 0.411605i \(0.864968\pi\)
\(138\) 0 0
\(139\) 14.9629 1.26914 0.634568 0.772867i \(-0.281178\pi\)
0.634568 + 0.772867i \(0.281178\pi\)
\(140\) −1.26398 1.52882i −0.106826 0.129209i
\(141\) 0 0
\(142\) 14.9937i 1.25824i
\(143\) 0.476982i 0.0398872i
\(144\) 0 0
\(145\) 4.44916 3.67842i 0.369483 0.305476i
\(146\) 10.5206 0.870687
\(147\) 0 0
\(148\) 3.71249i 0.305165i
\(149\) 14.2063 1.16383 0.581915 0.813250i \(-0.302304\pi\)
0.581915 + 0.813250i \(0.302304\pi\)
\(150\) 0 0
\(151\) −2.26811 −0.184577 −0.0922883 0.995732i \(-0.529418\pi\)
−0.0922883 + 0.995732i \(0.529418\pi\)
\(152\) 2.40231i 0.194853i
\(153\) 0 0
\(154\) −5.67509 −0.457312
\(155\) 14.9875 12.3912i 1.20383 0.995286i
\(156\) 0 0
\(157\) 1.23885i 0.0988706i −0.998777 0.0494353i \(-0.984258\pi\)
0.998777 0.0494353i \(-0.0157422\pi\)
\(158\) 0.547448i 0.0435526i
\(159\) 0 0
\(160\) 3.73108 + 4.51285i 0.294968 + 0.356772i
\(161\) 2.26032 0.178138
\(162\) 0 0
\(163\) 4.19752i 0.328775i 0.986396 + 0.164388i \(0.0525648\pi\)
−0.986396 + 0.164388i \(0.947435\pi\)
\(164\) 0.720362 0.0562508
\(165\) 0 0
\(166\) 3.80030 0.294961
\(167\) 16.5980i 1.28439i −0.766541 0.642195i \(-0.778024\pi\)
0.766541 0.642195i \(-0.221976\pi\)
\(168\) 0 0
\(169\) 12.9383 0.995257
\(170\) −19.1459 + 15.8292i −1.46843 + 1.21405i
\(171\) 0 0
\(172\) 1.96096i 0.149522i
\(173\) 0.784955i 0.0596790i −0.999555 0.0298395i \(-0.990500\pi\)
0.999555 0.0298395i \(-0.00949962\pi\)
\(174\) 0 0
\(175\) 9.22816 + 1.76610i 0.697583 + 0.133504i
\(176\) 9.06874 0.683582
\(177\) 0 0
\(178\) 27.2656i 2.04365i
\(179\) −23.1704 −1.73183 −0.865917 0.500188i \(-0.833264\pi\)
−0.865917 + 0.500188i \(0.833264\pi\)
\(180\) 0 0
\(181\) 8.11162 0.602932 0.301466 0.953477i \(-0.402524\pi\)
0.301466 + 0.953477i \(0.402524\pi\)
\(182\) 0.733680i 0.0543840i
\(183\) 0 0
\(184\) −2.88963 −0.213027
\(185\) −11.2045 13.5522i −0.823772 0.996376i
\(186\) 0 0
\(187\) 13.5724i 0.992509i
\(188\) 2.81783i 0.205512i
\(189\) 0 0
\(190\) 2.24021 + 2.70960i 0.162522 + 0.196575i
\(191\) 20.7192 1.49919 0.749595 0.661897i \(-0.230248\pi\)
0.749595 + 0.661897i \(0.230248\pi\)
\(192\) 0 0
\(193\) 3.71249i 0.267231i −0.991033 0.133615i \(-0.957341\pi\)
0.991033 0.133615i \(-0.0426587\pi\)
\(194\) −12.1080 −0.869304
\(195\) 0 0
\(196\) −1.63764 −0.116974
\(197\) 7.81160i 0.556554i 0.960501 + 0.278277i \(0.0897632\pi\)
−0.960501 + 0.278277i \(0.910237\pi\)
\(198\) 0 0
\(199\) −5.87477 −0.416451 −0.208226 0.978081i \(-0.566769\pi\)
−0.208226 + 0.978081i \(0.566769\pi\)
\(200\) −11.7974 2.25781i −0.834205 0.159651i
\(201\) 0 0
\(202\) 13.2276i 0.930692i
\(203\) 4.85134i 0.340497i
\(204\) 0 0
\(205\) −2.62963 + 2.17409i −0.183661 + 0.151845i
\(206\) 15.1701 1.05695
\(207\) 0 0
\(208\) 1.17241i 0.0812923i
\(209\) 1.92081 0.132865
\(210\) 0 0
\(211\) −9.79251 −0.674144 −0.337072 0.941479i \(-0.609437\pi\)
−0.337072 + 0.941479i \(0.609437\pi\)
\(212\) 3.36092i 0.230829i
\(213\) 0 0
\(214\) −0.380092 −0.0259826
\(215\) −5.91829 7.15835i −0.403624 0.488196i
\(216\) 0 0
\(217\) 16.3423i 1.10939i
\(218\) 4.80462i 0.325410i
\(219\) 0 0
\(220\) 1.56274 1.29202i 0.105360 0.0871079i
\(221\) −1.75464 −0.118030
\(222\) 0 0
\(223\) 20.4327i 1.36827i −0.729354 0.684137i \(-0.760179\pi\)
0.729354 0.684137i \(-0.239821\pi\)
\(224\) −4.92079 −0.328784
\(225\) 0 0
\(226\) 26.0633 1.73371
\(227\) 10.0931i 0.669903i 0.942235 + 0.334952i \(0.108720\pi\)
−0.942235 + 0.334952i \(0.891280\pi\)
\(228\) 0 0
\(229\) 14.5637 0.962397 0.481198 0.876612i \(-0.340202\pi\)
0.481198 + 0.876612i \(0.340202\pi\)
\(230\) −3.25926 + 2.69465i −0.214909 + 0.177680i
\(231\) 0 0
\(232\) 6.20204i 0.407184i
\(233\) 25.8921i 1.69625i −0.529797 0.848125i \(-0.677732\pi\)
0.529797 0.848125i \(-0.322268\pi\)
\(234\) 0 0
\(235\) 8.50438 + 10.2863i 0.554764 + 0.671004i
\(236\) 5.59776 0.364383
\(237\) 0 0
\(238\) 20.8766i 1.35323i
\(239\) 18.7389 1.21212 0.606061 0.795418i \(-0.292749\pi\)
0.606061 + 0.795418i \(0.292749\pi\)
\(240\) 0 0
\(241\) 28.4586 1.83318 0.916589 0.399831i \(-0.130931\pi\)
0.916589 + 0.399831i \(0.130931\pi\)
\(242\) 11.4942i 0.738876i
\(243\) 0 0
\(244\) −2.77488 −0.177643
\(245\) 5.97808 4.94248i 0.381926 0.315764i
\(246\) 0 0
\(247\) 0.248324i 0.0158005i
\(248\) 20.8923i 1.32666i
\(249\) 0 0
\(250\) −15.4120 + 8.45477i −0.974738 + 0.534727i
\(251\) −1.22886 −0.0775650 −0.0387825 0.999248i \(-0.512348\pi\)
−0.0387825 + 0.999248i \(0.512348\pi\)
\(252\) 0 0
\(253\) 2.31046i 0.145257i
\(254\) 33.8931 2.12664
\(255\) 0 0
\(256\) 10.7486 0.671789
\(257\) 5.56841i 0.347348i 0.984803 + 0.173674i \(0.0555639\pi\)
−0.984803 + 0.173674i \(0.944436\pi\)
\(258\) 0 0
\(259\) 14.7772 0.918212
\(260\) 0.167033 + 0.202032i 0.0103590 + 0.0125295i
\(261\) 0 0
\(262\) 28.8522i 1.78249i
\(263\) 10.7855i 0.665063i −0.943092 0.332531i \(-0.892097\pi\)
0.943092 0.332531i \(-0.107903\pi\)
\(264\) 0 0
\(265\) 10.1435 + 12.2688i 0.623108 + 0.753667i
\(266\) −2.95453 −0.181154
\(267\) 0 0
\(268\) 4.50200i 0.275003i
\(269\) −22.8529 −1.39337 −0.696684 0.717378i \(-0.745342\pi\)
−0.696684 + 0.717378i \(0.745342\pi\)
\(270\) 0 0
\(271\) −9.95413 −0.604670 −0.302335 0.953202i \(-0.597766\pi\)
−0.302335 + 0.953202i \(0.597766\pi\)
\(272\) 33.3606i 2.02278i
\(273\) 0 0
\(274\) 15.1497 0.915225
\(275\) −1.80527 + 9.43285i −0.108862 + 0.568822i
\(276\) 0 0
\(277\) 14.4026i 0.865371i −0.901545 0.432686i \(-0.857566\pi\)
0.901545 0.432686i \(-0.142434\pi\)
\(278\) 23.5260i 1.41100i
\(279\) 0 0
\(280\) 7.77962 6.43193i 0.464921 0.384381i
\(281\) −5.34285 −0.318728 −0.159364 0.987220i \(-0.550944\pi\)
−0.159364 + 0.987220i \(0.550944\pi\)
\(282\) 0 0
\(283\) 5.73067i 0.340653i −0.985388 0.170326i \(-0.945518\pi\)
0.985388 0.170326i \(-0.0544822\pi\)
\(284\) −4.50200 −0.267144
\(285\) 0 0
\(286\) 0.749954 0.0443457
\(287\) 2.86733i 0.169253i
\(288\) 0 0
\(289\) −32.9278 −1.93693
\(290\) −5.78354 6.99537i −0.339621 0.410782i
\(291\) 0 0
\(292\) 3.15889i 0.184860i
\(293\) 27.4793i 1.60536i 0.596412 + 0.802678i \(0.296592\pi\)
−0.596412 + 0.802678i \(0.703408\pi\)
\(294\) 0 0
\(295\) −20.4342 + 16.8944i −1.18973 + 0.983628i
\(296\) −18.8915 −1.09804
\(297\) 0 0
\(298\) 22.3365i 1.29392i
\(299\) −0.298698 −0.0172741
\(300\) 0 0
\(301\) 7.80543 0.449897
\(302\) 3.56613i 0.205208i
\(303\) 0 0
\(304\) 4.72132 0.270786
\(305\) 10.1295 8.37474i 0.580014 0.479536i
\(306\) 0 0
\(307\) 10.7031i 0.610858i 0.952215 + 0.305429i \(0.0987999\pi\)
−0.952215 + 0.305429i \(0.901200\pi\)
\(308\) 1.70400i 0.0970943i
\(309\) 0 0
\(310\) −19.4826 23.5647i −1.10654 1.33839i
\(311\) 11.5209 0.653288 0.326644 0.945148i \(-0.394082\pi\)
0.326644 + 0.945148i \(0.394082\pi\)
\(312\) 0 0
\(313\) 18.1596i 1.02644i −0.858257 0.513221i \(-0.828452\pi\)
0.858257 0.513221i \(-0.171548\pi\)
\(314\) −1.94782 −0.109922
\(315\) 0 0
\(316\) −0.164376 −0.00924688
\(317\) 19.7109i 1.10707i 0.832824 + 0.553537i \(0.186722\pi\)
−0.832824 + 0.553537i \(0.813278\pi\)
\(318\) 0 0
\(319\) −4.95895 −0.277648
\(320\) −9.17742 + 7.58759i −0.513034 + 0.424159i
\(321\) 0 0
\(322\) 3.55388i 0.198050i
\(323\) 7.06596i 0.393160i
\(324\) 0 0
\(325\) −1.21949 0.233387i −0.0676449 0.0129460i
\(326\) 6.59972 0.365525
\(327\) 0 0
\(328\) 3.66565i 0.202402i
\(329\) −11.2161 −0.618365
\(330\) 0 0
\(331\) −1.88788 −0.103767 −0.0518836 0.998653i \(-0.516522\pi\)
−0.0518836 + 0.998653i \(0.516522\pi\)
\(332\) 1.14108i 0.0626247i
\(333\) 0 0
\(334\) −26.0968 −1.42796
\(335\) 13.5873 + 16.4342i 0.742353 + 0.897898i
\(336\) 0 0
\(337\) 14.0147i 0.763429i 0.924280 + 0.381714i \(0.124666\pi\)
−0.924280 + 0.381714i \(0.875334\pi\)
\(338\) 20.3428i 1.10650i
\(339\) 0 0
\(340\) 4.75287 + 5.74874i 0.257760 + 0.311769i
\(341\) −16.7048 −0.904616
\(342\) 0 0
\(343\) 19.6724i 1.06221i
\(344\) −9.97859 −0.538010
\(345\) 0 0
\(346\) −1.23418 −0.0663498
\(347\) 1.05107i 0.0564245i 0.999602 + 0.0282122i \(0.00898142\pi\)
−0.999602 + 0.0282122i \(0.991019\pi\)
\(348\) 0 0
\(349\) −35.4633 −1.89831 −0.949153 0.314815i \(-0.898057\pi\)
−0.949153 + 0.314815i \(0.898057\pi\)
\(350\) 2.77682 14.5093i 0.148427 0.775557i
\(351\) 0 0
\(352\) 5.02993i 0.268096i
\(353\) 5.28721i 0.281410i 0.990052 + 0.140705i \(0.0449368\pi\)
−0.990052 + 0.140705i \(0.955063\pi\)
\(354\) 0 0
\(355\) 16.4342 13.5873i 0.872239 0.721138i
\(356\) 8.18675 0.433897
\(357\) 0 0
\(358\) 36.4305i 1.92541i
\(359\) 16.0220 0.845607 0.422803 0.906221i \(-0.361046\pi\)
0.422803 + 0.906221i \(0.361046\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 12.7538i 0.670326i
\(363\) 0 0
\(364\) −0.220294 −0.0115466
\(365\) 9.53371 + 11.5313i 0.499017 + 0.603576i
\(366\) 0 0
\(367\) 27.7038i 1.44613i 0.690782 + 0.723063i \(0.257267\pi\)
−0.690782 + 0.723063i \(0.742733\pi\)
\(368\) 5.67907i 0.296042i
\(369\) 0 0
\(370\) −21.3080 + 17.6167i −1.10775 + 0.915850i
\(371\) −13.3778 −0.694543
\(372\) 0 0
\(373\) 11.7532i 0.608559i −0.952583 0.304279i \(-0.901584\pi\)
0.952583 0.304279i \(-0.0984156\pi\)
\(374\) 21.3397 1.10345
\(375\) 0 0
\(376\) 14.3389 0.739472
\(377\) 0.641096i 0.0330181i
\(378\) 0 0
\(379\) 7.04988 0.362128 0.181064 0.983471i \(-0.442046\pi\)
0.181064 + 0.983471i \(0.442046\pi\)
\(380\) 0.813582 0.672643i 0.0417359 0.0345059i
\(381\) 0 0
\(382\) 32.5766i 1.66676i
\(383\) 7.01682i 0.358543i 0.983800 + 0.179271i \(0.0573740\pi\)
−0.983800 + 0.179271i \(0.942626\pi\)
\(384\) 0 0
\(385\) −5.14276 6.22033i −0.262099 0.317017i
\(386\) −5.83711 −0.297101
\(387\) 0 0
\(388\) 3.63554i 0.184567i
\(389\) −38.1712 −1.93536 −0.967679 0.252185i \(-0.918851\pi\)
−0.967679 + 0.252185i \(0.918851\pi\)
\(390\) 0 0
\(391\) −8.49933 −0.429830
\(392\) 8.33332i 0.420896i
\(393\) 0 0
\(394\) 12.2821 0.618763
\(395\) 0.600044 0.496097i 0.0301915 0.0249613i
\(396\) 0 0
\(397\) 7.84847i 0.393904i 0.980413 + 0.196952i \(0.0631042\pi\)
−0.980413 + 0.196952i \(0.936896\pi\)
\(398\) 9.23683i 0.463001i
\(399\) 0 0
\(400\) −4.43733 + 23.1858i −0.221866 + 1.15929i
\(401\) −0.879277 −0.0439090 −0.0219545 0.999759i \(-0.506989\pi\)
−0.0219545 + 0.999759i \(0.506989\pi\)
\(402\) 0 0
\(403\) 2.15961i 0.107578i
\(404\) −3.97171 −0.197600
\(405\) 0 0
\(406\) 7.62771 0.378557
\(407\) 15.1050i 0.748727i
\(408\) 0 0
\(409\) −38.8153 −1.91929 −0.959647 0.281207i \(-0.909265\pi\)
−0.959647 + 0.281207i \(0.909265\pi\)
\(410\) 3.41830 + 4.13454i 0.168818 + 0.204190i
\(411\) 0 0
\(412\) 4.55497i 0.224407i
\(413\) 22.2814i 1.09639i
\(414\) 0 0
\(415\) 3.44383 + 4.16542i 0.169051 + 0.204472i
\(416\) 0.650274 0.0318823
\(417\) 0 0
\(418\) 3.02007i 0.147716i
\(419\) −31.2248 −1.52543 −0.762716 0.646734i \(-0.776134\pi\)
−0.762716 + 0.646734i \(0.776134\pi\)
\(420\) 0 0
\(421\) −4.46904 −0.217808 −0.108904 0.994052i \(-0.534734\pi\)
−0.108904 + 0.994052i \(0.534734\pi\)
\(422\) 15.3967i 0.749498i
\(423\) 0 0
\(424\) 17.1025 0.830570
\(425\) −34.7000 6.64094i −1.68320 0.322133i
\(426\) 0 0
\(427\) 11.0452i 0.534512i
\(428\) 0.114126i 0.00551649i
\(429\) 0 0
\(430\) −11.2550 + 9.30527i −0.542764 + 0.448740i
\(431\) −26.0794 −1.25620 −0.628101 0.778132i \(-0.716167\pi\)
−0.628101 + 0.778132i \(0.716167\pi\)
\(432\) 0 0
\(433\) 15.4199i 0.741035i 0.928825 + 0.370518i \(0.120820\pi\)
−0.928825 + 0.370518i \(0.879180\pi\)
\(434\) 25.6949 1.23339
\(435\) 0 0
\(436\) 1.44263 0.0690895
\(437\) 1.20286i 0.0575404i
\(438\) 0 0
\(439\) 26.1326 1.24724 0.623620 0.781728i \(-0.285661\pi\)
0.623620 + 0.781728i \(0.285661\pi\)
\(440\) 6.57460 + 7.95217i 0.313432 + 0.379105i
\(441\) 0 0
\(442\) 2.75881i 0.131223i
\(443\) 18.7686i 0.891721i −0.895102 0.445861i \(-0.852898\pi\)
0.895102 0.445861i \(-0.147102\pi\)
\(444\) 0 0
\(445\) −29.8852 + 24.7081i −1.41669 + 1.17128i
\(446\) −32.1261 −1.52121
\(447\) 0 0
\(448\) 10.0070i 0.472787i
\(449\) 18.5078 0.873438 0.436719 0.899598i \(-0.356140\pi\)
0.436719 + 0.899598i \(0.356140\pi\)
\(450\) 0 0
\(451\) 2.93093 0.138012
\(452\) 7.82575i 0.368092i
\(453\) 0 0
\(454\) 15.8693 0.744783
\(455\) 0.804168 0.664860i 0.0377000 0.0311691i
\(456\) 0 0
\(457\) 35.7154i 1.67070i −0.549722 0.835348i \(-0.685266\pi\)
0.549722 0.835348i \(-0.314734\pi\)
\(458\) 22.8984i 1.06997i
\(459\) 0 0
\(460\) 0.809093 + 0.978623i 0.0377242 + 0.0456285i
\(461\) 30.7787 1.43351 0.716753 0.697327i \(-0.245628\pi\)
0.716753 + 0.697327i \(0.245628\pi\)
\(462\) 0 0
\(463\) 31.1807i 1.44909i −0.689226 0.724546i \(-0.742049\pi\)
0.689226 0.724546i \(-0.257951\pi\)
\(464\) −12.1890 −0.565860
\(465\) 0 0
\(466\) −40.7099 −1.88585
\(467\) 8.01621i 0.370946i 0.982649 + 0.185473i \(0.0593817\pi\)
−0.982649 + 0.185473i \(0.940618\pi\)
\(468\) 0 0
\(469\) −17.9198 −0.827459
\(470\) 16.1730 13.3713i 0.746007 0.616774i
\(471\) 0 0
\(472\) 28.4849i 1.31112i
\(473\) 7.97856i 0.366854i
\(474\) 0 0
\(475\) −0.939849 + 4.91087i −0.0431232 + 0.225326i
\(476\) −6.26839 −0.287311
\(477\) 0 0
\(478\) 29.4630i 1.34761i
\(479\) −4.00338 −0.182919 −0.0914596 0.995809i \(-0.529153\pi\)
−0.0914596 + 0.995809i \(0.529153\pi\)
\(480\) 0 0
\(481\) −1.95279 −0.0890394
\(482\) 44.7451i 2.03808i
\(483\) 0 0
\(484\) 3.45124 0.156875
\(485\) −10.9723 13.2713i −0.498225 0.602618i
\(486\) 0 0
\(487\) 17.5299i 0.794358i −0.917741 0.397179i \(-0.869989\pi\)
0.917741 0.397179i \(-0.130011\pi\)
\(488\) 14.1203i 0.639197i
\(489\) 0 0
\(490\) −7.77101 9.39927i −0.351059 0.424616i
\(491\) −15.7747 −0.711901 −0.355951 0.934505i \(-0.615843\pi\)
−0.355951 + 0.934505i \(0.615843\pi\)
\(492\) 0 0
\(493\) 18.2422i 0.821586i
\(494\) 0.390437 0.0175666
\(495\) 0 0
\(496\) −41.0602 −1.84366
\(497\) 17.9198i 0.803813i
\(498\) 0 0
\(499\) −31.4231 −1.40669 −0.703347 0.710847i \(-0.748312\pi\)
−0.703347 + 0.710847i \(0.748312\pi\)
\(500\) 2.53862 + 4.62758i 0.113531 + 0.206952i
\(501\) 0 0
\(502\) 1.93212i 0.0862349i
\(503\) 15.7396i 0.701796i 0.936414 + 0.350898i \(0.114124\pi\)
−0.936414 + 0.350898i \(0.885876\pi\)
\(504\) 0 0
\(505\) 14.4985 11.9869i 0.645173 0.533408i
\(506\) 3.63271 0.161494
\(507\) 0 0
\(508\) 10.1767i 0.451518i
\(509\) 17.2396 0.764131 0.382066 0.924135i \(-0.375213\pi\)
0.382066 + 0.924135i \(0.375213\pi\)
\(510\) 0 0
\(511\) −12.5737 −0.556227
\(512\) 10.3206i 0.456112i
\(513\) 0 0
\(514\) 8.75516 0.386173
\(515\) 13.7471 + 16.6276i 0.605772 + 0.732699i
\(516\) 0 0
\(517\) 11.4649i 0.504226i
\(518\) 23.2341i 1.02085i
\(519\) 0 0
\(520\) −1.02806 + 0.849969i −0.0450836 + 0.0372736i
\(521\) 28.3700 1.24291 0.621457 0.783448i \(-0.286541\pi\)
0.621457 + 0.783448i \(0.286541\pi\)
\(522\) 0 0
\(523\) 31.3645i 1.37148i −0.727849 0.685738i \(-0.759480\pi\)
0.727849 0.685738i \(-0.240520\pi\)
\(524\) −8.66313 −0.378451
\(525\) 0 0
\(526\) −16.9579 −0.739401
\(527\) 61.4510i 2.67685i
\(528\) 0 0
\(529\) 21.5531 0.937093
\(530\) 19.2901 15.9484i 0.837910 0.692756i
\(531\) 0 0
\(532\) 0.887125i 0.0384618i
\(533\) 0.378913i 0.0164126i
\(534\) 0 0
\(535\) −0.344439 0.416609i −0.0148914 0.0180116i
\(536\) 22.9090 0.989517
\(537\) 0 0
\(538\) 35.9314i 1.54911i
\(539\) −6.66305 −0.286998
\(540\) 0 0
\(541\) −12.6888 −0.545536 −0.272768 0.962080i \(-0.587939\pi\)
−0.272768 + 0.962080i \(0.587939\pi\)
\(542\) 15.6508i 0.672258i
\(543\) 0 0
\(544\) 18.5033 0.793323
\(545\) −5.26622 + 4.35394i −0.225580 + 0.186502i
\(546\) 0 0
\(547\) 19.2634i 0.823644i −0.911264 0.411822i \(-0.864893\pi\)
0.911264 0.411822i \(-0.135107\pi\)
\(548\) 4.54883i 0.194316i
\(549\) 0 0
\(550\) 14.8312 + 2.83841i 0.632403 + 0.121030i
\(551\) −2.58170 −0.109984
\(552\) 0 0
\(553\) 0.654284i 0.0278230i
\(554\) −22.6451 −0.962099
\(555\) 0 0
\(556\) −7.06389 −0.299576
\(557\) 21.6253i 0.916294i 0.888877 + 0.458147i \(0.151487\pi\)
−0.888877 + 0.458147i \(0.848513\pi\)
\(558\) 0 0
\(559\) −1.03147 −0.0436267
\(560\) −12.6408 15.2895i −0.534172 0.646097i
\(561\) 0 0
\(562\) 8.40051i 0.354354i
\(563\) 39.1301i 1.64914i 0.565761 + 0.824569i \(0.308582\pi\)
−0.565761 + 0.824569i \(0.691418\pi\)
\(564\) 0 0
\(565\) 23.6185 + 28.5673i 0.993640 + 1.20184i
\(566\) −9.01027 −0.378730
\(567\) 0 0
\(568\) 22.9090i 0.961240i
\(569\) 10.5271 0.441320 0.220660 0.975351i \(-0.429179\pi\)
0.220660 + 0.975351i \(0.429179\pi\)
\(570\) 0 0
\(571\) 43.1731 1.80674 0.903368 0.428866i \(-0.141087\pi\)
0.903368 + 0.428866i \(0.141087\pi\)
\(572\) 0.225180i 0.00941527i
\(573\) 0 0
\(574\) −4.50828 −0.188172
\(575\) −5.90708 1.13050i −0.246342 0.0471453i
\(576\) 0 0
\(577\) 13.8196i 0.575316i −0.957733 0.287658i \(-0.907123\pi\)
0.957733 0.287658i \(-0.0928767\pi\)
\(578\) 51.7720i 2.15343i
\(579\) 0 0
\(580\) −2.10042 + 1.73656i −0.0872153 + 0.0721068i
\(581\) −4.54195 −0.188432
\(582\) 0 0
\(583\) 13.6746i 0.566343i
\(584\) 16.0744 0.665164
\(585\) 0 0
\(586\) 43.2054 1.78480
\(587\) 16.3981i 0.676822i 0.940998 + 0.338411i \(0.109889\pi\)
−0.940998 + 0.338411i \(0.890111\pi\)
\(588\) 0 0
\(589\) −8.69676 −0.358344
\(590\) 26.5628 + 32.1285i 1.09357 + 1.32271i
\(591\) 0 0
\(592\) 37.1278i 1.52594i
\(593\) 26.5182i 1.08897i −0.838770 0.544485i \(-0.816725\pi\)
0.838770 0.544485i \(-0.183275\pi\)
\(594\) 0 0
\(595\) 22.8823 18.9184i 0.938084 0.775577i
\(596\) −6.70674 −0.274719
\(597\) 0 0
\(598\) 0.469639i 0.0192050i
\(599\) −7.85156 −0.320806 −0.160403 0.987052i \(-0.551279\pi\)
−0.160403 + 0.987052i \(0.551279\pi\)
\(600\) 0 0
\(601\) −8.31507 −0.339179 −0.169589 0.985515i \(-0.554244\pi\)
−0.169589 + 0.985515i \(0.554244\pi\)
\(602\) 12.2724i 0.500185i
\(603\) 0 0
\(604\) 1.07076 0.0435688
\(605\) −12.5985 + 10.4160i −0.512203 + 0.423472i
\(606\) 0 0
\(607\) 26.6353i 1.08109i 0.841314 + 0.540546i \(0.181782\pi\)
−0.841314 + 0.540546i \(0.818218\pi\)
\(608\) 2.61865i 0.106200i
\(609\) 0 0
\(610\) −13.1675 15.9265i −0.533137 0.644845i
\(611\) 1.48219 0.0599631
\(612\) 0 0
\(613\) 38.7710i 1.56595i −0.622056 0.782973i \(-0.713702\pi\)
0.622056 0.782973i \(-0.286298\pi\)
\(614\) 16.8284 0.679138
\(615\) 0 0
\(616\) −8.67101 −0.349365
\(617\) 23.1535i 0.932125i −0.884752 0.466063i \(-0.845672\pi\)
0.884752 0.466063i \(-0.154328\pi\)
\(618\) 0 0
\(619\) −47.6444 −1.91499 −0.957495 0.288449i \(-0.906860\pi\)
−0.957495 + 0.288449i \(0.906860\pi\)
\(620\) −7.07553 + 5.84982i −0.284160 + 0.234934i
\(621\) 0 0
\(622\) 18.1141i 0.726310i
\(623\) 32.5866i 1.30556i
\(624\) 0 0
\(625\) −23.2334 9.23096i −0.929335 0.369239i
\(626\) −28.5522 −1.14117
\(627\) 0 0
\(628\) 0.584852i 0.0233381i
\(629\) −55.5658 −2.21555
\(630\) 0 0
\(631\) 29.4039 1.17055 0.585275 0.810835i \(-0.300987\pi\)
0.585275 + 0.810835i \(0.300987\pi\)
\(632\) 0.836449i 0.0332721i
\(633\) 0 0
\(634\) 30.9912 1.23082
\(635\) 30.7139 + 37.1494i 1.21884 + 1.47423i
\(636\) 0 0
\(637\) 0.861404i 0.0341301i
\(638\) 7.79690i 0.308682i
\(639\) 0 0
\(640\) 19.3920 + 23.4553i 0.766538 + 0.927151i
\(641\) 11.0401 0.436059 0.218029 0.975942i \(-0.430037\pi\)
0.218029 + 0.975942i \(0.430037\pi\)
\(642\) 0 0
\(643\) 19.6424i 0.774622i 0.921949 + 0.387311i \(0.126596\pi\)
−0.921949 + 0.387311i \(0.873404\pi\)
\(644\) −1.06708 −0.0420490
\(645\) 0 0
\(646\) 11.1097 0.437107
\(647\) 32.7753i 1.28853i −0.764803 0.644265i \(-0.777163\pi\)
0.764803 0.644265i \(-0.222837\pi\)
\(648\) 0 0
\(649\) 22.7756 0.894020
\(650\) −0.366952 + 1.91738i −0.0143930 + 0.0752060i
\(651\) 0 0
\(652\) 1.98163i 0.0776065i
\(653\) 10.5395i 0.412442i 0.978505 + 0.206221i \(0.0661167\pi\)
−0.978505 + 0.206221i \(0.933883\pi\)
\(654\) 0 0
\(655\) 31.6242 26.1458i 1.23566 1.02160i
\(656\) 7.20419 0.281276
\(657\) 0 0
\(658\) 17.6350i 0.687484i
\(659\) 29.1597 1.13590 0.567950 0.823063i \(-0.307737\pi\)
0.567950 + 0.823063i \(0.307737\pi\)
\(660\) 0 0
\(661\) −48.4368 −1.88397 −0.941987 0.335649i \(-0.891044\pi\)
−0.941987 + 0.335649i \(0.891044\pi\)
\(662\) 2.96829i 0.115366i
\(663\) 0 0
\(664\) 5.80651 0.225336
\(665\) −2.67739 3.23839i −0.103825 0.125579i
\(666\) 0 0
\(667\) 3.10541i 0.120242i
\(668\) 7.83581i 0.303177i
\(669\) 0 0
\(670\) 25.8394 21.3632i 0.998262 0.825331i
\(671\) −11.2901 −0.435851
\(672\) 0 0
\(673\) 0.819338i 0.0315831i −0.999875 0.0157916i \(-0.994973\pi\)
0.999875 0.0157916i \(-0.00502682\pi\)
\(674\) 22.0351 0.848762
\(675\) 0 0
\(676\) −6.10811 −0.234927
\(677\) 3.76524i 0.144710i 0.997379 + 0.0723549i \(0.0230514\pi\)
−0.997379 + 0.0723549i \(0.976949\pi\)
\(678\) 0 0
\(679\) 14.4709 0.555343
\(680\) −29.2532 + 24.1856i −1.12181 + 0.927474i
\(681\) 0 0
\(682\) 26.2648i 1.00573i
\(683\) 36.9829i 1.41511i −0.706657 0.707556i \(-0.749798\pi\)
0.706657 0.707556i \(-0.250202\pi\)
\(684\) 0 0
\(685\) 13.7286 + 16.6052i 0.524543 + 0.634451i
\(686\) 30.9306 1.18094
\(687\) 0 0
\(688\) 19.6112i 0.747669i
\(689\) 1.76786 0.0673501
\(690\) 0 0
\(691\) 10.0198 0.381171 0.190585 0.981671i \(-0.438961\pi\)
0.190585 + 0.981671i \(0.438961\pi\)
\(692\) 0.370573i 0.0140871i
\(693\) 0 0
\(694\) 1.65259 0.0627314
\(695\) 25.7862 21.3192i 0.978128 0.808684i
\(696\) 0 0
\(697\) 10.7818i 0.408391i
\(698\) 55.7585i 2.11049i
\(699\) 0 0
\(700\) −4.35656 0.833764i −0.164663 0.0315133i
\(701\) 15.6128 0.589688 0.294844 0.955545i \(-0.404732\pi\)
0.294844 + 0.955545i \(0.404732\pi\)
\(702\) 0 0
\(703\) 7.86387i 0.296592i
\(704\) 10.2290 0.385519
\(705\) 0 0
\(706\) 8.31302 0.312865
\(707\) 15.8090i 0.594560i
\(708\) 0 0
\(709\) −11.5966 −0.435519 −0.217759 0.976002i \(-0.569875\pi\)
−0.217759 + 0.976002i \(0.569875\pi\)
\(710\) −21.3632 25.8394i −0.801745 0.969734i
\(711\) 0 0
\(712\) 41.6593i 1.56125i
\(713\) 10.4610i 0.391766i
\(714\) 0 0
\(715\) 0.679607 + 0.822006i 0.0254159 + 0.0307413i
\(716\) 10.9386 0.408794
\(717\) 0 0
\(718\) 25.1912i 0.940126i
\(719\) −13.1532 −0.490532 −0.245266 0.969456i \(-0.578875\pi\)
−0.245266 + 0.969456i \(0.578875\pi\)
\(720\) 0 0
\(721\) −18.1306 −0.675220
\(722\) 1.57229i 0.0585146i
\(723\) 0 0
\(724\) −3.82945 −0.142320
\(725\) 2.42641 12.6784i 0.0901145 0.470864i
\(726\) 0 0
\(727\) 26.7258i 0.991203i 0.868550 + 0.495602i \(0.165052\pi\)
−0.868550 + 0.495602i \(0.834948\pi\)
\(728\) 1.12099i 0.0415468i
\(729\) 0 0
\(730\) 18.1306 14.9898i 0.671042 0.554796i
\(731\) −29.3502 −1.08556
\(732\) 0 0
\(733\) 1.01889i 0.0376337i 0.999823 + 0.0188169i \(0.00598994\pi\)
−0.999823 + 0.0188169i \(0.994010\pi\)
\(734\) 43.5584 1.60777
\(735\) 0 0
\(736\) 3.14987 0.116106
\(737\) 18.3173i 0.674725i
\(738\) 0 0
\(739\) 30.1705 1.10984 0.554920 0.831904i \(-0.312749\pi\)
0.554920 + 0.831904i \(0.312749\pi\)
\(740\) 5.28958 + 6.39791i 0.194449 + 0.235192i
\(741\) 0 0
\(742\) 21.0338i 0.772177i
\(743\) 8.28423i 0.303919i 0.988387 + 0.151959i \(0.0485583\pi\)
−0.988387 + 0.151959i \(0.951442\pi\)
\(744\) 0 0
\(745\) 24.4825 20.2413i 0.896968 0.741584i
\(746\) −18.4795 −0.676581
\(747\) 0 0
\(748\) 6.40743i 0.234279i
\(749\) 0.454268 0.0165986
\(750\) 0 0
\(751\) −3.74254 −0.136567 −0.0682836 0.997666i \(-0.521752\pi\)
−0.0682836 + 0.997666i \(0.521752\pi\)
\(752\) 28.1806i 1.02764i
\(753\) 0 0
\(754\) −1.00799 −0.0367088
\(755\) −3.90875 + 3.23163i −0.142254 + 0.117611i
\(756\) 0 0
\(757\) 29.6308i 1.07695i −0.842642 0.538475i \(-0.819001\pi\)
0.842642 0.538475i \(-0.180999\pi\)
\(758\) 11.0845i 0.402605i
\(759\) 0 0
\(760\) 3.42283 + 4.14001i 0.124159 + 0.150174i
\(761\) 43.2167 1.56660 0.783302 0.621642i \(-0.213534\pi\)
0.783302 + 0.621642i \(0.213534\pi\)
\(762\) 0 0
\(763\) 5.74226i 0.207884i
\(764\) −9.78142 −0.353880
\(765\) 0 0
\(766\) 11.0325 0.398619
\(767\) 2.94445i 0.106318i
\(768\) 0 0
\(769\) 7.30244 0.263333 0.131666 0.991294i \(-0.457967\pi\)
0.131666 + 0.991294i \(0.457967\pi\)
\(770\) −9.78015 + 8.08591i −0.352452 + 0.291396i
\(771\) 0 0
\(772\) 1.75264i 0.0630791i
\(773\) 42.4163i 1.52561i 0.646630 + 0.762804i \(0.276178\pi\)
−0.646630 + 0.762804i \(0.723822\pi\)
\(774\) 0 0
\(775\) 8.17365 42.7087i 0.293606 1.53414i
\(776\) −18.4999 −0.664107
\(777\) 0 0
\(778\) 60.0162i 2.15169i
\(779\) 1.52589 0.0546705
\(780\) 0 0
\(781\) −18.3173 −0.655443
\(782\) 13.3634i 0.477875i
\(783\) 0 0
\(784\) −16.3777 −0.584917
\(785\) −1.76512 2.13496i −0.0629997 0.0762000i
\(786\) 0 0
\(787\) 34.5998i 1.23335i 0.787218 + 0.616675i \(0.211521\pi\)
−0.787218 + 0.616675i \(0.788479\pi\)
\(788\) 3.68781i 0.131373i
\(789\) 0 0
\(790\) −0.780008 0.943443i −0.0277514 0.0335662i
\(791\) −31.1497 −1.10755
\(792\) 0 0
\(793\) 1.45960i 0.0518319i
\(794\) 12.3401 0.437933
\(795\) 0 0
\(796\) 2.77344 0.0983021
\(797\) 31.9016i 1.13001i −0.825087 0.565006i \(-0.808874\pi\)
0.825087 0.565006i \(-0.191126\pi\)
\(798\) 0 0
\(799\) 42.1752 1.49205
\(800\) 12.8599 + 2.46114i 0.454665 + 0.0870145i
\(801\) 0 0
\(802\) 1.38248i 0.0488170i
\(803\) 12.8526i 0.453557i
\(804\) 0 0
\(805\) 3.89532 3.22052i 0.137292 0.113508i
\(806\) −3.39553 −0.119603
\(807\) 0 0
\(808\) 20.2106i 0.711005i
\(809\) 7.96516 0.280040 0.140020 0.990149i \(-0.455283\pi\)
0.140020 + 0.990149i \(0.455283\pi\)
\(810\) 0 0
\(811\) −8.45805 −0.297002 −0.148501 0.988912i \(-0.547445\pi\)
−0.148501 + 0.988912i \(0.547445\pi\)
\(812\) 2.29029i 0.0803734i
\(813\) 0 0
\(814\) 23.7494 0.832417
\(815\) 5.98066 + 7.23379i 0.209493 + 0.253389i
\(816\) 0 0
\(817\) 4.15375i 0.145321i
\(818\) 61.0289i 2.13383i
\(819\) 0 0
\(820\) 1.24143 1.02638i 0.0433527 0.0358426i
\(821\) −29.8649 −1.04229 −0.521147 0.853467i \(-0.674496\pi\)
−0.521147 + 0.853467i \(0.674496\pi\)
\(822\) 0 0
\(823\) 29.4632i 1.02702i 0.858083 + 0.513512i \(0.171656\pi\)
−0.858083 + 0.513512i \(0.828344\pi\)
\(824\) 23.1785 0.807462
\(825\) 0 0
\(826\) −35.0328 −1.21895
\(827\) 35.7491i 1.24312i −0.783368 0.621558i \(-0.786500\pi\)
0.783368 0.621558i \(-0.213500\pi\)
\(828\) 0 0
\(829\) −30.6073 −1.06303 −0.531517 0.847047i \(-0.678378\pi\)
−0.531517 + 0.847047i \(0.678378\pi\)
\(830\) 6.54924 5.41470i 0.227328 0.187947i
\(831\) 0 0
\(832\) 1.32241i 0.0458463i
\(833\) 24.5110i 0.849254i
\(834\) 0 0
\(835\) −23.6489 28.6041i −0.818405 0.989885i
\(836\) −0.906802 −0.0313624
\(837\) 0 0
\(838\) 49.0944i 1.69594i
\(839\) 20.2431 0.698868 0.349434 0.936961i \(-0.386374\pi\)
0.349434 + 0.936961i \(0.386374\pi\)
\(840\) 0 0
\(841\) −22.3348 −0.770167
\(842\) 7.02662i 0.242153i
\(843\) 0 0
\(844\) 4.62299 0.159130
\(845\) 22.2972 18.4346i 0.767048 0.634171i
\(846\) 0 0
\(847\) 13.7374i 0.472021i
\(848\) 33.6119i 1.15424i
\(849\) 0 0
\(850\) −10.4415 + 54.5585i −0.358140 + 1.87134i
\(851\) −9.45911 −0.324254
\(852\) 0 0
\(853\) 36.5320i 1.25083i 0.780292 + 0.625415i \(0.215070\pi\)
−0.780292 + 0.625415i \(0.784930\pi\)
\(854\) 17.3662 0.594258
\(855\) 0 0
\(856\) −0.580745 −0.0198495
\(857\) 22.5292i 0.769584i 0.923003 + 0.384792i \(0.125727\pi\)
−0.923003 + 0.384792i \(0.874273\pi\)
\(858\) 0 0
\(859\) −4.59482 −0.156773 −0.0783866 0.996923i \(-0.524977\pi\)
−0.0783866 + 0.996923i \(0.524977\pi\)
\(860\) 2.79399 + 3.37942i 0.0952743 + 0.115237i
\(861\) 0 0
\(862\) 41.0044i 1.39662i
\(863\) 11.5034i 0.391579i 0.980646 + 0.195789i \(0.0627269\pi\)
−0.980646 + 0.195789i \(0.937273\pi\)
\(864\) 0 0
\(865\) −1.11841 1.35275i −0.0380271 0.0459949i
\(866\) 24.2446 0.823866
\(867\) 0 0
\(868\) 7.71512i 0.261868i
\(869\) −0.668797 −0.0226874
\(870\) 0 0
\(871\) 2.36807 0.0802390
\(872\) 7.34101i 0.248598i
\(873\) 0 0
\(874\) 1.89124 0.0639721
\(875\) 18.4197 10.1047i 0.622698 0.341603i
\(876\) 0 0
\(877\) 9.18451i 0.310139i −0.987904 0.155069i \(-0.950440\pi\)
0.987904 0.155069i \(-0.0495601\pi\)
\(878\) 41.0880i 1.38665i
\(879\) 0 0
\(880\) 15.6286 12.9212i 0.526840 0.435574i
\(881\) −46.8437 −1.57821 −0.789103 0.614261i \(-0.789454\pi\)
−0.789103 + 0.614261i \(0.789454\pi\)
\(882\) 0 0
\(883\) 29.8269i 1.00375i −0.864939 0.501877i \(-0.832643\pi\)
0.864939 0.501877i \(-0.167357\pi\)
\(884\) 0.828357 0.0278607
\(885\) 0 0
\(886\) −29.5096 −0.991395
\(887\) 20.4681i 0.687252i −0.939107 0.343626i \(-0.888345\pi\)
0.939107 0.343626i \(-0.111655\pi\)
\(888\) 0 0
\(889\) −40.5075 −1.35858
\(890\) 38.8483 + 46.9881i 1.30220 + 1.57505i
\(891\) 0 0
\(892\) 9.64615i 0.322977i
\(893\) 5.96879i 0.199738i
\(894\) 0 0
\(895\) −39.9306 + 33.0133i −1.33473 + 1.10351i
\(896\) −25.5755 −0.854417
\(897\) 0 0
\(898\) 29.0996i 0.971068i
\(899\) 22.4524 0.748830
\(900\) 0 0
\(901\) 50.3038 1.67586
\(902\) 4.60828i 0.153439i
\(903\) 0 0
\(904\) 39.8223 1.32447
\(905\) 13.9791 11.5575i 0.464682 0.384184i
\(906\) 0 0
\(907\) 16.6266i 0.552076i −0.961147 0.276038i \(-0.910978\pi\)
0.961147 0.276038i \(-0.0890215\pi\)
\(908\) 4.76490i 0.158129i
\(909\) 0 0
\(910\) −1.04535 1.26439i −0.0346531 0.0419140i
\(911\) 40.6554 1.34697 0.673487 0.739199i \(-0.264796\pi\)
0.673487 + 0.739199i \(0.264796\pi\)
\(912\) 0 0
\(913\) 4.64269i 0.153651i
\(914\) −56.1549 −1.85744
\(915\) 0 0
\(916\) −6.87544 −0.227171
\(917\) 34.4828i 1.13872i
\(918\) 0 0
\(919\) −23.9633 −0.790477 −0.395238 0.918579i \(-0.629338\pi\)
−0.395238 + 0.918579i \(0.629338\pi\)
\(920\) −4.97984 + 4.11717i −0.164181 + 0.135739i
\(921\) 0 0
\(922\) 48.3930i 1.59374i
\(923\) 2.36807i 0.0779460i
\(924\) 0 0
\(925\) −38.6185 7.39086i −1.26977 0.243010i
\(926\) −49.0252 −1.61107
\(927\) 0 0
\(928\) 6.76057i 0.221927i
\(929\) −17.6807 −0.580085 −0.290043 0.957014i \(-0.593669\pi\)
−0.290043 + 0.957014i \(0.593669\pi\)
\(930\) 0 0
\(931\) −3.46888 −0.113688
\(932\) 12.2235i 0.400395i
\(933\) 0 0
\(934\) 12.6038 0.412409
\(935\) 19.3380 + 23.3899i 0.632420 + 0.764931i
\(936\) 0 0
\(937\) 45.8986i 1.49944i 0.661754 + 0.749721i \(0.269812\pi\)
−0.661754 + 0.749721i \(0.730188\pi\)
\(938\) 28.1751i 0.919950i
\(939\) 0 0
\(940\) −4.01487 4.85610i −0.130951 0.158389i
\(941\) −7.89440 −0.257350 −0.128675 0.991687i \(-0.541072\pi\)
−0.128675 + 0.991687i \(0.541072\pi\)
\(942\) 0 0
\(943\) 1.83542i 0.0597695i
\(944\) 55.9820 1.82206
\(945\) 0 0
\(946\) 12.5446 0.407860
\(947\) 51.7953i 1.68312i 0.540162 + 0.841561i \(0.318363\pi\)
−0.540162 + 0.841561i \(0.681637\pi\)
\(948\) 0 0
\(949\) 1.66159 0.0539375
\(950\) 7.72132 + 1.47772i 0.250513 + 0.0479434i
\(951\) 0 0
\(952\) 31.8975i 1.03380i
\(953\) 11.5807i 0.375137i −0.982252 0.187568i \(-0.939939\pi\)
0.982252 0.187568i \(-0.0600606\pi\)
\(954\) 0 0
\(955\) 35.7064 29.5209i 1.15543 0.955274i
\(956\) −8.84655 −0.286118
\(957\) 0 0
\(958\) 6.29447i 0.203365i
\(959\) −18.1062 −0.584679
\(960\) 0 0
\(961\) 44.6337 1.43980
\(962\) 3.07034i 0.0989919i
\(963\) 0 0
\(964\) −13.4351 −0.432716
\(965\) −5.28958 6.39791i −0.170278 0.205956i
\(966\) 0 0
\(967\) 60.5547i 1.94731i 0.228032 + 0.973654i \(0.426771\pi\)
−0.228032 + 0.973654i \(0.573229\pi\)
\(968\) 17.5621i 0.564467i
\(969\) 0 0
\(970\) −20.8663 + 17.2516i −0.669976 + 0.553915i
\(971\) 4.19412 0.134596 0.0672978 0.997733i \(-0.478562\pi\)
0.0672978 + 0.997733i \(0.478562\pi\)
\(972\) 0 0
\(973\) 28.1172i 0.901395i
\(974\) −27.5621 −0.883148
\(975\) 0 0
\(976\) −27.7510 −0.888287
\(977\) 12.7754i 0.408720i 0.978896 + 0.204360i \(0.0655114\pi\)
−0.978896 + 0.204360i \(0.934489\pi\)
\(978\) 0 0
\(979\) 33.3094 1.06457
\(980\) −2.82222 + 2.33332i −0.0901524 + 0.0745351i
\(981\) 0 0
\(982\) 24.8024i 0.791475i
\(983\) 35.8198i 1.14247i 0.820785 + 0.571237i \(0.193536\pi\)
−0.820785 + 0.571237i \(0.806464\pi\)
\(984\) 0 0
\(985\) 11.1300 + 13.4621i 0.354632 + 0.428938i
\(986\) −28.6820 −0.913420
\(987\) 0 0
\(988\) 0.117232i 0.00372965i
\(989\) −4.99636 −0.158875
\(990\) 0 0
\(991\) −19.1653 −0.608807 −0.304404 0.952543i \(-0.598457\pi\)
−0.304404 + 0.952543i \(0.598457\pi\)
\(992\) 22.7738i 0.723069i
\(993\) 0 0
\(994\) 28.1751 0.893660
\(995\) −10.1243 + 8.37041i −0.320961 + 0.265360i
\(996\) 0 0
\(997\) 9.88660i 0.313112i 0.987669 + 0.156556i \(0.0500391\pi\)
−0.987669 + 0.156556i \(0.949961\pi\)
\(998\) 49.4063i 1.56393i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.c.g.514.5 14
3.2 odd 2 285.2.c.b.229.10 yes 14
5.2 odd 4 4275.2.a.bw.1.5 7
5.3 odd 4 4275.2.a.bv.1.3 7
5.4 even 2 inner 855.2.c.g.514.10 14
15.2 even 4 1425.2.a.y.1.3 7
15.8 even 4 1425.2.a.z.1.5 7
15.14 odd 2 285.2.c.b.229.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.b.229.5 14 15.14 odd 2
285.2.c.b.229.10 yes 14 3.2 odd 2
855.2.c.g.514.5 14 1.1 even 1 trivial
855.2.c.g.514.10 14 5.4 even 2 inner
1425.2.a.y.1.3 7 15.2 even 4
1425.2.a.z.1.5 7 15.8 even 4
4275.2.a.bv.1.3 7 5.3 odd 4
4275.2.a.bw.1.5 7 5.2 odd 4