Properties

Label 425.3.u.a.401.1
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,16,-16,8,0,40,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.a.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.324423 + 0.783227i) q^{2} +(1.35595 + 0.906019i) q^{3} +(2.32023 + 2.32023i) q^{4} +(-1.14952 + 0.768086i) q^{6} +(-0.886687 - 0.176373i) q^{7} +(-5.70292 + 2.36223i) q^{8} +(-2.42641 - 5.85788i) q^{9} +(3.73690 + 5.59267i) q^{11} +(1.04395 + 5.24830i) q^{12} +(-10.5602 + 10.5602i) q^{13} +(0.425802 - 0.637258i) q^{14} +7.89218i q^{16} +(14.7921 + 8.37823i) q^{17} +5.37523 q^{18} +(-12.9821 + 31.3415i) q^{19} +(-1.04251 - 1.04251i) q^{21} +(-5.59267 + 1.11245i) q^{22} +(-15.4758 + 10.3406i) q^{23} +(-9.87311 - 1.96388i) q^{24} +(-4.84504 - 11.6970i) q^{26} +(4.88061 - 24.5365i) q^{27} +(-1.64809 - 2.46655i) q^{28} +(4.13027 + 20.7643i) q^{29} +(21.1305 - 31.6240i) q^{31} +(-28.9930 - 12.0093i) q^{32} +10.9691i q^{33} +(-11.3609 + 8.86746i) q^{34} +(7.96180 - 19.2215i) q^{36} +(33.3284 + 22.2693i) q^{37} +(-20.3359 - 20.3359i) q^{38} +(-23.8868 + 4.75138i) q^{39} +(-3.70199 - 0.736372i) q^{41} +(1.15474 - 0.478307i) q^{42} +(5.21542 + 12.5911i) q^{43} +(-4.30581 + 21.6468i) q^{44} +(-3.07832 - 15.4758i) q^{46} +(9.20504 - 9.20504i) q^{47} +(-7.15046 + 10.7014i) q^{48} +(-44.5150 - 18.4387i) q^{49} +(12.4665 + 24.7624i) q^{51} -49.0040 q^{52} +(-0.763466 + 1.84317i) q^{53} +(17.6343 + 11.7828i) q^{54} +(5.47334 - 1.08871i) q^{56} +(-45.9991 + 30.7356i) q^{57} +(-17.6031 - 3.50147i) q^{58} +(31.7838 - 13.1653i) q^{59} +(6.92641 - 34.8214i) q^{61} +(17.9136 + 26.8096i) q^{62} +(1.11830 + 5.62206i) q^{63} +(-3.51042 + 3.51042i) q^{64} +(-8.59130 - 3.55863i) q^{66} -31.9912i q^{67} +(14.8816 + 53.7605i) q^{68} -30.3532 q^{69} +(86.1606 + 57.5707i) q^{71} +(27.6752 + 27.6752i) q^{72} +(-61.7546 + 12.2837i) q^{73} +(-28.2544 + 18.8790i) q^{74} +(-102.841 + 42.5982i) q^{76} +(-2.32707 - 5.61804i) q^{77} +(4.02802 - 20.2502i) q^{78} +(-36.2984 - 54.3244i) q^{79} +(-11.5024 + 11.5024i) q^{81} +(1.77776 - 2.66060i) q^{82} +(39.7149 + 16.4505i) q^{83} -4.83773i q^{84} -11.5537 q^{86} +(-13.2124 + 31.8975i) q^{87} +(-34.5224 - 23.0671i) q^{88} +(49.5695 + 49.5695i) q^{89} +(11.2261 - 7.50103i) q^{91} +(-59.9000 - 11.9148i) q^{92} +(57.3040 - 23.7361i) q^{93} +(4.22331 + 10.1960i) q^{94} +(-28.4325 - 42.5523i) q^{96} +(-24.9233 - 125.298i) q^{97} +(28.8834 - 28.8834i) q^{98} +(23.6939 - 35.4604i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 16 q^{7} - 16 q^{8} + 8 q^{9} + 40 q^{11} - 40 q^{12} + 16 q^{14} + 16 q^{17} + 136 q^{18} - 32 q^{19} - 64 q^{21} + 8 q^{23} + 24 q^{24} - 96 q^{27} - 80 q^{28} + 24 q^{29} + 32 q^{31}+ \cdots + 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.324423 + 0.783227i −0.162212 + 0.391614i −0.983997 0.178183i \(-0.942978\pi\)
0.821786 + 0.569797i \(0.192978\pi\)
\(3\) 1.35595 + 0.906019i 0.451984 + 0.302006i 0.760648 0.649165i \(-0.224882\pi\)
−0.308663 + 0.951171i \(0.599882\pi\)
\(4\) 2.32023 + 2.32023i 0.580058 + 0.580058i
\(5\) 0 0
\(6\) −1.14952 + 0.768086i −0.191587 + 0.128014i
\(7\) −0.886687 0.176373i −0.126670 0.0251962i 0.131348 0.991336i \(-0.458069\pi\)
−0.258018 + 0.966140i \(0.583069\pi\)
\(8\) −5.70292 + 2.36223i −0.712865 + 0.295278i
\(9\) −2.42641 5.85788i −0.269601 0.650875i
\(10\) 0 0
\(11\) 3.73690 + 5.59267i 0.339718 + 0.508424i 0.961514 0.274755i \(-0.0885967\pi\)
−0.621796 + 0.783179i \(0.713597\pi\)
\(12\) 1.04395 + 5.24830i 0.0869960 + 0.437359i
\(13\) −10.5602 + 10.5602i −0.812320 + 0.812320i −0.984981 0.172662i \(-0.944763\pi\)
0.172662 + 0.984981i \(0.444763\pi\)
\(14\) 0.425802 0.637258i 0.0304144 0.0455184i
\(15\) 0 0
\(16\) 7.89218i 0.493261i
\(17\) 14.7921 + 8.37823i 0.870122 + 0.492837i
\(18\) 5.37523 0.298624
\(19\) −12.9821 + 31.3415i −0.683268 + 1.64955i 0.0746542 + 0.997209i \(0.476215\pi\)
−0.757922 + 0.652345i \(0.773785\pi\)
\(20\) 0 0
\(21\) −1.04251 1.04251i −0.0496433 0.0496433i
\(22\) −5.59267 + 1.11245i −0.254212 + 0.0505659i
\(23\) −15.4758 + 10.3406i −0.672860 + 0.449590i −0.844490 0.535571i \(-0.820096\pi\)
0.171631 + 0.985161i \(0.445096\pi\)
\(24\) −9.87311 1.96388i −0.411380 0.0818285i
\(25\) 0 0
\(26\) −4.84504 11.6970i −0.186348 0.449883i
\(27\) 4.88061 24.5365i 0.180763 0.908759i
\(28\) −1.64809 2.46655i −0.0588605 0.0880910i
\(29\) 4.13027 + 20.7643i 0.142423 + 0.716009i 0.984323 + 0.176376i \(0.0564373\pi\)
−0.841900 + 0.539634i \(0.818563\pi\)
\(30\) 0 0
\(31\) 21.1305 31.6240i 0.681629 1.02013i −0.315825 0.948818i \(-0.602281\pi\)
0.997454 0.0713127i \(-0.0227188\pi\)
\(32\) −28.9930 12.0093i −0.906032 0.375291i
\(33\) 10.9691i 0.332397i
\(34\) −11.3609 + 8.86746i −0.334146 + 0.260808i
\(35\) 0 0
\(36\) 7.96180 19.2215i 0.221161 0.533930i
\(37\) 33.3284 + 22.2693i 0.900767 + 0.601873i 0.917390 0.397988i \(-0.130292\pi\)
−0.0166233 + 0.999862i \(0.505292\pi\)
\(38\) −20.3359 20.3359i −0.535154 0.535154i
\(39\) −23.8868 + 4.75138i −0.612482 + 0.121830i
\(40\) 0 0
\(41\) −3.70199 0.736372i −0.0902925 0.0179603i 0.149737 0.988726i \(-0.452157\pi\)
−0.240030 + 0.970766i \(0.577157\pi\)
\(42\) 1.15474 0.478307i 0.0274937 0.0113883i
\(43\) 5.21542 + 12.5911i 0.121289 + 0.292817i 0.972849 0.231439i \(-0.0743434\pi\)
−0.851561 + 0.524256i \(0.824343\pi\)
\(44\) −4.30581 + 21.6468i −0.0978593 + 0.491972i
\(45\) 0 0
\(46\) −3.07832 15.4758i −0.0669201 0.336430i
\(47\) 9.20504 9.20504i 0.195852 0.195852i −0.602367 0.798219i \(-0.705776\pi\)
0.798219 + 0.602367i \(0.205776\pi\)
\(48\) −7.15046 + 10.7014i −0.148968 + 0.222946i
\(49\) −44.5150 18.4387i −0.908469 0.376300i
\(50\) 0 0
\(51\) 12.4665 + 24.7624i 0.244442 + 0.485537i
\(52\) −49.0040 −0.942385
\(53\) −0.763466 + 1.84317i −0.0144050 + 0.0347768i −0.930918 0.365227i \(-0.880991\pi\)
0.916513 + 0.400004i \(0.130991\pi\)
\(54\) 17.6343 + 11.7828i 0.326560 + 0.218201i
\(55\) 0 0
\(56\) 5.47334 1.08871i 0.0977381 0.0194413i
\(57\) −45.9991 + 30.7356i −0.807002 + 0.539222i
\(58\) −17.6031 3.50147i −0.303502 0.0603703i
\(59\) 31.7838 13.1653i 0.538708 0.223140i −0.0967043 0.995313i \(-0.530830\pi\)
0.635412 + 0.772173i \(0.280830\pi\)
\(60\) 0 0
\(61\) 6.92641 34.8214i 0.113548 0.570843i −0.881562 0.472068i \(-0.843508\pi\)
0.995110 0.0987749i \(-0.0314924\pi\)
\(62\) 17.9136 + 26.8096i 0.288929 + 0.432412i
\(63\) 1.11830 + 5.62206i 0.0177507 + 0.0892390i
\(64\) −3.51042 + 3.51042i −0.0548503 + 0.0548503i
\(65\) 0 0
\(66\) −8.59130 3.55863i −0.130171 0.0539187i
\(67\) 31.9912i 0.477480i −0.971084 0.238740i \(-0.923266\pi\)
0.971084 0.238740i \(-0.0767344\pi\)
\(68\) 14.8816 + 53.7605i 0.218847 + 0.790595i
\(69\) −30.3532 −0.439901
\(70\) 0 0
\(71\) 86.1606 + 57.5707i 1.21353 + 0.810854i 0.986616 0.163061i \(-0.0521366\pi\)
0.226913 + 0.973915i \(0.427137\pi\)
\(72\) 27.6752 + 27.6752i 0.384378 + 0.384378i
\(73\) −61.7546 + 12.2837i −0.845953 + 0.168270i −0.598992 0.800755i \(-0.704432\pi\)
−0.246961 + 0.969025i \(0.579432\pi\)
\(74\) −28.2544 + 18.8790i −0.381817 + 0.255122i
\(75\) 0 0
\(76\) −102.841 + 42.5982i −1.35317 + 0.560502i
\(77\) −2.32707 5.61804i −0.0302216 0.0729615i
\(78\) 4.02802 20.2502i 0.0516413 0.259618i
\(79\) −36.2984 54.3244i −0.459474 0.687651i 0.527314 0.849671i \(-0.323199\pi\)
−0.986788 + 0.162020i \(0.948199\pi\)
\(80\) 0 0
\(81\) −11.5024 + 11.5024i −0.142005 + 0.142005i
\(82\) 1.77776 2.66060i 0.0216800 0.0324464i
\(83\) 39.7149 + 16.4505i 0.478493 + 0.198198i 0.608876 0.793265i \(-0.291621\pi\)
−0.130383 + 0.991464i \(0.541621\pi\)
\(84\) 4.83773i 0.0575920i
\(85\) 0 0
\(86\) −11.5537 −0.134346
\(87\) −13.2124 + 31.8975i −0.151866 + 0.366638i
\(88\) −34.5224 23.0671i −0.392300 0.262126i
\(89\) 49.5695 + 49.5695i 0.556961 + 0.556961i 0.928441 0.371480i \(-0.121150\pi\)
−0.371480 + 0.928441i \(0.621150\pi\)
\(90\) 0 0
\(91\) 11.2261 7.50103i 0.123364 0.0824289i
\(92\) −59.9000 11.9148i −0.651086 0.129509i
\(93\) 57.3040 23.7361i 0.616172 0.255227i
\(94\) 4.22331 + 10.1960i 0.0449288 + 0.108468i
\(95\) 0 0
\(96\) −28.4325 42.5523i −0.296172 0.443253i
\(97\) −24.9233 125.298i −0.256941 1.29173i −0.866574 0.499048i \(-0.833683\pi\)
0.609633 0.792684i \(-0.291317\pi\)
\(98\) 28.8834 28.8834i 0.294729 0.294729i
\(99\) 23.6939 35.4604i 0.239332 0.358186i
\(100\) 0 0
\(101\) 37.1128i 0.367453i 0.982977 + 0.183727i \(0.0588162\pi\)
−0.982977 + 0.183727i \(0.941184\pi\)
\(102\) −23.4390 + 1.73062i −0.229794 + 0.0169669i
\(103\) 54.9138 0.533144 0.266572 0.963815i \(-0.414109\pi\)
0.266572 + 0.963815i \(0.414109\pi\)
\(104\) 35.2782 85.1691i 0.339214 0.818934i
\(105\) 0 0
\(106\) −1.19594 1.19594i −0.0112824 0.0112824i
\(107\) 145.657 28.9729i 1.36128 0.270775i 0.540173 0.841554i \(-0.318359\pi\)
0.821104 + 0.570779i \(0.193359\pi\)
\(108\) 68.2545 45.6062i 0.631986 0.422280i
\(109\) 23.4177 + 4.65808i 0.214842 + 0.0427347i 0.301338 0.953518i \(-0.402567\pi\)
−0.0864958 + 0.996252i \(0.527567\pi\)
\(110\) 0 0
\(111\) 25.0153 + 60.3923i 0.225363 + 0.544075i
\(112\) 1.39197 6.99789i 0.0124283 0.0624812i
\(113\) 26.9507 + 40.3346i 0.238502 + 0.356943i 0.931341 0.364149i \(-0.118640\pi\)
−0.692839 + 0.721093i \(0.743640\pi\)
\(114\) −9.14980 45.9991i −0.0802614 0.403501i
\(115\) 0 0
\(116\) −38.5948 + 57.7611i −0.332713 + 0.497941i
\(117\) 87.4834 + 36.2368i 0.747721 + 0.309716i
\(118\) 29.1650i 0.247161i
\(119\) −11.6382 10.0378i −0.0978004 0.0843512i
\(120\) 0 0
\(121\) 28.9912 69.9909i 0.239597 0.578437i
\(122\) 25.0260 + 16.7218i 0.205131 + 0.137064i
\(123\) −4.35256 4.35256i −0.0353867 0.0353867i
\(124\) 122.403 24.3474i 0.987120 0.196350i
\(125\) 0 0
\(126\) −4.76615 0.948046i −0.0378266 0.00752418i
\(127\) −44.5892 + 18.4694i −0.351096 + 0.145429i −0.551260 0.834334i \(-0.685853\pi\)
0.200164 + 0.979762i \(0.435853\pi\)
\(128\) −49.6478 119.860i −0.387874 0.936410i
\(129\) −4.33594 + 21.7982i −0.0336119 + 0.168979i
\(130\) 0 0
\(131\) 0.637092 + 3.20288i 0.00486330 + 0.0244495i 0.983141 0.182850i \(-0.0585324\pi\)
−0.978277 + 0.207300i \(0.933532\pi\)
\(132\) −25.4509 + 25.4509i −0.192810 + 0.192810i
\(133\) 17.0389 25.5004i 0.128112 0.191733i
\(134\) 25.0563 + 10.3787i 0.186988 + 0.0774528i
\(135\) 0 0
\(136\) −104.149 12.8381i −0.765803 0.0943981i
\(137\) 89.9517 0.656581 0.328291 0.944577i \(-0.393527\pi\)
0.328291 + 0.944577i \(0.393527\pi\)
\(138\) 9.84728 23.7734i 0.0713571 0.172271i
\(139\) 108.219 + 72.3095i 0.778553 + 0.520212i 0.880197 0.474608i \(-0.157410\pi\)
−0.101644 + 0.994821i \(0.532410\pi\)
\(140\) 0 0
\(141\) 20.8216 4.14166i 0.147671 0.0293735i
\(142\) −73.0434 + 48.8061i −0.514390 + 0.343705i
\(143\) −98.5217 19.5972i −0.688963 0.137043i
\(144\) 46.2314 19.1497i 0.321051 0.132984i
\(145\) 0 0
\(146\) 10.4137 52.3530i 0.0713264 0.358582i
\(147\) −43.6544 65.3335i −0.296969 0.444445i
\(148\) 25.6596 + 129.000i 0.173376 + 0.871619i
\(149\) 149.894 149.894i 1.00600 1.00600i 0.00602015 0.999982i \(-0.498084\pi\)
0.999982 0.00602015i \(-0.00191628\pi\)
\(150\) 0 0
\(151\) −55.2876 22.9009i −0.366143 0.151661i 0.192023 0.981390i \(-0.438495\pi\)
−0.558167 + 0.829729i \(0.688495\pi\)
\(152\) 209.405i 1.37766i
\(153\) 13.1870 106.979i 0.0861894 0.699210i
\(154\) 5.15515 0.0334750
\(155\) 0 0
\(156\) −66.4472 44.3986i −0.425944 0.284606i
\(157\) 104.330 + 104.330i 0.664524 + 0.664524i 0.956443 0.291919i \(-0.0942937\pi\)
−0.291919 + 0.956443i \(0.594294\pi\)
\(158\) 54.3244 10.8058i 0.343826 0.0683912i
\(159\) −2.70517 + 1.80754i −0.0170137 + 0.0113682i
\(160\) 0 0
\(161\) 15.5460 6.43935i 0.0965588 0.0399960i
\(162\) −5.27735 12.7406i −0.0325762 0.0786460i
\(163\) 63.2704 318.082i 0.388162 1.95142i 0.0944348 0.995531i \(-0.469896\pi\)
0.293727 0.955889i \(-0.405104\pi\)
\(164\) −6.88093 10.2980i −0.0419569 0.0627929i
\(165\) 0 0
\(166\) −25.7689 + 25.7689i −0.155234 + 0.155234i
\(167\) −87.6108 + 131.119i −0.524615 + 0.785142i −0.995267 0.0971767i \(-0.969019\pi\)
0.470652 + 0.882319i \(0.344019\pi\)
\(168\) 8.40798 + 3.48270i 0.0500475 + 0.0207304i
\(169\) 54.0337i 0.319726i
\(170\) 0 0
\(171\) 215.095 1.25786
\(172\) −17.1134 + 41.3153i −0.0994963 + 0.240205i
\(173\) 136.654 + 91.3096i 0.789910 + 0.527801i 0.883846 0.467777i \(-0.154945\pi\)
−0.0939363 + 0.995578i \(0.529945\pi\)
\(174\) −20.6966 20.6966i −0.118946 0.118946i
\(175\) 0 0
\(176\) −44.1383 + 29.4923i −0.250786 + 0.167570i
\(177\) 55.0253 + 10.9452i 0.310877 + 0.0618374i
\(178\) −54.9057 + 22.7427i −0.308459 + 0.127768i
\(179\) −74.2691 179.301i −0.414911 1.00168i −0.983800 0.179269i \(-0.942627\pi\)
0.568889 0.822414i \(-0.307373\pi\)
\(180\) 0 0
\(181\) 27.7497 + 41.5304i 0.153313 + 0.229450i 0.900173 0.435532i \(-0.143440\pi\)
−0.746860 + 0.664981i \(0.768440\pi\)
\(182\) 2.23301 + 11.2261i 0.0122693 + 0.0616818i
\(183\) 40.9408 40.9408i 0.223720 0.223720i
\(184\) 63.8303 95.5287i 0.346904 0.519178i
\(185\) 0 0
\(186\) 52.5826i 0.282702i
\(187\) 8.41985 + 114.036i 0.0450259 + 0.609817i
\(188\) 42.7157 0.227211
\(189\) −8.65515 + 20.8954i −0.0457944 + 0.110558i
\(190\) 0 0
\(191\) 210.946 + 210.946i 1.10443 + 1.10443i 0.993869 + 0.110561i \(0.0352646\pi\)
0.110561 + 0.993869i \(0.464735\pi\)
\(192\) −7.94047 + 1.57946i −0.0413566 + 0.00822634i
\(193\) −46.8606 + 31.3112i −0.242801 + 0.162234i −0.671017 0.741442i \(-0.734142\pi\)
0.428216 + 0.903676i \(0.359142\pi\)
\(194\) 106.223 + 21.1290i 0.547539 + 0.108912i
\(195\) 0 0
\(196\) −60.5030 146.067i −0.308689 0.745241i
\(197\) −0.730502 + 3.67248i −0.00370813 + 0.0186420i −0.982595 0.185760i \(-0.940525\pi\)
0.978887 + 0.204403i \(0.0655251\pi\)
\(198\) 20.0867 + 30.0619i 0.101448 + 0.151828i
\(199\) 29.0628 + 146.108i 0.146044 + 0.734213i 0.982512 + 0.186198i \(0.0596165\pi\)
−0.836468 + 0.548016i \(0.815383\pi\)
\(200\) 0 0
\(201\) 28.9846 43.3785i 0.144202 0.215814i
\(202\) −29.0678 12.0403i −0.143900 0.0596052i
\(203\) 19.1399i 0.0942851i
\(204\) −28.5293 + 86.3797i −0.139849 + 0.423430i
\(205\) 0 0
\(206\) −17.8153 + 43.0100i −0.0864821 + 0.208786i
\(207\) 98.1244 + 65.5647i 0.474031 + 0.316737i
\(208\) −83.3426 83.3426i −0.400686 0.400686i
\(209\) −223.796 + 44.5157i −1.07079 + 0.212994i
\(210\) 0 0
\(211\) −291.187 57.9207i −1.38003 0.274506i −0.551374 0.834258i \(-0.685896\pi\)
−0.828660 + 0.559752i \(0.810896\pi\)
\(212\) −6.04800 + 2.50517i −0.0285283 + 0.0118168i
\(213\) 64.6696 + 156.126i 0.303613 + 0.732987i
\(214\) −24.5620 + 123.482i −0.114776 + 0.577017i
\(215\) 0 0
\(216\) 30.1270 + 151.459i 0.139477 + 0.701197i
\(217\) −24.3138 + 24.3138i −0.112045 + 0.112045i
\(218\) −11.2456 + 16.8302i −0.0515853 + 0.0772029i
\(219\) −94.8656 39.2946i −0.433176 0.179428i
\(220\) 0 0
\(221\) −244.682 + 67.7311i −1.10716 + 0.306476i
\(222\) −55.4165 −0.249624
\(223\) 34.4629 83.2008i 0.154542 0.373098i −0.827579 0.561350i \(-0.810282\pi\)
0.982121 + 0.188252i \(0.0602822\pi\)
\(224\) 23.5896 + 15.7621i 0.105311 + 0.0703665i
\(225\) 0 0
\(226\) −40.3346 + 8.02305i −0.178472 + 0.0355002i
\(227\) 124.031 82.8747i 0.546391 0.365087i −0.251529 0.967850i \(-0.580934\pi\)
0.797920 + 0.602763i \(0.205934\pi\)
\(228\) −178.043 35.4149i −0.780888 0.155328i
\(229\) 126.494 52.3955i 0.552375 0.228801i −0.0889961 0.996032i \(-0.528366\pi\)
0.641371 + 0.767231i \(0.278366\pi\)
\(230\) 0 0
\(231\) 1.93465 9.72616i 0.00837512 0.0421046i
\(232\) −72.6045 108.660i −0.312950 0.468363i
\(233\) 69.6099 + 349.953i 0.298755 + 1.50194i 0.780235 + 0.625486i \(0.215099\pi\)
−0.481480 + 0.876457i \(0.659901\pi\)
\(234\) −56.7633 + 56.7633i −0.242578 + 0.242578i
\(235\) 0 0
\(236\) 104.292 + 43.1993i 0.441916 + 0.183048i
\(237\) 106.548i 0.449572i
\(238\) 11.6376 5.85890i 0.0488974 0.0246172i
\(239\) −398.078 −1.66560 −0.832800 0.553574i \(-0.813264\pi\)
−0.832800 + 0.553574i \(0.813264\pi\)
\(240\) 0 0
\(241\) −65.9725 44.0814i −0.273745 0.182910i 0.411119 0.911582i \(-0.365138\pi\)
−0.684863 + 0.728671i \(0.740138\pi\)
\(242\) 45.4134 + 45.4134i 0.187659 + 0.187659i
\(243\) −246.847 + 49.1008i −1.01583 + 0.202061i
\(244\) 96.8647 64.7229i 0.396987 0.265258i
\(245\) 0 0
\(246\) 4.82112 1.99697i 0.0195980 0.00811777i
\(247\) −193.879 468.064i −0.784934 1.89500i
\(248\) −45.8024 + 230.264i −0.184687 + 0.928485i
\(249\) 38.9471 + 58.2885i 0.156414 + 0.234090i
\(250\) 0 0
\(251\) 320.583 320.583i 1.27722 1.27722i 0.335010 0.942215i \(-0.391260\pi\)
0.942215 0.335010i \(-0.108740\pi\)
\(252\) −10.4498 + 15.6392i −0.0414674 + 0.0620603i
\(253\) −115.663 47.9091i −0.457166 0.189364i
\(254\) 40.9154i 0.161084i
\(255\) 0 0
\(256\) 90.1270 0.352058
\(257\) −37.6834 + 90.9757i −0.146628 + 0.353991i −0.980081 0.198600i \(-0.936361\pi\)
0.833453 + 0.552591i \(0.186361\pi\)
\(258\) −15.6663 10.4679i −0.0607221 0.0405732i
\(259\) −25.6241 25.6241i −0.0989349 0.0989349i
\(260\) 0 0
\(261\) 111.613 74.5773i 0.427635 0.285737i
\(262\) −2.71527 0.540101i −0.0103636 0.00206145i
\(263\) 83.1206 34.4297i 0.316048 0.130911i −0.219020 0.975720i \(-0.570286\pi\)
0.535068 + 0.844809i \(0.320286\pi\)
\(264\) −25.9115 62.5559i −0.0981496 0.236954i
\(265\) 0 0
\(266\) 14.4448 + 21.6182i 0.0543039 + 0.0812716i
\(267\) 22.3030 + 112.125i 0.0835319 + 0.419943i
\(268\) 74.2269 74.2269i 0.276966 0.276966i
\(269\) −262.976 + 393.571i −0.977605 + 1.46309i −0.0936016 + 0.995610i \(0.529838\pi\)
−0.884004 + 0.467480i \(0.845162\pi\)
\(270\) 0 0
\(271\) 61.4406i 0.226718i 0.993554 + 0.113359i \(0.0361611\pi\)
−0.993554 + 0.113359i \(0.963839\pi\)
\(272\) −66.1225 + 116.742i −0.243097 + 0.429197i
\(273\) 22.0181 0.0806524
\(274\) −29.1824 + 70.4526i −0.106505 + 0.257126i
\(275\) 0 0
\(276\) −70.4265 70.4265i −0.255168 0.255168i
\(277\) −146.302 + 29.1012i −0.528165 + 0.105058i −0.451968 0.892034i \(-0.649278\pi\)
−0.0761970 + 0.997093i \(0.524278\pi\)
\(278\) −91.7435 + 61.3011i −0.330013 + 0.220507i
\(279\) −236.521 47.0470i −0.847746 0.168627i
\(280\) 0 0
\(281\) −12.9932 31.3685i −0.0462393 0.111632i 0.899072 0.437800i \(-0.144242\pi\)
−0.945312 + 0.326169i \(0.894242\pi\)
\(282\) −3.51113 + 17.6517i −0.0124508 + 0.0625945i
\(283\) 105.039 + 157.202i 0.371162 + 0.555484i 0.969291 0.245916i \(-0.0790889\pi\)
−0.598129 + 0.801400i \(0.704089\pi\)
\(284\) 66.3353 + 333.490i 0.233575 + 1.17426i
\(285\) 0 0
\(286\) 47.3118 70.8071i 0.165426 0.247577i
\(287\) 3.15263 + 1.30586i 0.0109848 + 0.00455005i
\(288\) 198.977i 0.690893i
\(289\) 148.611 + 247.863i 0.514223 + 0.857656i
\(290\) 0 0
\(291\) 79.7275 192.479i 0.273978 0.661441i
\(292\) −171.786 114.784i −0.588309 0.393095i
\(293\) −125.147 125.147i −0.427121 0.427121i 0.460525 0.887647i \(-0.347661\pi\)
−0.887647 + 0.460525i \(0.847661\pi\)
\(294\) 65.3335 12.9956i 0.222223 0.0442028i
\(295\) 0 0
\(296\) −242.674 48.2709i −0.819845 0.163077i
\(297\) 155.463 64.3948i 0.523444 0.216817i
\(298\) 68.7721 + 166.031i 0.230779 + 0.557149i
\(299\) 54.2284 272.625i 0.181366 0.911788i
\(300\) 0 0
\(301\) −2.40371 12.0843i −0.00798574 0.0401470i
\(302\) 35.8732 35.8732i 0.118785 0.118785i
\(303\) −33.6249 + 50.3232i −0.110973 + 0.166083i
\(304\) −247.353 102.457i −0.813661 0.337029i
\(305\) 0 0
\(306\) 79.5108 + 45.0349i 0.259839 + 0.147173i
\(307\) −368.138 −1.19914 −0.599572 0.800320i \(-0.704663\pi\)
−0.599572 + 0.800320i \(0.704663\pi\)
\(308\) 7.63581 18.4345i 0.0247916 0.0598522i
\(309\) 74.4606 + 49.7530i 0.240973 + 0.161013i
\(310\) 0 0
\(311\) 103.068 20.5015i 0.331408 0.0659211i −0.0265819 0.999647i \(-0.508462\pi\)
0.357990 + 0.933726i \(0.383462\pi\)
\(312\) 125.000 83.5227i 0.400643 0.267701i
\(313\) −425.555 84.6482i −1.35960 0.270441i −0.539175 0.842194i \(-0.681264\pi\)
−0.820426 + 0.571752i \(0.806264\pi\)
\(314\) −115.562 + 47.8672i −0.368030 + 0.152443i
\(315\) 0 0
\(316\) 41.8245 210.266i 0.132356 0.665399i
\(317\) 291.124 + 435.698i 0.918372 + 1.37444i 0.927235 + 0.374480i \(0.122179\pi\)
−0.00886288 + 0.999961i \(0.502821\pi\)
\(318\) −0.538092 2.70517i −0.00169211 0.00850683i
\(319\) −100.693 + 100.693i −0.315653 + 0.315653i
\(320\) 0 0
\(321\) 223.754 + 92.6818i 0.697052 + 0.288728i
\(322\) 14.2651i 0.0443016i
\(323\) −454.619 + 354.839i −1.40749 + 1.09857i
\(324\) −53.3765 −0.164742
\(325\) 0 0
\(326\) 228.604 + 152.748i 0.701238 + 0.468553i
\(327\) 27.5331 + 27.5331i 0.0841990 + 0.0841990i
\(328\) 22.8516 4.54547i 0.0696696 0.0138581i
\(329\) −9.78551 + 6.53847i −0.0297432 + 0.0198738i
\(330\) 0 0
\(331\) −325.078 + 134.652i −0.982109 + 0.406803i −0.815206 0.579171i \(-0.803377\pi\)
−0.166903 + 0.985973i \(0.553377\pi\)
\(332\) 53.9790 + 130.317i 0.162587 + 0.392520i
\(333\) 49.5825 249.268i 0.148896 0.748553i
\(334\) −74.2728 111.157i −0.222374 0.332806i
\(335\) 0 0
\(336\) 8.22767 8.22767i 0.0244871 0.0244871i
\(337\) 86.3544 129.239i 0.256245 0.383497i −0.680935 0.732344i \(-0.738427\pi\)
0.937180 + 0.348846i \(0.113427\pi\)
\(338\) 42.3207 + 17.5298i 0.125209 + 0.0518633i
\(339\) 79.1097i 0.233362i
\(340\) 0 0
\(341\) 255.825 0.750221
\(342\) −69.7818 + 168.468i −0.204040 + 0.492597i
\(343\) 73.0519 + 48.8117i 0.212979 + 0.142308i
\(344\) −59.4862 59.4862i −0.172925 0.172925i
\(345\) 0 0
\(346\) −115.850 + 77.4085i −0.334827 + 0.223724i
\(347\) 262.388 + 52.1922i 0.756161 + 0.150410i 0.558093 0.829779i \(-0.311533\pi\)
0.198068 + 0.980188i \(0.436533\pi\)
\(348\) −104.665 + 43.3538i −0.300763 + 0.124580i
\(349\) 75.5583 + 182.414i 0.216499 + 0.522676i 0.994396 0.105716i \(-0.0337135\pi\)
−0.777897 + 0.628392i \(0.783713\pi\)
\(350\) 0 0
\(351\) 207.569 + 310.649i 0.591365 + 0.885040i
\(352\) −41.1800 207.026i −0.116989 0.588142i
\(353\) 303.609 303.609i 0.860081 0.860081i −0.131266 0.991347i \(-0.541904\pi\)
0.991347 + 0.131266i \(0.0419041\pi\)
\(354\) −26.4241 + 39.5464i −0.0746443 + 0.111713i
\(355\) 0 0
\(356\) 230.026i 0.646139i
\(357\) −6.68649 24.1552i −0.0187297 0.0676618i
\(358\) 164.528 0.459576
\(359\) 21.7296 52.4599i 0.0605281 0.146128i −0.890722 0.454549i \(-0.849801\pi\)
0.951250 + 0.308421i \(0.0998005\pi\)
\(360\) 0 0
\(361\) −558.492 558.492i −1.54707 1.54707i
\(362\) −41.5304 + 8.26091i −0.114725 + 0.0228202i
\(363\) 102.724 68.6379i 0.282986 0.189085i
\(364\) 43.4512 + 8.64299i 0.119372 + 0.0237445i
\(365\) 0 0
\(366\) 18.7838 + 45.3481i 0.0513218 + 0.123902i
\(367\) −44.3636 + 223.031i −0.120882 + 0.607714i 0.872088 + 0.489348i \(0.162765\pi\)
−0.992970 + 0.118365i \(0.962235\pi\)
\(368\) −81.6097 122.138i −0.221766 0.331896i
\(369\) 4.66898 + 23.4726i 0.0126531 + 0.0636113i
\(370\) 0 0
\(371\) 1.00204 1.49966i 0.00270092 0.00404221i
\(372\) 188.032 + 77.8853i 0.505462 + 0.209369i
\(373\) 460.172i 1.23370i 0.787079 + 0.616852i \(0.211592\pi\)
−0.787079 + 0.616852i \(0.788408\pi\)
\(374\) −92.0475 30.4012i −0.246116 0.0812866i
\(375\) 0 0
\(376\) −30.7512 + 74.2400i −0.0817851 + 0.197447i
\(377\) −262.890 175.658i −0.697322 0.465935i
\(378\) −13.5579 13.5579i −0.0358675 0.0358675i
\(379\) 60.3712 12.0086i 0.159291 0.0316849i −0.114801 0.993389i \(-0.536623\pi\)
0.274091 + 0.961704i \(0.411623\pi\)
\(380\) 0 0
\(381\) −77.1945 15.3549i −0.202610 0.0403017i
\(382\) −233.655 + 96.7829i −0.611661 + 0.253358i
\(383\) −235.671 568.960i −0.615329 1.48554i −0.857073 0.515196i \(-0.827719\pi\)
0.241744 0.970340i \(-0.422281\pi\)
\(384\) 41.2757 207.507i 0.107489 0.540383i
\(385\) 0 0
\(386\) −9.32115 46.8606i −0.0241481 0.121400i
\(387\) 61.1025 61.1025i 0.157888 0.157888i
\(388\) 232.893 348.548i 0.600239 0.898321i
\(389\) 336.723 + 139.475i 0.865613 + 0.358549i 0.770900 0.636956i \(-0.219807\pi\)
0.0947127 + 0.995505i \(0.469807\pi\)
\(390\) 0 0
\(391\) −315.554 + 23.2990i −0.807045 + 0.0595883i
\(392\) 297.422 0.758729
\(393\) −2.03800 + 4.92017i −0.00518576 + 0.0125195i
\(394\) −2.63940 1.76359i −0.00669898 0.00447611i
\(395\) 0 0
\(396\) 137.252 27.3011i 0.346595 0.0689421i
\(397\) 50.0566 33.4467i 0.126087 0.0842487i −0.490927 0.871200i \(-0.663342\pi\)
0.617015 + 0.786952i \(0.288342\pi\)
\(398\) −123.865 24.6382i −0.311218 0.0619051i
\(399\) 46.2078 19.1399i 0.115809 0.0479697i
\(400\) 0 0
\(401\) 3.79806 19.0941i 0.00947147 0.0476163i −0.975761 0.218841i \(-0.929772\pi\)
0.985232 + 0.171225i \(0.0547724\pi\)
\(402\) 24.5720 + 36.7745i 0.0611243 + 0.0914789i
\(403\) 110.813 + 557.096i 0.274971 + 1.38237i
\(404\) −86.1103 + 86.1103i −0.213144 + 0.213144i
\(405\) 0 0
\(406\) 14.9909 + 6.20943i 0.0369233 + 0.0152942i
\(407\) 269.613i 0.662439i
\(408\) −129.590 111.769i −0.317622 0.273944i
\(409\) 434.868 1.06325 0.531623 0.846981i \(-0.321582\pi\)
0.531623 + 0.846981i \(0.321582\pi\)
\(410\) 0 0
\(411\) 121.970 + 81.4979i 0.296765 + 0.198292i
\(412\) 127.413 + 127.413i 0.309254 + 0.309254i
\(413\) −30.5043 + 6.06768i −0.0738602 + 0.0146917i
\(414\) −83.1859 + 55.5830i −0.200932 + 0.134259i
\(415\) 0 0
\(416\) 432.991 179.351i 1.04084 0.431132i
\(417\) 81.2259 + 196.097i 0.194786 + 0.470256i
\(418\) 37.7386 189.725i 0.0902837 0.453887i
\(419\) −44.9826 67.3212i −0.107357 0.160671i 0.773901 0.633307i \(-0.218303\pi\)
−0.881258 + 0.472635i \(0.843303\pi\)
\(420\) 0 0
\(421\) 211.099 211.099i 0.501423 0.501423i −0.410457 0.911880i \(-0.634631\pi\)
0.911880 + 0.410457i \(0.134631\pi\)
\(422\) 139.833 209.275i 0.331358 0.495912i
\(423\) −76.2572 31.5868i −0.180277 0.0746732i
\(424\) 12.3149i 0.0290446i
\(425\) 0 0
\(426\) −143.263 −0.336297
\(427\) −12.2831 + 29.6541i −0.0287661 + 0.0694475i
\(428\) 405.181 + 270.733i 0.946685 + 0.632555i
\(429\) −115.835 115.835i −0.270013 0.270013i
\(430\) 0 0
\(431\) −499.936 + 334.047i −1.15994 + 0.775050i −0.978071 0.208272i \(-0.933216\pi\)
−0.181873 + 0.983322i \(0.558216\pi\)
\(432\) 193.646 + 38.5187i 0.448255 + 0.0891635i
\(433\) 405.728 168.058i 0.937017 0.388125i 0.138681 0.990337i \(-0.455714\pi\)
0.798336 + 0.602212i \(0.205714\pi\)
\(434\) −11.1553 26.9312i −0.0257034 0.0620534i
\(435\) 0 0
\(436\) 43.5268 + 65.1425i 0.0998321 + 0.149409i
\(437\) −123.182 619.277i −0.281881 1.41711i
\(438\) 61.5532 61.5532i 0.140533 0.140533i
\(439\) 354.911 531.162i 0.808453 1.20994i −0.166173 0.986097i \(-0.553141\pi\)
0.974626 0.223839i \(-0.0718589\pi\)
\(440\) 0 0
\(441\) 305.503i 0.692751i
\(442\) 26.3317 213.615i 0.0595739 0.483292i
\(443\) 79.9030 0.180368 0.0901839 0.995925i \(-0.471255\pi\)
0.0901839 + 0.995925i \(0.471255\pi\)
\(444\) −82.0829 + 198.166i −0.184871 + 0.446319i
\(445\) 0 0
\(446\) 53.9846 + 53.9846i 0.121042 + 0.121042i
\(447\) 339.057 67.4426i 0.758516 0.150878i
\(448\) 3.73178 2.49350i 0.00832987 0.00556584i
\(449\) 144.414 + 28.7257i 0.321634 + 0.0639770i 0.353267 0.935523i \(-0.385071\pi\)
−0.0316329 + 0.999500i \(0.510071\pi\)
\(450\) 0 0
\(451\) −9.71569 23.4558i −0.0215426 0.0520083i
\(452\) −31.0537 + 156.118i −0.0687029 + 0.345393i
\(453\) −54.2188 81.1442i −0.119688 0.179126i
\(454\) 24.6712 + 124.031i 0.0543420 + 0.273195i
\(455\) 0 0
\(456\) 189.725 283.943i 0.416063 0.622682i
\(457\) −595.804 246.790i −1.30373 0.540022i −0.380681 0.924706i \(-0.624310\pi\)
−0.923048 + 0.384684i \(0.874310\pi\)
\(458\) 116.072i 0.253432i
\(459\) 277.767 322.055i 0.605156 0.701644i
\(460\) 0 0
\(461\) 98.1211 236.885i 0.212844 0.513851i −0.781014 0.624513i \(-0.785297\pi\)
0.993858 + 0.110663i \(0.0352973\pi\)
\(462\) 6.99015 + 4.67067i 0.0151302 + 0.0101097i
\(463\) −422.873 422.873i −0.913332 0.913332i 0.0832008 0.996533i \(-0.473486\pi\)
−0.996533 + 0.0832008i \(0.973486\pi\)
\(464\) −163.875 + 32.5968i −0.353180 + 0.0702518i
\(465\) 0 0
\(466\) −296.676 59.0124i −0.636643 0.126636i
\(467\) −469.394 + 194.429i −1.00513 + 0.416337i −0.823674 0.567063i \(-0.808080\pi\)
−0.181452 + 0.983400i \(0.558080\pi\)
\(468\) 118.904 + 287.060i 0.254068 + 0.613375i
\(469\) −5.64238 + 28.3661i −0.0120307 + 0.0604822i
\(470\) 0 0
\(471\) 46.9418 + 235.992i 0.0996641 + 0.501045i
\(472\) −150.161 + 150.161i −0.318137 + 0.318137i
\(473\) −50.9285 + 76.2199i −0.107671 + 0.161141i
\(474\) 83.4517 + 34.5668i 0.176058 + 0.0729258i
\(475\) 0 0
\(476\) −3.71343 50.2934i −0.00780131 0.105658i
\(477\) 12.6495 0.0265190
\(478\) 129.146 311.786i 0.270180 0.652272i
\(479\) −329.863 220.407i −0.688649 0.460141i 0.161369 0.986894i \(-0.448409\pi\)
−0.850018 + 0.526753i \(0.823409\pi\)
\(480\) 0 0
\(481\) −587.120 + 116.785i −1.22062 + 0.242797i
\(482\) 55.9288 37.3704i 0.116035 0.0775320i
\(483\) 26.9138 + 5.35349i 0.0557221 + 0.0110838i
\(484\) 229.662 95.1289i 0.474507 0.196547i
\(485\) 0 0
\(486\) 41.6257 209.266i 0.0856495 0.430589i
\(487\) −214.400 320.872i −0.440246 0.658875i 0.543299 0.839539i \(-0.317175\pi\)
−0.983545 + 0.180665i \(0.942175\pi\)
\(488\) 42.7553 + 214.945i 0.0876133 + 0.440462i
\(489\) 373.980 373.980i 0.764784 0.764784i
\(490\) 0 0
\(491\) 430.764 + 178.428i 0.877319 + 0.363398i 0.775457 0.631401i \(-0.217520\pi\)
0.101863 + 0.994798i \(0.467520\pi\)
\(492\) 20.1979i 0.0410527i
\(493\) −112.873 + 341.751i −0.228950 + 0.693207i
\(494\) 429.499 0.869432
\(495\) 0 0
\(496\) 249.583 + 166.766i 0.503191 + 0.336221i
\(497\) −66.2436 66.2436i −0.133287 0.133287i
\(498\) −58.2885 + 11.5943i −0.117045 + 0.0232817i
\(499\) 152.031 101.584i 0.304671 0.203574i −0.393831 0.919183i \(-0.628850\pi\)
0.698502 + 0.715608i \(0.253850\pi\)
\(500\) 0 0
\(501\) −237.592 + 98.4139i −0.474236 + 0.196435i
\(502\) 147.085 + 355.094i 0.292998 + 0.707359i
\(503\) 125.290 629.877i 0.249086 1.25224i −0.630383 0.776284i \(-0.717102\pi\)
0.879469 0.475956i \(-0.157898\pi\)
\(504\) −19.6581 29.4205i −0.0390042 0.0583739i
\(505\) 0 0
\(506\) 75.0475 75.0475i 0.148315 0.148315i
\(507\) 48.9556 73.2672i 0.0965593 0.144511i
\(508\) −146.311 60.6039i −0.288013 0.119299i
\(509\) 177.040i 0.347819i −0.984762 0.173909i \(-0.944360\pi\)
0.984762 0.173909i \(-0.0556400\pi\)
\(510\) 0 0
\(511\) 56.9235 0.111396
\(512\) 169.352 408.852i 0.330766 0.798539i
\(513\) 705.651 + 471.501i 1.37554 + 0.919105i
\(514\) −59.0293 59.0293i −0.114843 0.114843i
\(515\) 0 0
\(516\) −60.6374 + 40.5166i −0.117514 + 0.0785206i
\(517\) 85.8791 + 17.0824i 0.166110 + 0.0330414i
\(518\) 28.3826 11.7565i 0.0547927 0.0226959i
\(519\) 102.569 + 247.623i 0.197628 + 0.477116i
\(520\) 0 0
\(521\) −169.681 253.946i −0.325684 0.487420i 0.632109 0.774879i \(-0.282189\pi\)
−0.957793 + 0.287459i \(0.907189\pi\)
\(522\) 22.2012 + 111.613i 0.0425310 + 0.213818i
\(523\) 291.958 291.958i 0.558238 0.558238i −0.370568 0.928806i \(-0.620837\pi\)
0.928806 + 0.370568i \(0.120837\pi\)
\(524\) −5.95322 + 8.90963i −0.0113611 + 0.0170031i
\(525\) 0 0
\(526\) 76.2721i 0.145004i
\(527\) 577.517 290.749i 1.09586 0.551705i
\(528\) −86.5701 −0.163959
\(529\) −69.8676 + 168.675i −0.132075 + 0.318857i
\(530\) 0 0
\(531\) −154.241 154.241i −0.290473 0.290473i
\(532\) 98.7011 19.6329i 0.185528 0.0369039i
\(533\) 46.8698 31.3174i 0.0879359 0.0587569i
\(534\) −95.0549 18.9076i −0.178005 0.0354075i
\(535\) 0 0
\(536\) 75.5703 + 182.443i 0.140989 + 0.340379i
\(537\) 61.7451 310.413i 0.114982 0.578051i
\(538\) −222.940 333.653i −0.414387 0.620174i
\(539\) −63.2265 317.861i −0.117303 0.589724i
\(540\) 0 0
\(541\) −397.133 + 594.351i −0.734072 + 1.09862i 0.257145 + 0.966373i \(0.417218\pi\)
−0.991217 + 0.132243i \(0.957782\pi\)
\(542\) −48.1220 19.9328i −0.0887859 0.0367763i
\(543\) 81.4550i 0.150009i
\(544\) −328.250 420.553i −0.603401 0.773075i
\(545\) 0 0
\(546\) −7.14319 + 17.2452i −0.0130828 + 0.0315846i
\(547\) −251.742 168.209i −0.460223 0.307511i 0.303759 0.952749i \(-0.401758\pi\)
−0.763982 + 0.645238i \(0.776758\pi\)
\(548\) 208.709 + 208.709i 0.380855 + 0.380855i
\(549\) −220.786 + 43.9171i −0.402160 + 0.0799946i
\(550\) 0 0
\(551\) −704.404 140.115i −1.27841 0.254292i
\(552\) 173.102 71.7011i 0.313590 0.129893i
\(553\) 22.6040 + 54.5708i 0.0408752 + 0.0986815i
\(554\) 24.6708 124.029i 0.0445321 0.223878i
\(555\) 0 0
\(556\) 83.3180 + 418.868i 0.149853 + 0.753360i
\(557\) −708.431 + 708.431i −1.27187 + 1.27187i −0.326762 + 0.945107i \(0.605958\pi\)
−0.945107 + 0.326762i \(0.894042\pi\)
\(558\) 113.581 169.987i 0.203551 0.304635i
\(559\) −188.040 77.8887i −0.336386 0.139336i
\(560\) 0 0
\(561\) −91.9016 + 162.256i −0.163818 + 0.289226i
\(562\) 28.7839 0.0512170
\(563\) 314.331 758.863i 0.558315 1.34789i −0.352784 0.935705i \(-0.614765\pi\)
0.911099 0.412187i \(-0.135235\pi\)
\(564\) 57.9205 + 38.7012i 0.102696 + 0.0686192i
\(565\) 0 0
\(566\) −157.202 + 31.2694i −0.277742 + 0.0552463i
\(567\) 12.2278 8.17032i 0.0215657 0.0144097i
\(568\) −627.361 124.790i −1.10451 0.219701i
\(569\) 395.568 163.849i 0.695198 0.287960i −0.00696604 0.999976i \(-0.502217\pi\)
0.702164 + 0.712015i \(0.252217\pi\)
\(570\) 0 0
\(571\) 78.3724 394.005i 0.137255 0.690026i −0.849472 0.527634i \(-0.823079\pi\)
0.986726 0.162392i \(-0.0519208\pi\)
\(572\) −183.123 274.063i −0.320145 0.479132i
\(573\) 94.9119 + 477.154i 0.165640 + 0.832730i
\(574\) −2.04558 + 2.04558i −0.00356372 + 0.00356372i
\(575\) 0 0
\(576\) 29.0813 + 12.0459i 0.0504884 + 0.0209130i
\(577\) 324.254i 0.561965i 0.959713 + 0.280982i \(0.0906602\pi\)
−0.959713 + 0.280982i \(0.909340\pi\)
\(578\) −242.346 + 35.9834i −0.419283 + 0.0622550i
\(579\) −91.9094 −0.158738
\(580\) 0 0
\(581\) −32.3133 21.5910i −0.0556167 0.0371619i
\(582\) 124.890 + 124.890i 0.214587 + 0.214587i
\(583\) −13.1612 + 2.61793i −0.0225750 + 0.00449045i
\(584\) 323.164 215.931i 0.553363 0.369745i
\(585\) 0 0
\(586\) 138.619 57.4177i 0.236551 0.0979825i
\(587\) 103.107 + 248.922i 0.175651 + 0.424058i 0.987046 0.160440i \(-0.0512914\pi\)
−0.811395 + 0.584498i \(0.801291\pi\)
\(588\) 50.3004 252.877i 0.0855449 0.430063i
\(589\) 716.828 + 1072.81i 1.21703 + 1.82141i
\(590\) 0 0
\(591\) −4.31787 + 4.31787i −0.00730603 + 0.00730603i
\(592\) −175.753 + 263.034i −0.296881 + 0.444313i
\(593\) 662.174 + 274.282i 1.11665 + 0.462532i 0.863223 0.504822i \(-0.168442\pi\)
0.253428 + 0.967354i \(0.418442\pi\)
\(594\) 142.654i 0.240158i
\(595\) 0 0
\(596\) 695.579 1.16708
\(597\) −92.9693 + 224.448i −0.155727 + 0.375959i
\(598\) 195.934 + 130.919i 0.327649 + 0.218928i
\(599\) −330.421 330.421i −0.551622 0.551622i 0.375287 0.926909i \(-0.377544\pi\)
−0.926909 + 0.375287i \(0.877544\pi\)
\(600\) 0 0
\(601\) −26.7271 + 17.8585i −0.0444710 + 0.0297146i −0.577607 0.816315i \(-0.696013\pi\)
0.533136 + 0.846030i \(0.321013\pi\)
\(602\) 10.2445 + 2.03776i 0.0170175 + 0.00338499i
\(603\) −187.400 + 77.6237i −0.310780 + 0.128729i
\(604\) −75.1448 181.416i −0.124412 0.300357i
\(605\) 0 0
\(606\) −28.5058 42.6620i −0.0470393 0.0703993i
\(607\) 51.7408 + 260.119i 0.0852402 + 0.428531i 0.999715 + 0.0238877i \(0.00760442\pi\)
−0.914474 + 0.404644i \(0.867396\pi\)
\(608\) 752.780 752.780i 1.23813 1.23813i
\(609\) 17.3411 25.9528i 0.0284747 0.0426154i
\(610\) 0 0
\(611\) 194.413i 0.318189i
\(612\) 278.813 217.620i 0.455577 0.355588i
\(613\) 700.076 1.14205 0.571025 0.820933i \(-0.306546\pi\)
0.571025 + 0.820933i \(0.306546\pi\)
\(614\) 119.432 288.335i 0.194515 0.469602i
\(615\) 0 0
\(616\) 26.5421 + 26.5421i 0.0430879 + 0.0430879i
\(617\) −703.990 + 140.032i −1.14099 + 0.226957i −0.729185 0.684316i \(-0.760101\pi\)
−0.411803 + 0.911273i \(0.635101\pi\)
\(618\) −63.1246 + 42.1785i −0.102143 + 0.0682500i
\(619\) −898.874 178.797i −1.45214 0.288848i −0.594913 0.803790i \(-0.702814\pi\)
−0.857225 + 0.514941i \(0.827814\pi\)
\(620\) 0 0
\(621\) 178.190 + 430.190i 0.286941 + 0.692737i
\(622\) −17.3803 + 87.3767i −0.0279426 + 0.140477i
\(623\) −35.2099 52.6954i −0.0565167 0.0845833i
\(624\) −37.4987 188.519i −0.0600941 0.302113i
\(625\) 0 0
\(626\) 204.359 305.845i 0.326452 0.488570i
\(627\) −343.788 142.402i −0.548307 0.227116i
\(628\) 484.141i 0.770926i
\(629\) 306.418 + 608.642i 0.487152 + 0.967634i
\(630\) 0 0
\(631\) 313.464 756.768i 0.496773 1.19932i −0.454439 0.890778i \(-0.650160\pi\)
0.951212 0.308538i \(-0.0998397\pi\)
\(632\) 335.333 + 224.063i 0.530591 + 0.354529i
\(633\) −342.359 342.359i −0.540852 0.540852i
\(634\) −435.698 + 86.6657i −0.687220 + 0.136697i
\(635\) 0 0
\(636\) −10.4705 2.08272i −0.0164631 0.00327472i
\(637\) 664.801 275.370i 1.04364 0.432291i
\(638\) −46.1985 111.533i −0.0724114 0.174817i
\(639\) 128.181 644.408i 0.200596 1.00846i
\(640\) 0 0
\(641\) 206.112 + 1036.19i 0.321547 + 1.61653i 0.716337 + 0.697754i \(0.245817\pi\)
−0.394790 + 0.918771i \(0.629183\pi\)
\(642\) −145.182 + 145.182i −0.226140 + 0.226140i
\(643\) −198.642 + 297.289i −0.308931 + 0.462347i −0.953152 0.302492i \(-0.902182\pi\)
0.644221 + 0.764839i \(0.277182\pi\)
\(644\) 51.0111 + 21.1295i 0.0792097 + 0.0328097i
\(645\) 0 0
\(646\) −130.431 471.188i −0.201905 0.729393i
\(647\) −414.046 −0.639947 −0.319973 0.947427i \(-0.603674\pi\)
−0.319973 + 0.947427i \(0.603674\pi\)
\(648\) 38.4260 92.7686i 0.0592994 0.143161i
\(649\) 192.402 + 128.559i 0.296459 + 0.198088i
\(650\) 0 0
\(651\) −54.9971 + 10.9396i −0.0844810 + 0.0168043i
\(652\) 884.825 591.221i 1.35709 0.906781i
\(653\) −714.568 142.136i −1.09428 0.217667i −0.385230 0.922821i \(-0.625878\pi\)
−0.709054 + 0.705154i \(0.750878\pi\)
\(654\) −30.4970 + 12.6323i −0.0466315 + 0.0193154i
\(655\) 0 0
\(656\) 5.81158 29.2168i 0.00885911 0.0445378i
\(657\) 221.799 + 331.945i 0.337593 + 0.505244i
\(658\) −1.94646 9.78551i −0.00295815 0.0148716i
\(659\) −310.871 + 310.871i −0.471731 + 0.471731i −0.902474 0.430743i \(-0.858251\pi\)
0.430743 + 0.902474i \(0.358251\pi\)
\(660\) 0 0
\(661\) −163.337 67.6563i −0.247105 0.102354i 0.255693 0.966758i \(-0.417696\pi\)
−0.502799 + 0.864404i \(0.667696\pi\)
\(662\) 298.294i 0.450595i
\(663\) −393.143 129.846i −0.592976 0.195846i
\(664\) −265.351 −0.399624
\(665\) 0 0
\(666\) 179.148 + 119.703i 0.268991 + 0.179734i
\(667\) −278.634 278.634i −0.417742 0.417742i
\(668\) −507.503 + 100.949i −0.759736 + 0.151121i
\(669\) 122.112 81.5924i 0.182529 0.121962i
\(670\) 0 0
\(671\) 220.628 91.3871i 0.328805 0.136195i
\(672\) 17.7057 + 42.7453i 0.0263478 + 0.0636091i
\(673\) −121.389 + 610.263i −0.180370 + 0.906780i 0.779515 + 0.626384i \(0.215466\pi\)
−0.959884 + 0.280396i \(0.909534\pi\)
\(674\) 73.2077 + 109.563i 0.108617 + 0.162557i
\(675\) 0 0
\(676\) 125.371 125.371i 0.185460 0.185460i
\(677\) 26.5471 39.7306i 0.0392129 0.0586862i −0.811345 0.584567i \(-0.801264\pi\)
0.850558 + 0.525881i \(0.176264\pi\)
\(678\) −61.9609 25.6650i −0.0913878 0.0378540i
\(679\) 115.496i 0.170097i
\(680\) 0 0
\(681\) 243.266 0.357219
\(682\) −82.9957 + 200.369i −0.121695 + 0.293797i
\(683\) −618.830 413.489i −0.906048 0.605402i 0.0128416 0.999918i \(-0.495912\pi\)
−0.918889 + 0.394516i \(0.870912\pi\)
\(684\) 499.070 + 499.070i 0.729634 + 0.729634i
\(685\) 0 0
\(686\) −61.9304 + 41.3806i −0.0902776 + 0.0603216i
\(687\) 218.991 + 43.5600i 0.318764 + 0.0634062i
\(688\) −99.3714 + 41.1610i −0.144435 + 0.0598270i
\(689\) −11.4018 27.5265i −0.0165484 0.0399514i
\(690\) 0 0
\(691\) −713.306 1067.54i −1.03228 1.54492i −0.823792 0.566893i \(-0.808145\pi\)
−0.208489 0.978025i \(-0.566855\pi\)
\(692\) 105.211 + 528.930i 0.152038 + 0.764349i
\(693\) −27.2633 + 27.2633i −0.0393410 + 0.0393410i
\(694\) −126.003 + 188.577i −0.181561 + 0.271725i
\(695\) 0 0
\(696\) 213.119i 0.306206i
\(697\) −48.5906 41.9086i −0.0697140 0.0601271i
\(698\) −167.384 −0.239806
\(699\) −222.676 + 537.588i −0.318564 + 0.769081i
\(700\) 0 0
\(701\) −895.228 895.228i −1.27707 1.27707i −0.942298 0.334774i \(-0.891340\pi\)
−0.334774 0.942298i \(-0.608660\pi\)
\(702\) −310.649 + 61.7920i −0.442520 + 0.0880227i
\(703\) −1130.63 + 755.461i −1.60829 + 1.07462i
\(704\) −32.7507 6.51451i −0.0465208 0.00925357i
\(705\) 0 0
\(706\) 139.297 + 336.292i 0.197304 + 0.476335i
\(707\) 6.54570 32.9074i 0.00925841 0.0465452i
\(708\) 102.276 + 153.067i 0.144458 + 0.216196i
\(709\) 145.154 + 729.738i 0.204730 + 1.02925i 0.937291 + 0.348547i \(0.113325\pi\)
−0.732561 + 0.680702i \(0.761675\pi\)
\(710\) 0 0
\(711\) −230.151 + 344.445i −0.323700 + 0.484452i
\(712\) −399.785 165.596i −0.561496 0.232579i
\(713\) 707.908i 0.992859i
\(714\) 21.0883 + 2.59949i 0.0295354 + 0.00364074i
\(715\) 0 0
\(716\) 243.699 588.342i 0.340362 0.821707i
\(717\) −539.776 360.667i −0.752826 0.503022i
\(718\) 34.0384 + 34.0384i 0.0474073 + 0.0474073i
\(719\) 141.631 28.1722i 0.196984 0.0391825i −0.0956124 0.995419i \(-0.530481\pi\)
0.292596 + 0.956236i \(0.405481\pi\)
\(720\) 0 0
\(721\) −48.6914 9.68532i −0.0675331 0.0134332i
\(722\) 618.614 256.238i 0.856806 0.354901i
\(723\) −49.5170 119.545i −0.0684883 0.165345i
\(724\) −31.9744 + 160.746i −0.0441635 + 0.222025i
\(725\) 0 0
\(726\) 20.4330 + 102.724i 0.0281447 + 0.141493i
\(727\) −33.3667 + 33.3667i −0.0458965 + 0.0458965i −0.729683 0.683786i \(-0.760332\pi\)
0.683786 + 0.729683i \(0.260332\pi\)
\(728\) −46.3023 + 69.2963i −0.0636020 + 0.0951872i
\(729\) −243.941 101.044i −0.334624 0.138606i
\(730\) 0 0
\(731\) −28.3446 + 229.945i −0.0387750 + 0.314562i
\(732\) 189.984 0.259541
\(733\) 250.284 604.239i 0.341452 0.824337i −0.656118 0.754658i \(-0.727803\pi\)
0.997569 0.0696787i \(-0.0221974\pi\)
\(734\) −160.291 107.103i −0.218381 0.145917i
\(735\) 0 0
\(736\) 572.873 113.951i 0.778360 0.154825i
\(737\) 178.916 119.548i 0.242762 0.162209i
\(738\) −19.8991 3.95817i −0.0269635 0.00536338i
\(739\) −1135.07 + 470.162i −1.53596 + 0.636214i −0.980709 0.195472i \(-0.937376\pi\)
−0.555247 + 0.831685i \(0.687376\pi\)
\(740\) 0 0
\(741\) 161.185 810.331i 0.217523 1.09356i
\(742\) 0.849490 + 1.27135i 0.00114486 + 0.00171341i
\(743\) 219.382 + 1102.91i 0.295266 + 1.48440i 0.788787 + 0.614667i \(0.210710\pi\)
−0.493521 + 0.869734i \(0.664290\pi\)
\(744\) −270.730 + 270.730i −0.363884 + 0.363884i
\(745\) 0 0
\(746\) −360.419 149.290i −0.483135 0.200121i
\(747\) 272.561i 0.364874i
\(748\) −245.053 + 284.125i −0.327612 + 0.379847i
\(749\) −134.262 −0.179255
\(750\) 0 0
\(751\) 1063.32 + 710.490i 1.41588 + 0.946059i 0.999317 + 0.0369501i \(0.0117643\pi\)
0.416560 + 0.909108i \(0.363236\pi\)
\(752\) 72.6478 + 72.6478i 0.0966061 + 0.0966061i
\(753\) 725.151 144.241i 0.963016 0.191556i
\(754\) 222.868 148.915i 0.295580 0.197500i
\(755\) 0 0
\(756\) −68.5641 + 28.4002i −0.0906933 + 0.0375664i
\(757\) 75.7752 + 182.937i 0.100099 + 0.241661i 0.965994 0.258566i \(-0.0832499\pi\)
−0.865894 + 0.500227i \(0.833250\pi\)
\(758\) −10.1804 + 51.1802i −0.0134306 + 0.0675201i
\(759\) −113.427 169.755i −0.149443 0.223657i
\(760\) 0 0
\(761\) 380.948 380.948i 0.500588 0.500588i −0.411032 0.911621i \(-0.634832\pi\)
0.911621 + 0.411032i \(0.134832\pi\)
\(762\) 37.0701 55.4793i 0.0486484 0.0728075i
\(763\) −19.9427 8.26052i −0.0261372 0.0108264i
\(764\) 978.888i 1.28127i
\(765\) 0 0
\(766\) 522.082 0.681570
\(767\) −196.614 + 474.669i −0.256342 + 0.618864i
\(768\) 122.208 + 81.6568i 0.159125 + 0.106324i
\(769\) −90.3571 90.3571i −0.117500 0.117500i 0.645912 0.763412i \(-0.276477\pi\)
−0.763412 + 0.645912i \(0.776477\pi\)
\(770\) 0 0
\(771\) −133.523 + 89.2169i −0.173181 + 0.115716i
\(772\) −181.377 36.0781i −0.234944 0.0467333i
\(773\) −134.981 + 55.9110i −0.174620 + 0.0723298i −0.468281 0.883580i \(-0.655126\pi\)
0.293661 + 0.955910i \(0.405126\pi\)
\(774\) 28.0341 + 67.6802i 0.0362197 + 0.0874422i
\(775\) 0 0
\(776\) 438.118 + 655.689i 0.564585 + 0.844961i
\(777\) −11.5292 57.9611i −0.0148381 0.0745960i
\(778\) −218.482 + 218.482i −0.280825 + 0.280825i
\(779\) 71.1386 106.466i 0.0913204 0.136671i
\(780\) 0 0
\(781\) 697.003i 0.892450i
\(782\) 84.1248 254.710i 0.107576 0.325716i
\(783\) 529.641 0.676425
\(784\) 145.522 351.320i 0.185614 0.448113i
\(785\) 0 0
\(786\) −3.19244 3.19244i −0.00406163 0.00406163i
\(787\) 678.506 134.963i 0.862142 0.171491i 0.255834 0.966721i \(-0.417650\pi\)
0.606308 + 0.795230i \(0.292650\pi\)
\(788\) −10.2159 + 6.82608i −0.0129644 + 0.00866254i
\(789\) 143.902 + 28.6238i 0.182385 + 0.0362786i
\(790\) 0 0
\(791\) −16.7829 40.5176i −0.0212174 0.0512232i
\(792\) −51.3588 + 258.198i −0.0648470 + 0.326008i
\(793\) 294.576 + 440.864i 0.371470 + 0.555944i
\(794\) 9.95687 + 50.0566i 0.0125401 + 0.0630436i
\(795\) 0 0
\(796\) −271.573 + 406.438i −0.341172 + 0.510601i
\(797\) 997.012 + 412.976i 1.25096 + 0.518163i 0.907122 0.420867i \(-0.138274\pi\)
0.343834 + 0.939030i \(0.388274\pi\)
\(798\) 42.4006i 0.0531336i
\(799\) 213.284 59.0397i 0.266938 0.0738919i
\(800\) 0 0
\(801\) 170.096 410.648i 0.212355 0.512669i
\(802\) 13.7229 + 9.16932i 0.0171108 + 0.0114331i
\(803\) −299.470 299.470i −0.372938 0.372938i
\(804\) 167.899 33.3972i 0.208830 0.0415389i
\(805\) 0 0
\(806\) −472.283 93.9430i −0.585959 0.116555i
\(807\) −713.166 + 295.403i −0.883725 + 0.366051i
\(808\) −87.6688 211.651i −0.108501 0.261945i
\(809\) −111.178 + 558.928i −0.137426 + 0.690887i 0.849224 + 0.528033i \(0.177070\pi\)
−0.986650 + 0.162855i \(0.947930\pi\)
\(810\) 0 0
\(811\) 221.750 + 1114.81i 0.273428 + 1.37461i 0.836392 + 0.548132i \(0.184661\pi\)
−0.562964 + 0.826481i \(0.690339\pi\)
\(812\) 44.4090 44.4090i 0.0546909 0.0546909i
\(813\) −55.6664 + 83.3106i −0.0684703 + 0.102473i
\(814\) −211.168 87.4687i −0.259420 0.107455i
\(815\) 0 0
\(816\) −195.429 + 98.3880i −0.239497 + 0.120574i
\(817\) −462.332 −0.565890
\(818\) −141.081 + 340.600i −0.172471 + 0.416382i
\(819\) −71.1792 47.5604i −0.0869099 0.0580713i
\(820\) 0 0
\(821\) −20.5375 + 4.08517i −0.0250153 + 0.00497585i −0.207582 0.978218i \(-0.566559\pi\)
0.182567 + 0.983193i \(0.441559\pi\)
\(822\) −103.401 + 69.0906i −0.125792 + 0.0840518i
\(823\) −1543.55 307.031i −1.87551 0.373063i −0.880606 0.473850i \(-0.842864\pi\)
−0.994908 + 0.100787i \(0.967864\pi\)
\(824\) −313.169 + 129.719i −0.380059 + 0.157426i
\(825\) 0 0
\(826\) 5.14393 25.8603i 0.00622752 0.0313078i
\(827\) −299.622 448.417i −0.362300 0.542221i 0.604878 0.796318i \(-0.293222\pi\)
−0.967179 + 0.254097i \(0.918222\pi\)
\(828\) 75.5463 + 379.797i 0.0912395 + 0.458692i
\(829\) −145.931 + 145.931i −0.176032 + 0.176032i −0.789624 0.613591i \(-0.789724\pi\)
0.613591 + 0.789624i \(0.289724\pi\)
\(830\) 0 0
\(831\) −224.744 93.0922i −0.270451 0.112024i
\(832\) 74.1411i 0.0891119i
\(833\) −503.985 645.703i −0.605024 0.775154i
\(834\) −179.940 −0.215755
\(835\) 0 0
\(836\) −622.545 415.971i −0.744671 0.497573i
\(837\) −672.813 672.813i −0.803839 0.803839i
\(838\) 67.3212 13.3910i 0.0803355 0.0159797i
\(839\) −587.153 + 392.323i −0.699824 + 0.467608i −0.853890 0.520453i \(-0.825763\pi\)
0.154066 + 0.988061i \(0.450763\pi\)
\(840\) 0 0
\(841\) 362.887 150.313i 0.431494 0.178731i
\(842\) 96.8532 + 233.824i 0.115028 + 0.277701i
\(843\) 10.8022 54.3063i 0.0128140 0.0644203i
\(844\) −541.233 810.012i −0.641271 0.959730i
\(845\) 0 0
\(846\) 49.4792 49.4792i 0.0584861 0.0584861i
\(847\) −38.0506 + 56.9468i −0.0449240 + 0.0672335i
\(848\) −14.5466 6.02541i −0.0171540 0.00710544i
\(849\) 308.326i 0.363163i
\(850\) 0 0
\(851\) −746.060 −0.876686
\(852\) −212.201 + 512.298i −0.249062 + 0.601289i
\(853\) 940.733 + 628.578i 1.10285 + 0.736903i 0.967241 0.253860i \(-0.0817001\pi\)
0.135612 + 0.990762i \(0.456700\pi\)
\(854\) −19.2410 19.2410i −0.0225304 0.0225304i
\(855\) 0 0
\(856\) −762.227 + 509.304i −0.890452 + 0.594981i
\(857\) 1477.19 + 293.831i 1.72368 + 0.342860i 0.954961 0.296732i \(-0.0958967\pi\)
0.768715 + 0.639592i \(0.220897\pi\)
\(858\) 128.305 53.1457i 0.149540 0.0619414i
\(859\) −39.2673 94.7998i −0.0457129 0.110361i 0.899374 0.437181i \(-0.144023\pi\)
−0.945087 + 0.326820i \(0.894023\pi\)
\(860\) 0 0
\(861\) 3.09169 + 4.62704i 0.00359081 + 0.00537403i
\(862\) −99.4434 499.936i −0.115364 0.579972i
\(863\) 533.064 533.064i 0.617687 0.617687i −0.327250 0.944938i \(-0.606122\pi\)
0.944938 + 0.327250i \(0.106122\pi\)
\(864\) −436.170 + 652.774i −0.504826 + 0.755526i
\(865\) 0 0
\(866\) 372.300i 0.429907i
\(867\) −23.0593 + 470.734i −0.0265966 + 0.542946i
\(868\) −112.827 −0.129985
\(869\) 168.175 406.010i 0.193527 0.467215i
\(870\) 0 0
\(871\) 337.832 + 337.832i 0.387866 + 0.387866i
\(872\) −144.553 + 28.7534i −0.165772 + 0.0329740i
\(873\) −673.506 + 450.022i −0.771484 + 0.515489i
\(874\) 524.998 + 104.429i 0.600684 + 0.119483i
\(875\) 0 0
\(876\) −128.938 311.283i −0.147189 0.355346i
\(877\) −173.231 + 870.893i −0.197527 + 0.993036i 0.747055 + 0.664762i \(0.231467\pi\)
−0.944582 + 0.328274i \(0.893533\pi\)
\(878\) 300.879 + 450.297i 0.342687 + 0.512867i
\(879\) −56.3077 283.078i −0.0640589 0.322046i
\(880\) 0 0
\(881\) 850.061 1272.21i 0.964882 1.44405i 0.0701022 0.997540i \(-0.477667\pi\)
0.894780 0.446508i \(-0.147333\pi\)
\(882\) −239.278 99.1124i −0.271291 0.112372i
\(883\) 625.063i 0.707885i −0.935267 0.353943i \(-0.884841\pi\)
0.935267 0.353943i \(-0.115159\pi\)
\(884\) −724.871 410.567i −0.819990 0.464442i
\(885\) 0 0
\(886\) −25.9224 + 62.5822i −0.0292578 + 0.0706345i
\(887\) 24.3095 + 16.2431i 0.0274064 + 0.0183124i 0.569198 0.822200i \(-0.307254\pi\)
−0.541792 + 0.840513i \(0.682254\pi\)
\(888\) −285.320 285.320i −0.321307 0.321307i
\(889\) 42.7942 8.51229i 0.0481374 0.00957513i
\(890\) 0 0
\(891\) −107.313 21.3458i −0.120441 0.0239571i
\(892\) 273.007 113.083i 0.306062 0.126775i
\(893\) 168.999 + 408.001i 0.189249 + 0.456888i
\(894\) −57.1751 + 287.438i −0.0639542 + 0.321520i
\(895\) 0 0
\(896\) 22.8819 + 115.035i 0.0255379 + 0.128388i
\(897\) 320.534 320.534i 0.357340 0.357340i
\(898\) −69.3499 + 103.789i −0.0772271 + 0.115578i
\(899\) 743.925 + 308.144i 0.827503 + 0.342763i
\(900\) 0 0
\(901\) −26.7357 + 20.8678i −0.0296734 + 0.0231607i
\(902\) 21.5232 0.0238616
\(903\) 7.68925 18.5635i 0.00851522 0.0205576i
\(904\) −248.977 166.361i −0.275417 0.184028i
\(905\) 0 0
\(906\) 81.1442 16.1406i 0.0895631 0.0178152i
\(907\) −848.139 + 566.708i −0.935104 + 0.624816i −0.926964 0.375151i \(-0.877591\pi\)
−0.00813978 + 0.999967i \(0.502591\pi\)
\(908\) 480.069 + 95.4916i 0.528710 + 0.105167i
\(909\) 217.402 90.0509i 0.239166 0.0990659i
\(910\) 0 0
\(911\) −281.322 + 1414.30i −0.308805 + 1.55247i 0.445097 + 0.895483i \(0.353169\pi\)
−0.753902 + 0.656987i \(0.771831\pi\)
\(912\) −242.571 363.033i −0.265977 0.398063i
\(913\) 56.4088 + 283.586i 0.0617840 + 0.310609i
\(914\) 386.586 386.586i 0.422960 0.422960i
\(915\) 0 0
\(916\) 415.065 + 171.926i 0.453128 + 0.187692i
\(917\) 2.95232i 0.00321954i
\(918\) 162.128 + 322.036i 0.176610 + 0.350802i
\(919\) 811.637 0.883175 0.441587 0.897218i \(-0.354416\pi\)
0.441587 + 0.897218i \(0.354416\pi\)
\(920\) 0 0
\(921\) −499.177 333.540i −0.541995 0.362149i
\(922\) 153.702 + 153.702i 0.166705 + 0.166705i
\(923\) −1517.82 + 301.914i −1.64445 + 0.327101i
\(924\) 27.0558 18.0781i 0.0292812 0.0195651i
\(925\) 0 0
\(926\) 468.395 194.016i 0.505826 0.209520i
\(927\) −133.244 321.678i −0.143736 0.347010i
\(928\) 129.615 651.621i 0.139672 0.702178i
\(929\) −32.1049 48.0484i −0.0345586 0.0517206i 0.813788 0.581162i \(-0.197402\pi\)
−0.848347 + 0.529441i \(0.822402\pi\)
\(930\) 0 0
\(931\) 1155.80 1155.80i 1.24146 1.24146i
\(932\) −650.461 + 973.483i −0.697919 + 1.04451i
\(933\) 158.330 + 65.5824i 0.169700 + 0.0702920i
\(934\) 430.720i 0.461156i
\(935\) 0 0
\(936\) −584.510 −0.624476
\(937\) 571.943 1380.79i 0.610398 1.47363i −0.252167 0.967684i \(-0.581143\pi\)
0.862565 0.505946i \(-0.168857\pi\)
\(938\) −20.3866 13.6219i −0.0217341 0.0145223i
\(939\) −500.340 500.340i −0.532844 0.532844i
\(940\) 0 0
\(941\) 834.402 557.530i 0.886719 0.592487i −0.0266387 0.999645i \(-0.508480\pi\)
0.913357 + 0.407159i \(0.133480\pi\)
\(942\) −200.065 39.7953i −0.212383 0.0422456i
\(943\) 64.9057 26.8848i 0.0688290 0.0285099i
\(944\) 103.903 + 250.843i 0.110066 + 0.265724i
\(945\) 0 0
\(946\) −43.1751 64.6161i −0.0456396 0.0683045i
\(947\) −271.675 1365.80i −0.286879 1.44224i −0.808215 0.588888i \(-0.799566\pi\)
0.521336 0.853352i \(-0.325434\pi\)
\(948\) 247.217 247.217i 0.260778 0.260778i
\(949\) 522.419 781.856i 0.550495 0.823873i
\(950\) 0 0
\(951\) 854.550i 0.898580i
\(952\) 90.0835 + 29.7525i 0.0946255 + 0.0312527i
\(953\) 1378.59 1.44658 0.723292 0.690543i \(-0.242628\pi\)
0.723292 + 0.690543i \(0.242628\pi\)
\(954\) −4.10381 + 9.90747i −0.00430169 + 0.0103852i
\(955\) 0 0
\(956\) −923.635 923.635i −0.966145 0.966145i
\(957\) −227.765 + 45.3054i −0.237999 + 0.0473410i
\(958\) 279.644 186.852i 0.291904 0.195044i
\(959\) −79.7590 15.8650i −0.0831689 0.0165433i
\(960\) 0 0
\(961\) −185.823 448.616i −0.193364 0.466822i
\(962\) 99.0060 497.737i 0.102917 0.517398i
\(963\) −523.143 782.938i −0.543243 0.813020i
\(964\) −50.7924 255.351i −0.0526892 0.264887i
\(965\) 0 0
\(966\) −12.9245 + 19.3428i −0.0133794 + 0.0200236i
\(967\) 964.483 + 399.502i 0.997398 + 0.413136i 0.820842 0.571155i \(-0.193505\pi\)
0.176555 + 0.984291i \(0.443505\pi\)
\(968\) 467.636i 0.483095i
\(969\) −937.933 + 69.2524i −0.967939 + 0.0714679i
\(970\) 0 0
\(971\) −68.3025 + 164.897i −0.0703424 + 0.169822i −0.955141 0.296153i \(-0.904296\pi\)
0.884798 + 0.465975i \(0.154296\pi\)
\(972\) −686.667 458.816i −0.706447 0.472033i
\(973\) −83.2028 83.2028i −0.0855116 0.0855116i
\(974\) 320.872 63.8254i 0.329437 0.0655292i
\(975\) 0 0
\(976\) 274.817 + 54.6645i 0.281575 + 0.0560087i
\(977\) −1094.70 + 453.439i −1.12047 + 0.464113i −0.864531 0.502580i \(-0.832384\pi\)
−0.255938 + 0.966693i \(0.582384\pi\)
\(978\) 171.583 + 414.239i 0.175443 + 0.423557i
\(979\) −91.9894 + 462.462i −0.0939626 + 0.472382i
\(980\) 0 0
\(981\) −29.5346 148.481i −0.0301067 0.151356i
\(982\) −279.500 + 279.500i −0.284623 + 0.284623i
\(983\) 876.560 1311.86i 0.891719 1.33455i −0.0502093 0.998739i \(-0.515989\pi\)
0.941929 0.335813i \(-0.109011\pi\)
\(984\) 35.1040 + 14.5406i 0.0356748 + 0.0147770i
\(985\) 0 0
\(986\) −231.050 199.277i −0.234331 0.202106i
\(987\) −19.1927 −0.0194455
\(988\) 636.175 1535.86i 0.643902 1.55452i
\(989\) −210.912 140.927i −0.213258 0.142494i
\(990\) 0 0
\(991\) −891.097 + 177.250i −0.899190 + 0.178860i −0.622980 0.782238i \(-0.714078\pi\)
−0.276209 + 0.961098i \(0.589078\pi\)
\(992\) −992.420 + 663.114i −1.00042 + 0.668462i
\(993\) −562.788 111.945i −0.566755 0.112735i
\(994\) 73.3747 30.3928i 0.0738176 0.0305763i
\(995\) 0 0
\(996\) −44.8765 + 225.609i −0.0450567 + 0.226515i
\(997\) 965.850 + 1445.50i 0.968757 + 1.44985i 0.891598 + 0.452828i \(0.149585\pi\)
0.0771586 + 0.997019i \(0.475415\pi\)
\(998\) 30.2408 + 152.031i 0.0303014 + 0.152335i
\(999\) 709.074 709.074i 0.709783 0.709783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.a.401.1 8
5.2 odd 4 425.3.t.b.299.1 8
5.3 odd 4 425.3.t.d.299.1 8
5.4 even 2 17.3.e.b.10.1 8
15.14 odd 2 153.3.p.a.10.1 8
17.12 odd 16 inner 425.3.u.a.301.1 8
20.19 odd 2 272.3.bh.b.129.1 8
85.4 even 4 289.3.e.h.75.1 8
85.9 even 8 289.3.e.a.249.1 8
85.12 even 16 425.3.t.d.199.1 8
85.14 odd 16 289.3.e.f.158.1 8
85.19 even 8 289.3.e.j.40.1 8
85.24 odd 16 289.3.e.a.65.1 8
85.29 odd 16 17.3.e.b.12.1 yes 8
85.39 odd 16 289.3.e.g.131.1 8
85.44 odd 16 289.3.e.e.65.1 8
85.49 even 8 289.3.e.n.40.1 8
85.54 odd 16 289.3.e.h.158.1 8
85.59 even 8 289.3.e.e.249.1 8
85.63 even 16 425.3.t.b.199.1 8
85.64 even 4 289.3.e.f.75.1 8
85.74 odd 16 289.3.e.j.224.1 8
85.79 odd 16 289.3.e.n.224.1 8
85.84 even 2 289.3.e.g.214.1 8
255.29 even 16 153.3.p.a.46.1 8
340.199 even 16 272.3.bh.b.97.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.10.1 8 5.4 even 2
17.3.e.b.12.1 yes 8 85.29 odd 16
153.3.p.a.10.1 8 15.14 odd 2
153.3.p.a.46.1 8 255.29 even 16
272.3.bh.b.97.1 8 340.199 even 16
272.3.bh.b.129.1 8 20.19 odd 2
289.3.e.a.65.1 8 85.24 odd 16
289.3.e.a.249.1 8 85.9 even 8
289.3.e.e.65.1 8 85.44 odd 16
289.3.e.e.249.1 8 85.59 even 8
289.3.e.f.75.1 8 85.64 even 4
289.3.e.f.158.1 8 85.14 odd 16
289.3.e.g.131.1 8 85.39 odd 16
289.3.e.g.214.1 8 85.84 even 2
289.3.e.h.75.1 8 85.4 even 4
289.3.e.h.158.1 8 85.54 odd 16
289.3.e.j.40.1 8 85.19 even 8
289.3.e.j.224.1 8 85.74 odd 16
289.3.e.n.40.1 8 85.49 even 8
289.3.e.n.224.1 8 85.79 odd 16
425.3.t.b.199.1 8 85.63 even 16
425.3.t.b.299.1 8 5.2 odd 4
425.3.t.d.199.1 8 85.12 even 16
425.3.t.d.299.1 8 5.3 odd 4
425.3.u.a.301.1 8 17.12 odd 16 inner
425.3.u.a.401.1 8 1.1 even 1 trivial