Properties

Label 153.3.p.a.10.1
Level $153$
Weight $3$
Character 153.10
Analytic conductor $4.169$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(10,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.10"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.p (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,24,0,-16,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 10.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 153.10
Dual form 153.3.p.a.46.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.324423 + 0.783227i) q^{2} +(2.32023 + 2.32023i) q^{4} +(6.70292 - 1.33329i) q^{5} +(0.886687 + 0.176373i) q^{7} +(-5.70292 + 2.36223i) q^{8} +(-1.13031 + 5.68246i) q^{10} +(-3.73690 - 5.59267i) q^{11} +(10.5602 - 10.5602i) q^{13} +(-0.425802 + 0.637258i) q^{14} +7.89218i q^{16} +(14.7921 + 8.37823i) q^{17} +(-12.9821 + 31.3415i) q^{19} +(18.6459 + 12.4588i) q^{20} +(5.59267 - 1.11245i) q^{22} +(-15.4758 + 10.3406i) q^{23} +(20.0544 - 8.30682i) q^{25} +(4.84504 + 11.6970i) q^{26} +(1.64809 + 2.46655i) q^{28} +(-4.13027 - 20.7643i) q^{29} +(21.1305 - 31.6240i) q^{31} +(-28.9930 - 12.0093i) q^{32} +(-11.3609 + 8.86746i) q^{34} +6.17855 q^{35} +(-33.3284 - 22.2693i) q^{37} +(-20.3359 - 20.3359i) q^{38} +(-35.0766 + 23.4375i) q^{40} +(3.70199 + 0.736372i) q^{41} +(-5.21542 - 12.5911i) q^{43} +(4.30581 - 21.6468i) q^{44} +(-3.07832 - 15.4758i) q^{46} +(9.20504 - 9.20504i) q^{47} +(-44.5150 - 18.4387i) q^{49} +18.4021i q^{50} +49.0040 q^{52} +(-0.763466 + 1.84317i) q^{53} +(-32.5048 - 32.5048i) q^{55} +(-5.47334 + 1.08871i) q^{56} +(17.6031 + 3.50147i) q^{58} +(-31.7838 + 13.1653i) q^{59} +(6.92641 - 34.8214i) q^{61} +(17.9136 + 26.8096i) q^{62} +(-3.51042 + 3.51042i) q^{64} +(56.7040 - 84.8636i) q^{65} +31.9912i q^{67} +(14.8816 + 53.7605i) q^{68} +(-2.00446 + 4.83921i) q^{70} +(-86.1606 - 57.5707i) q^{71} +(61.7546 - 12.2837i) q^{73} +(28.2544 - 18.8790i) q^{74} +(-102.841 + 42.5982i) q^{76} +(-2.32707 - 5.61804i) q^{77} +(-36.2984 - 54.3244i) q^{79} +(10.5226 + 52.9006i) q^{80} +(-1.77776 + 2.66060i) q^{82} +(39.7149 + 16.4505i) q^{83} +(110.321 + 36.4364i) q^{85} +11.5537 q^{86} +(34.5224 + 23.0671i) q^{88} +(-49.5695 - 49.5695i) q^{89} +(11.2261 - 7.50103i) q^{91} +(-59.9000 - 11.9148i) q^{92} +(4.22331 + 10.1960i) q^{94} +(-45.2304 + 227.389i) q^{95} +(24.9233 + 125.298i) q^{97} +(28.8834 - 28.8834i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 24 q^{5} - 16 q^{7} - 16 q^{8} - 40 q^{11} - 16 q^{14} + 16 q^{17} - 32 q^{19} + 40 q^{20} + 8 q^{23} + 16 q^{25} + 80 q^{28} - 24 q^{29} + 32 q^{31} + 24 q^{32} + 64 q^{34} - 80 q^{35}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.324423 + 0.783227i −0.162212 + 0.391614i −0.983997 0.178183i \(-0.942978\pi\)
0.821786 + 0.569797i \(0.192978\pi\)
\(3\) 0 0
\(4\) 2.32023 + 2.32023i 0.580058 + 0.580058i
\(5\) 6.70292 1.33329i 1.34058 0.266659i 0.527871 0.849324i \(-0.322990\pi\)
0.812712 + 0.582666i \(0.197990\pi\)
\(6\) 0 0
\(7\) 0.886687 + 0.176373i 0.126670 + 0.0251962i 0.258018 0.966140i \(-0.416931\pi\)
−0.131348 + 0.991336i \(0.541931\pi\)
\(8\) −5.70292 + 2.36223i −0.712865 + 0.295278i
\(9\) 0 0
\(10\) −1.13031 + 5.68246i −0.113031 + 0.568246i
\(11\) −3.73690 5.59267i −0.339718 0.508424i 0.621796 0.783179i \(-0.286403\pi\)
−0.961514 + 0.274755i \(0.911403\pi\)
\(12\) 0 0
\(13\) 10.5602 10.5602i 0.812320 0.812320i −0.172662 0.984981i \(-0.555237\pi\)
0.984981 + 0.172662i \(0.0552367\pi\)
\(14\) −0.425802 + 0.637258i −0.0304144 + 0.0455184i
\(15\) 0 0
\(16\) 7.89218i 0.493261i
\(17\) 14.7921 + 8.37823i 0.870122 + 0.492837i
\(18\) 0 0
\(19\) −12.9821 + 31.3415i −0.683268 + 1.64955i 0.0746542 + 0.997209i \(0.476215\pi\)
−0.757922 + 0.652345i \(0.773785\pi\)
\(20\) 18.6459 + 12.4588i 0.932294 + 0.622939i
\(21\) 0 0
\(22\) 5.59267 1.11245i 0.254212 0.0505659i
\(23\) −15.4758 + 10.3406i −0.672860 + 0.449590i −0.844490 0.535571i \(-0.820096\pi\)
0.171631 + 0.985161i \(0.445096\pi\)
\(24\) 0 0
\(25\) 20.0544 8.30682i 0.802177 0.332273i
\(26\) 4.84504 + 11.6970i 0.186348 + 0.449883i
\(27\) 0 0
\(28\) 1.64809 + 2.46655i 0.0588605 + 0.0880910i
\(29\) −4.13027 20.7643i −0.142423 0.716009i −0.984323 0.176376i \(-0.943563\pi\)
0.841900 0.539634i \(-0.181437\pi\)
\(30\) 0 0
\(31\) 21.1305 31.6240i 0.681629 1.02013i −0.315825 0.948818i \(-0.602281\pi\)
0.997454 0.0713127i \(-0.0227188\pi\)
\(32\) −28.9930 12.0093i −0.906032 0.375291i
\(33\) 0 0
\(34\) −11.3609 + 8.86746i −0.334146 + 0.260808i
\(35\) 6.17855 0.176530
\(36\) 0 0
\(37\) −33.3284 22.2693i −0.900767 0.601873i 0.0166233 0.999862i \(-0.494708\pi\)
−0.917390 + 0.397988i \(0.869708\pi\)
\(38\) −20.3359 20.3359i −0.535154 0.535154i
\(39\) 0 0
\(40\) −35.0766 + 23.4375i −0.876916 + 0.585936i
\(41\) 3.70199 + 0.736372i 0.0902925 + 0.0179603i 0.240030 0.970766i \(-0.422843\pi\)
−0.149737 + 0.988726i \(0.547843\pi\)
\(42\) 0 0
\(43\) −5.21542 12.5911i −0.121289 0.292817i 0.851561 0.524256i \(-0.175657\pi\)
−0.972849 + 0.231439i \(0.925657\pi\)
\(44\) 4.30581 21.6468i 0.0978593 0.491972i
\(45\) 0 0
\(46\) −3.07832 15.4758i −0.0669201 0.336430i
\(47\) 9.20504 9.20504i 0.195852 0.195852i −0.602367 0.798219i \(-0.705776\pi\)
0.798219 + 0.602367i \(0.205776\pi\)
\(48\) 0 0
\(49\) −44.5150 18.4387i −0.908469 0.376300i
\(50\) 18.4021i 0.368042i
\(51\) 0 0
\(52\) 49.0040 0.942385
\(53\) −0.763466 + 1.84317i −0.0144050 + 0.0347768i −0.930918 0.365227i \(-0.880991\pi\)
0.916513 + 0.400004i \(0.130991\pi\)
\(54\) 0 0
\(55\) −32.5048 32.5048i −0.590996 0.590996i
\(56\) −5.47334 + 1.08871i −0.0977381 + 0.0194413i
\(57\) 0 0
\(58\) 17.6031 + 3.50147i 0.303502 + 0.0603703i
\(59\) −31.7838 + 13.1653i −0.538708 + 0.223140i −0.635412 0.772173i \(-0.719170\pi\)
0.0967043 + 0.995313i \(0.469170\pi\)
\(60\) 0 0
\(61\) 6.92641 34.8214i 0.113548 0.570843i −0.881562 0.472068i \(-0.843508\pi\)
0.995110 0.0987749i \(-0.0314924\pi\)
\(62\) 17.9136 + 26.8096i 0.288929 + 0.432412i
\(63\) 0 0
\(64\) −3.51042 + 3.51042i −0.0548503 + 0.0548503i
\(65\) 56.7040 84.8636i 0.872370 1.30559i
\(66\) 0 0
\(67\) 31.9912i 0.477480i 0.971084 + 0.238740i \(0.0767344\pi\)
−0.971084 + 0.238740i \(0.923266\pi\)
\(68\) 14.8816 + 53.7605i 0.218847 + 0.790595i
\(69\) 0 0
\(70\) −2.00446 + 4.83921i −0.0286352 + 0.0691315i
\(71\) −86.1606 57.5707i −1.21353 0.810854i −0.226913 0.973915i \(-0.572863\pi\)
−0.986616 + 0.163061i \(0.947863\pi\)
\(72\) 0 0
\(73\) 61.7546 12.2837i 0.845953 0.168270i 0.246961 0.969025i \(-0.420568\pi\)
0.598992 + 0.800755i \(0.295568\pi\)
\(74\) 28.2544 18.8790i 0.381817 0.255122i
\(75\) 0 0
\(76\) −102.841 + 42.5982i −1.35317 + 0.560502i
\(77\) −2.32707 5.61804i −0.0302216 0.0729615i
\(78\) 0 0
\(79\) −36.2984 54.3244i −0.459474 0.687651i 0.527314 0.849671i \(-0.323199\pi\)
−0.986788 + 0.162020i \(0.948199\pi\)
\(80\) 10.5226 + 52.9006i 0.131532 + 0.661258i
\(81\) 0 0
\(82\) −1.77776 + 2.66060i −0.0216800 + 0.0324464i
\(83\) 39.7149 + 16.4505i 0.478493 + 0.198198i 0.608876 0.793265i \(-0.291621\pi\)
−0.130383 + 0.991464i \(0.541621\pi\)
\(84\) 0 0
\(85\) 110.321 + 36.4364i 1.29789 + 0.428664i
\(86\) 11.5537 0.134346
\(87\) 0 0
\(88\) 34.5224 + 23.0671i 0.392300 + 0.262126i
\(89\) −49.5695 49.5695i −0.556961 0.556961i 0.371480 0.928441i \(-0.378850\pi\)
−0.928441 + 0.371480i \(0.878850\pi\)
\(90\) 0 0
\(91\) 11.2261 7.50103i 0.123364 0.0824289i
\(92\) −59.9000 11.9148i −0.651086 0.129509i
\(93\) 0 0
\(94\) 4.22331 + 10.1960i 0.0449288 + 0.108468i
\(95\) −45.2304 + 227.389i −0.476110 + 2.39356i
\(96\) 0 0
\(97\) 24.9233 + 125.298i 0.256941 + 1.29173i 0.866574 + 0.499048i \(0.166317\pi\)
−0.609633 + 0.792684i \(0.708683\pi\)
\(98\) 28.8834 28.8834i 0.294729 0.294729i
\(99\) 0 0
\(100\) 65.8047 + 27.2572i 0.658047 + 0.272572i
\(101\) 37.1128i 0.367453i −0.982977 0.183727i \(-0.941184\pi\)
0.982977 0.183727i \(-0.0588162\pi\)
\(102\) 0 0
\(103\) −54.9138 −0.533144 −0.266572 0.963815i \(-0.585891\pi\)
−0.266572 + 0.963815i \(0.585891\pi\)
\(104\) −35.2782 + 85.1691i −0.339214 + 0.818934i
\(105\) 0 0
\(106\) −1.19594 1.19594i −0.0112824 0.0112824i
\(107\) 145.657 28.9729i 1.36128 0.270775i 0.540173 0.841554i \(-0.318359\pi\)
0.821104 + 0.570779i \(0.193359\pi\)
\(108\) 0 0
\(109\) 23.4177 + 4.65808i 0.214842 + 0.0427347i 0.301338 0.953518i \(-0.402567\pi\)
−0.0864958 + 0.996252i \(0.527567\pi\)
\(110\) 36.0040 14.9133i 0.327309 0.135576i
\(111\) 0 0
\(112\) −1.39197 + 6.99789i −0.0124283 + 0.0624812i
\(113\) 26.9507 + 40.3346i 0.238502 + 0.356943i 0.931341 0.364149i \(-0.118640\pi\)
−0.692839 + 0.721093i \(0.743640\pi\)
\(114\) 0 0
\(115\) −89.9458 + 89.9458i −0.782137 + 0.782137i
\(116\) 38.5948 57.7611i 0.332713 0.497941i
\(117\) 0 0
\(118\) 29.1650i 0.247161i
\(119\) 11.6382 + 10.0378i 0.0978004 + 0.0843512i
\(120\) 0 0
\(121\) 28.9912 69.9909i 0.239597 0.578437i
\(122\) 25.0260 + 16.7218i 0.205131 + 0.137064i
\(123\) 0 0
\(124\) 122.403 24.3474i 0.987120 0.196350i
\(125\) −18.7137 + 12.5041i −0.149710 + 0.100033i
\(126\) 0 0
\(127\) 44.5892 18.4694i 0.351096 0.145429i −0.200164 0.979762i \(-0.564147\pi\)
0.551260 + 0.834334i \(0.314147\pi\)
\(128\) −49.6478 119.860i −0.387874 0.936410i
\(129\) 0 0
\(130\) 48.0714 + 71.9439i 0.369780 + 0.553415i
\(131\) −0.637092 3.20288i −0.00486330 0.0244495i 0.978277 0.207300i \(-0.0664676\pi\)
−0.983141 + 0.182850i \(0.941468\pi\)
\(132\) 0 0
\(133\) −17.0389 + 25.5004i −0.128112 + 0.191733i
\(134\) −25.0563 10.3787i −0.186988 0.0774528i
\(135\) 0 0
\(136\) −104.149 12.8381i −0.765803 0.0943981i
\(137\) 89.9517 0.656581 0.328291 0.944577i \(-0.393527\pi\)
0.328291 + 0.944577i \(0.393527\pi\)
\(138\) 0 0
\(139\) 108.219 + 72.3095i 0.778553 + 0.520212i 0.880197 0.474608i \(-0.157410\pi\)
−0.101644 + 0.994821i \(0.532410\pi\)
\(140\) 14.3357 + 14.3357i 0.102398 + 0.102398i
\(141\) 0 0
\(142\) 73.0434 48.8061i 0.514390 0.343705i
\(143\) −98.5217 19.5972i −0.688963 0.137043i
\(144\) 0 0
\(145\) −55.3697 133.674i −0.381860 0.921892i
\(146\) −10.4137 + 52.3530i −0.0713264 + 0.358582i
\(147\) 0 0
\(148\) −25.6596 129.000i −0.173376 0.871619i
\(149\) −149.894 + 149.894i −1.00600 + 1.00600i −0.00602015 + 0.999982i \(0.501916\pi\)
−0.999982 + 0.00602015i \(0.998084\pi\)
\(150\) 0 0
\(151\) −55.2876 22.9009i −0.366143 0.151661i 0.192023 0.981390i \(-0.438495\pi\)
−0.558167 + 0.829729i \(0.688495\pi\)
\(152\) 209.405i 1.37766i
\(153\) 0 0
\(154\) 5.15515 0.0334750
\(155\) 99.4719 240.146i 0.641754 1.54933i
\(156\) 0 0
\(157\) −104.330 104.330i −0.664524 0.664524i 0.291919 0.956443i \(-0.405706\pi\)
−0.956443 + 0.291919i \(0.905706\pi\)
\(158\) 54.3244 10.8058i 0.343826 0.0683912i
\(159\) 0 0
\(160\) −210.350 41.8412i −1.31469 0.261507i
\(161\) −15.5460 + 6.43935i −0.0965588 + 0.0399960i
\(162\) 0 0
\(163\) −63.2704 + 318.082i −0.388162 + 1.95142i −0.0944348 + 0.995531i \(0.530104\pi\)
−0.293727 + 0.955889i \(0.594896\pi\)
\(164\) 6.88093 + 10.2980i 0.0419569 + 0.0627929i
\(165\) 0 0
\(166\) −25.7689 + 25.7689i −0.155234 + 0.155234i
\(167\) −87.6108 + 131.119i −0.524615 + 0.785142i −0.995267 0.0971767i \(-0.969019\pi\)
0.470652 + 0.882319i \(0.344019\pi\)
\(168\) 0 0
\(169\) 54.0337i 0.319726i
\(170\) −64.3286 + 74.5853i −0.378403 + 0.438737i
\(171\) 0 0
\(172\) 17.1134 41.3153i 0.0994963 0.240205i
\(173\) 136.654 + 91.3096i 0.789910 + 0.527801i 0.883846 0.467777i \(-0.154945\pi\)
−0.0939363 + 0.995578i \(0.529945\pi\)
\(174\) 0 0
\(175\) 19.2471 3.82849i 0.109983 0.0218771i
\(176\) 44.1383 29.4923i 0.250786 0.167570i
\(177\) 0 0
\(178\) 54.9057 22.7427i 0.308459 0.127768i
\(179\) 74.2691 + 179.301i 0.414911 + 1.00168i 0.983800 + 0.179269i \(0.0573734\pi\)
−0.568889 + 0.822414i \(0.692627\pi\)
\(180\) 0 0
\(181\) 27.7497 + 41.5304i 0.153313 + 0.229450i 0.900173 0.435532i \(-0.143440\pi\)
−0.746860 + 0.664981i \(0.768440\pi\)
\(182\) 2.23301 + 11.2261i 0.0122693 + 0.0616818i
\(183\) 0 0
\(184\) 63.8303 95.5287i 0.346904 0.519178i
\(185\) −253.089 104.833i −1.36805 0.566664i
\(186\) 0 0
\(187\) −8.41985 114.036i −0.0450259 0.609817i
\(188\) 42.7157 0.227211
\(189\) 0 0
\(190\) −163.423 109.196i −0.860122 0.574715i
\(191\) −210.946 210.946i −1.10443 1.10443i −0.993869 0.110561i \(-0.964735\pi\)
−0.110561 0.993869i \(-0.535265\pi\)
\(192\) 0 0
\(193\) 46.8606 31.3112i 0.242801 0.162234i −0.428216 0.903676i \(-0.640858\pi\)
0.671017 + 0.741442i \(0.265858\pi\)
\(194\) −106.223 21.1290i −0.547539 0.108912i
\(195\) 0 0
\(196\) −60.5030 146.067i −0.308689 0.745241i
\(197\) −0.730502 + 3.67248i −0.00370813 + 0.0186420i −0.982595 0.185760i \(-0.940525\pi\)
0.978887 + 0.204403i \(0.0655251\pi\)
\(198\) 0 0
\(199\) 29.0628 + 146.108i 0.146044 + 0.734213i 0.982512 + 0.186198i \(0.0596165\pi\)
−0.836468 + 0.548016i \(0.815383\pi\)
\(200\) −94.7461 + 94.7461i −0.473731 + 0.473731i
\(201\) 0 0
\(202\) 29.0678 + 12.0403i 0.143900 + 0.0596052i
\(203\) 19.1399i 0.0942851i
\(204\) 0 0
\(205\) 25.7959 0.125834
\(206\) 17.8153 43.0100i 0.0864821 0.208786i
\(207\) 0 0
\(208\) 83.3426 + 83.3426i 0.400686 + 0.400686i
\(209\) 223.796 44.5157i 1.07079 0.212994i
\(210\) 0 0
\(211\) −291.187 57.9207i −1.38003 0.274506i −0.551374 0.834258i \(-0.685896\pi\)
−0.828660 + 0.559752i \(0.810896\pi\)
\(212\) −6.04800 + 2.50517i −0.0285283 + 0.0118168i
\(213\) 0 0
\(214\) −24.5620 + 123.482i −0.114776 + 0.577017i
\(215\) −51.7462 77.4436i −0.240680 0.360203i
\(216\) 0 0
\(217\) 24.3138 24.3138i 0.112045 0.112045i
\(218\) −11.2456 + 16.8302i −0.0515853 + 0.0772029i
\(219\) 0 0
\(220\) 150.837i 0.685625i
\(221\) 244.682 67.7311i 1.10716 0.306476i
\(222\) 0 0
\(223\) −34.4629 + 83.2008i −0.154542 + 0.373098i −0.982121 0.188252i \(-0.939718\pi\)
0.827579 + 0.561350i \(0.189718\pi\)
\(224\) −23.5896 15.7621i −0.105311 0.0703665i
\(225\) 0 0
\(226\) −40.3346 + 8.02305i −0.178472 + 0.0355002i
\(227\) 124.031 82.8747i 0.546391 0.365087i −0.251529 0.967850i \(-0.580934\pi\)
0.797920 + 0.602763i \(0.205934\pi\)
\(228\) 0 0
\(229\) 126.494 52.3955i 0.552375 0.228801i −0.0889961 0.996032i \(-0.528366\pi\)
0.641371 + 0.767231i \(0.278366\pi\)
\(230\) −41.2675 99.6285i −0.179424 0.433167i
\(231\) 0 0
\(232\) 72.6045 + 108.660i 0.312950 + 0.468363i
\(233\) 69.6099 + 349.953i 0.298755 + 1.50194i 0.780235 + 0.625486i \(0.215099\pi\)
−0.481480 + 0.876457i \(0.659901\pi\)
\(234\) 0 0
\(235\) 49.4276 73.9736i 0.210330 0.314781i
\(236\) −104.292 43.1993i −0.441916 0.183048i
\(237\) 0 0
\(238\) −11.6376 + 5.85890i −0.0488974 + 0.0246172i
\(239\) 398.078 1.66560 0.832800 0.553574i \(-0.186736\pi\)
0.832800 + 0.553574i \(0.186736\pi\)
\(240\) 0 0
\(241\) −65.9725 44.0814i −0.273745 0.182910i 0.411119 0.911582i \(-0.365138\pi\)
−0.684863 + 0.728671i \(0.740138\pi\)
\(242\) 45.4134 + 45.4134i 0.187659 + 0.187659i
\(243\) 0 0
\(244\) 96.8647 64.7229i 0.396987 0.265258i
\(245\) −322.964 64.2416i −1.31822 0.262211i
\(246\) 0 0
\(247\) 193.879 + 468.064i 0.784934 + 1.89500i
\(248\) −45.8024 + 230.264i −0.184687 + 0.928485i
\(249\) 0 0
\(250\) −3.72239 18.7137i −0.0148896 0.0748549i
\(251\) −320.583 + 320.583i −1.27722 + 1.27722i −0.335010 + 0.942215i \(0.608740\pi\)
−0.942215 + 0.335010i \(0.891260\pi\)
\(252\) 0 0
\(253\) 115.663 + 47.9091i 0.457166 + 0.189364i
\(254\) 40.9154i 0.161084i
\(255\) 0 0
\(256\) 90.1270 0.352058
\(257\) −37.6834 + 90.9757i −0.146628 + 0.353991i −0.980081 0.198600i \(-0.936361\pi\)
0.833453 + 0.552591i \(0.186361\pi\)
\(258\) 0 0
\(259\) −25.6241 25.6241i −0.0989349 0.0989349i
\(260\) 328.470 65.3367i 1.26335 0.251295i
\(261\) 0 0
\(262\) 2.71527 + 0.540101i 0.0103636 + 0.00206145i
\(263\) 83.1206 34.4297i 0.316048 0.130911i −0.219020 0.975720i \(-0.570286\pi\)
0.535068 + 0.844809i \(0.320286\pi\)
\(264\) 0 0
\(265\) −2.65996 + 13.3725i −0.0100376 + 0.0504624i
\(266\) −14.4448 21.6182i −0.0543039 0.0812716i
\(267\) 0 0
\(268\) −74.2269 + 74.2269i −0.276966 + 0.276966i
\(269\) 262.976 393.571i 0.977605 1.46309i 0.0936016 0.995610i \(-0.470162\pi\)
0.884004 0.467480i \(-0.154838\pi\)
\(270\) 0 0
\(271\) 61.4406i 0.226718i 0.993554 + 0.113359i \(0.0361611\pi\)
−0.993554 + 0.113359i \(0.963839\pi\)
\(272\) −66.1225 + 116.742i −0.243097 + 0.429197i
\(273\) 0 0
\(274\) −29.1824 + 70.4526i −0.106505 + 0.257126i
\(275\) −121.399 81.1160i −0.441450 0.294967i
\(276\) 0 0
\(277\) 146.302 29.1012i 0.528165 0.105058i 0.0761970 0.997093i \(-0.475722\pi\)
0.451968 + 0.892034i \(0.350722\pi\)
\(278\) −91.7435 + 61.3011i −0.330013 + 0.220507i
\(279\) 0 0
\(280\) −35.2357 + 14.5951i −0.125842 + 0.0521254i
\(281\) 12.9932 + 31.3685i 0.0462393 + 0.111632i 0.945312 0.326169i \(-0.105758\pi\)
−0.899072 + 0.437800i \(0.855758\pi\)
\(282\) 0 0
\(283\) −105.039 157.202i −0.371162 0.555484i 0.598129 0.801400i \(-0.295911\pi\)
−0.969291 + 0.245916i \(0.920911\pi\)
\(284\) −66.3353 333.490i −0.233575 1.17426i
\(285\) 0 0
\(286\) 47.3118 70.8071i 0.165426 0.247577i
\(287\) 3.15263 + 1.30586i 0.0109848 + 0.00455005i
\(288\) 0 0
\(289\) 148.611 + 247.863i 0.514223 + 0.857656i
\(290\) 122.661 0.422968
\(291\) 0 0
\(292\) 171.786 + 114.784i 0.588309 + 0.393095i
\(293\) −125.147 125.147i −0.427121 0.427121i 0.460525 0.887647i \(-0.347661\pi\)
−0.887647 + 0.460525i \(0.847661\pi\)
\(294\) 0 0
\(295\) −195.491 + 130.623i −0.662681 + 0.442789i
\(296\) 242.674 + 48.2709i 0.819845 + 0.163077i
\(297\) 0 0
\(298\) −68.7721 166.031i −0.230779 0.557149i
\(299\) −54.2284 + 272.625i −0.181366 + 0.911788i
\(300\) 0 0
\(301\) −2.40371 12.0843i −0.00798574 0.0401470i
\(302\) 35.8732 35.8732i 0.118785 0.118785i
\(303\) 0 0
\(304\) −247.353 102.457i −0.813661 0.337029i
\(305\) 242.640i 0.795541i
\(306\) 0 0
\(307\) 368.138 1.19914 0.599572 0.800320i \(-0.295337\pi\)
0.599572 + 0.800320i \(0.295337\pi\)
\(308\) 7.63581 18.4345i 0.0247916 0.0598522i
\(309\) 0 0
\(310\) 155.818 + 155.818i 0.502639 + 0.502639i
\(311\) −103.068 + 20.5015i −0.331408 + 0.0659211i −0.357990 0.933726i \(-0.616538\pi\)
0.0265819 + 0.999647i \(0.491538\pi\)
\(312\) 0 0
\(313\) 425.555 + 84.6482i 1.35960 + 0.270441i 0.820426 0.571752i \(-0.193736\pi\)
0.539175 + 0.842194i \(0.318736\pi\)
\(314\) 115.562 47.8672i 0.368030 0.152443i
\(315\) 0 0
\(316\) 41.8245 210.266i 0.132356 0.665399i
\(317\) 291.124 + 435.698i 0.918372 + 1.37444i 0.927235 + 0.374480i \(0.122179\pi\)
−0.00886288 + 0.999961i \(0.502821\pi\)
\(318\) 0 0
\(319\) −100.693 + 100.693i −0.315653 + 0.315653i
\(320\) −18.8496 + 28.2104i −0.0589050 + 0.0881576i
\(321\) 0 0
\(322\) 14.2651i 0.0443016i
\(323\) −454.619 + 354.839i −1.40749 + 1.09857i
\(324\) 0 0
\(325\) 124.057 299.499i 0.381713 0.921536i
\(326\) −228.604 152.748i −0.701238 0.468553i
\(327\) 0 0
\(328\) −22.8516 + 4.54547i −0.0696696 + 0.0138581i
\(329\) 9.78551 6.53847i 0.0297432 0.0198738i
\(330\) 0 0
\(331\) −325.078 + 134.652i −0.982109 + 0.406803i −0.815206 0.579171i \(-0.803377\pi\)
−0.166903 + 0.985973i \(0.553377\pi\)
\(332\) 53.9790 + 130.317i 0.162587 + 0.392520i
\(333\) 0 0
\(334\) −74.2728 111.157i −0.222374 0.332806i
\(335\) 42.6536 + 214.434i 0.127324 + 0.640102i
\(336\) 0 0
\(337\) −86.3544 + 129.239i −0.256245 + 0.383497i −0.937180 0.348846i \(-0.886573\pi\)
0.680935 + 0.732344i \(0.261573\pi\)
\(338\) 42.3207 + 17.5298i 0.125209 + 0.0518633i
\(339\) 0 0
\(340\) 171.429 + 340.510i 0.504202 + 1.00150i
\(341\) −255.825 −0.750221
\(342\) 0 0
\(343\) −73.0519 48.8117i −0.212979 0.142308i
\(344\) 59.4862 + 59.4862i 0.172925 + 0.172925i
\(345\) 0 0
\(346\) −115.850 + 77.4085i −0.334827 + 0.223724i
\(347\) 262.388 + 52.1922i 0.756161 + 0.150410i 0.558093 0.829779i \(-0.311533\pi\)
0.198068 + 0.980188i \(0.436533\pi\)
\(348\) 0 0
\(349\) 75.5583 + 182.414i 0.216499 + 0.522676i 0.994396 0.105716i \(-0.0337135\pi\)
−0.777897 + 0.628392i \(0.783713\pi\)
\(350\) −3.24563 + 16.3169i −0.00927324 + 0.0466197i
\(351\) 0 0
\(352\) 41.1800 + 207.026i 0.116989 + 0.588142i
\(353\) 303.609 303.609i 0.860081 0.860081i −0.131266 0.991347i \(-0.541904\pi\)
0.991347 + 0.131266i \(0.0419041\pi\)
\(354\) 0 0
\(355\) −654.286 271.014i −1.84306 0.763420i
\(356\) 230.026i 0.646139i
\(357\) 0 0
\(358\) −164.528 −0.459576
\(359\) −21.7296 + 52.4599i −0.0605281 + 0.146128i −0.951250 0.308421i \(-0.900199\pi\)
0.890722 + 0.454549i \(0.150199\pi\)
\(360\) 0 0
\(361\) −558.492 558.492i −1.54707 1.54707i
\(362\) −41.5304 + 8.26091i −0.114725 + 0.0228202i
\(363\) 0 0
\(364\) 43.4512 + 8.64299i 0.119372 + 0.0237445i
\(365\) 397.558 164.674i 1.08920 0.451161i
\(366\) 0 0
\(367\) 44.3636 223.031i 0.120882 0.607714i −0.872088 0.489348i \(-0.837235\pi\)
0.992970 0.118365i \(-0.0377654\pi\)
\(368\) −81.6097 122.138i −0.221766 0.331896i
\(369\) 0 0
\(370\) 164.216 164.216i 0.443827 0.443827i
\(371\) −1.00204 + 1.49966i −0.00270092 + 0.00404221i
\(372\) 0 0
\(373\) 460.172i 1.23370i −0.787079 0.616852i \(-0.788408\pi\)
0.787079 0.616852i \(-0.211592\pi\)
\(374\) 92.0475 + 30.4012i 0.246116 + 0.0812866i
\(375\) 0 0
\(376\) −30.7512 + 74.2400i −0.0817851 + 0.197447i
\(377\) −262.890 175.658i −0.697322 0.465935i
\(378\) 0 0
\(379\) 60.3712 12.0086i 0.159291 0.0316849i −0.114801 0.993389i \(-0.536623\pi\)
0.274091 + 0.961704i \(0.411623\pi\)
\(380\) −632.540 + 422.649i −1.66458 + 1.11224i
\(381\) 0 0
\(382\) 233.655 96.7829i 0.611661 0.253358i
\(383\) −235.671 568.960i −0.615329 1.48554i −0.857073 0.515196i \(-0.827719\pi\)
0.241744 0.970340i \(-0.422281\pi\)
\(384\) 0 0
\(385\) −23.0886 34.5546i −0.0599704 0.0897521i
\(386\) 9.32115 + 46.8606i 0.0241481 + 0.121400i
\(387\) 0 0
\(388\) −232.893 + 348.548i −0.600239 + 0.898321i
\(389\) −336.723 139.475i −0.865613 0.358549i −0.0947127 0.995505i \(-0.530193\pi\)
−0.770900 + 0.636956i \(0.780193\pi\)
\(390\) 0 0
\(391\) −315.554 + 23.2990i −0.807045 + 0.0595883i
\(392\) 297.422 0.758729
\(393\) 0 0
\(394\) −2.63940 1.76359i −0.00669898 0.00447611i
\(395\) −315.736 315.736i −0.799331 0.799331i
\(396\) 0 0
\(397\) −50.0566 + 33.4467i −0.126087 + 0.0842487i −0.617015 0.786952i \(-0.711658\pi\)
0.490927 + 0.871200i \(0.336658\pi\)
\(398\) −123.865 24.6382i −0.311218 0.0619051i
\(399\) 0 0
\(400\) 65.5589 + 158.273i 0.163897 + 0.395683i
\(401\) −3.79806 + 19.0941i −0.00947147 + 0.0476163i −0.985232 0.171225i \(-0.945228\pi\)
0.975761 + 0.218841i \(0.0702276\pi\)
\(402\) 0 0
\(403\) −110.813 557.096i −0.274971 1.38237i
\(404\) 86.1103 86.1103i 0.213144 0.213144i
\(405\) 0 0
\(406\) 14.9909 + 6.20943i 0.0369233 + 0.0152942i
\(407\) 269.613i 0.662439i
\(408\) 0 0
\(409\) 434.868 1.06325 0.531623 0.846981i \(-0.321582\pi\)
0.531623 + 0.846981i \(0.321582\pi\)
\(410\) −8.36881 + 20.2041i −0.0204117 + 0.0492783i
\(411\) 0 0
\(412\) −127.413 127.413i −0.309254 0.309254i
\(413\) −30.5043 + 6.06768i −0.0738602 + 0.0146917i
\(414\) 0 0
\(415\) 288.139 + 57.3144i 0.694311 + 0.138107i
\(416\) −432.991 + 179.351i −1.04084 + 0.431132i
\(417\) 0 0
\(418\) −37.7386 + 189.725i −0.0902837 + 0.453887i
\(419\) 44.9826 + 67.3212i 0.107357 + 0.160671i 0.881258 0.472635i \(-0.156697\pi\)
−0.773901 + 0.633307i \(0.781697\pi\)
\(420\) 0 0
\(421\) 211.099 211.099i 0.501423 0.501423i −0.410457 0.911880i \(-0.634631\pi\)
0.911880 + 0.410457i \(0.134631\pi\)
\(422\) 139.833 209.275i 0.331358 0.495912i
\(423\) 0 0
\(424\) 12.3149i 0.0290446i
\(425\) 366.243 + 45.1456i 0.861748 + 0.106225i
\(426\) 0 0
\(427\) 12.2831 29.6541i 0.0287661 0.0694475i
\(428\) 405.181 + 270.733i 0.946685 + 0.632555i
\(429\) 0 0
\(430\) 77.4436 15.4045i 0.180101 0.0358244i
\(431\) 499.936 334.047i 1.15994 0.775050i 0.181873 0.983322i \(-0.441784\pi\)
0.978071 + 0.208272i \(0.0667840\pi\)
\(432\) 0 0
\(433\) −405.728 + 168.058i −0.937017 + 0.388125i −0.798336 0.602212i \(-0.794286\pi\)
−0.138681 + 0.990337i \(0.544286\pi\)
\(434\) 11.1553 + 26.9312i 0.0257034 + 0.0620534i
\(435\) 0 0
\(436\) 43.5268 + 65.1425i 0.0998321 + 0.149409i
\(437\) −123.182 619.277i −0.281881 1.41711i
\(438\) 0 0
\(439\) 354.911 531.162i 0.808453 1.20994i −0.166173 0.986097i \(-0.553141\pi\)
0.974626 0.223839i \(-0.0718589\pi\)
\(440\) 262.156 + 108.588i 0.595809 + 0.246792i
\(441\) 0 0
\(442\) −26.3317 + 213.615i −0.0595739 + 0.483292i
\(443\) 79.9030 0.180368 0.0901839 0.995925i \(-0.471255\pi\)
0.0901839 + 0.995925i \(0.471255\pi\)
\(444\) 0 0
\(445\) −398.351 266.170i −0.895170 0.598134i
\(446\) −53.9846 53.9846i −0.121042 0.121042i
\(447\) 0 0
\(448\) −3.73178 + 2.49350i −0.00832987 + 0.00556584i
\(449\) −144.414 28.7257i −0.321634 0.0639770i 0.0316329 0.999500i \(-0.489929\pi\)
−0.353267 + 0.935523i \(0.614929\pi\)
\(450\) 0 0
\(451\) −9.71569 23.4558i −0.0215426 0.0520083i
\(452\) −31.0537 + 156.118i −0.0687029 + 0.345393i
\(453\) 0 0
\(454\) 24.6712 + 124.031i 0.0543420 + 0.273195i
\(455\) 65.2464 65.2464i 0.143399 0.143399i
\(456\) 0 0
\(457\) 595.804 + 246.790i 1.30373 + 0.540022i 0.923048 0.384684i \(-0.125690\pi\)
0.380681 + 0.924706i \(0.375690\pi\)
\(458\) 116.072i 0.253432i
\(459\) 0 0
\(460\) −417.390 −0.907370
\(461\) −98.1211 + 236.885i −0.212844 + 0.513851i −0.993858 0.110663i \(-0.964703\pi\)
0.781014 + 0.624513i \(0.214703\pi\)
\(462\) 0 0
\(463\) 422.873 + 422.873i 0.913332 + 0.913332i 0.996533 0.0832008i \(-0.0265143\pi\)
−0.0832008 + 0.996533i \(0.526514\pi\)
\(464\) 163.875 32.5968i 0.353180 0.0702518i
\(465\) 0 0
\(466\) −296.676 59.0124i −0.636643 0.126636i
\(467\) −469.394 + 194.429i −1.00513 + 0.416337i −0.823674 0.567063i \(-0.808080\pi\)
−0.181452 + 0.983400i \(0.558080\pi\)
\(468\) 0 0
\(469\) −5.64238 + 28.3661i −0.0120307 + 0.0604822i
\(470\) 41.9027 + 62.7118i 0.0891547 + 0.133429i
\(471\) 0 0
\(472\) 150.161 150.161i 0.318137 0.318137i
\(473\) −50.9285 + 76.2199i −0.107671 + 0.161141i
\(474\) 0 0
\(475\) 736.376i 1.55027i
\(476\) 3.71343 + 50.2934i 0.00780131 + 0.105658i
\(477\) 0 0
\(478\) −129.146 + 311.786i −0.270180 + 0.652272i
\(479\) 329.863 + 220.407i 0.688649 + 0.460141i 0.850018 0.526753i \(-0.176591\pi\)
−0.161369 + 0.986894i \(0.551591\pi\)
\(480\) 0 0
\(481\) −587.120 + 116.785i −1.22062 + 0.242797i
\(482\) 55.9288 37.3704i 0.116035 0.0775320i
\(483\) 0 0
\(484\) 229.662 95.1289i 0.474507 0.196547i
\(485\) 334.118 + 806.632i 0.688903 + 1.66316i
\(486\) 0 0
\(487\) 214.400 + 320.872i 0.440246 + 0.658875i 0.983545 0.180665i \(-0.0578249\pi\)
−0.543299 + 0.839539i \(0.682825\pi\)
\(488\) 42.7553 + 214.945i 0.0876133 + 0.440462i
\(489\) 0 0
\(490\) 155.093 232.113i 0.316516 0.473700i
\(491\) −430.764 178.428i −0.877319 0.363398i −0.101863 0.994798i \(-0.532480\pi\)
−0.775457 + 0.631401i \(0.782480\pi\)
\(492\) 0 0
\(493\) 112.873 341.751i 0.228950 0.693207i
\(494\) −429.499 −0.869432
\(495\) 0 0
\(496\) 249.583 + 166.766i 0.503191 + 0.336221i
\(497\) −66.2436 66.2436i −0.133287 0.133287i
\(498\) 0 0
\(499\) 152.031 101.584i 0.304671 0.203574i −0.393831 0.919183i \(-0.628850\pi\)
0.698502 + 0.715608i \(0.253850\pi\)
\(500\) −72.4327 14.4078i −0.144865 0.0288155i
\(501\) 0 0
\(502\) −147.085 355.094i −0.292998 0.707359i
\(503\) 125.290 629.877i 0.249086 1.25224i −0.630383 0.776284i \(-0.717102\pi\)
0.879469 0.475956i \(-0.157898\pi\)
\(504\) 0 0
\(505\) −49.4822 248.764i −0.0979846 0.492602i
\(506\) −75.0475 + 75.0475i −0.148315 + 0.148315i
\(507\) 0 0
\(508\) 146.311 + 60.6039i 0.288013 + 0.119299i
\(509\) 177.040i 0.347819i 0.984762 + 0.173909i \(0.0556400\pi\)
−0.984762 + 0.173909i \(0.944360\pi\)
\(510\) 0 0
\(511\) 56.9235 0.111396
\(512\) 169.352 408.852i 0.330766 0.798539i
\(513\) 0 0
\(514\) −59.0293 59.0293i −0.114843 0.114843i
\(515\) −368.083 + 73.2162i −0.714724 + 0.142167i
\(516\) 0 0
\(517\) −85.8791 17.0824i −0.166110 0.0330414i
\(518\) 28.3826 11.7565i 0.0547927 0.0226959i
\(519\) 0 0
\(520\) −122.911 + 617.918i −0.236368 + 1.18830i
\(521\) 169.681 + 253.946i 0.325684 + 0.487420i 0.957793 0.287459i \(-0.0928106\pi\)
−0.632109 + 0.774879i \(0.717811\pi\)
\(522\) 0 0
\(523\) −291.958 + 291.958i −0.558238 + 0.558238i −0.928806 0.370568i \(-0.879163\pi\)
0.370568 + 0.928806i \(0.379163\pi\)
\(524\) 5.95322 8.90963i 0.0113611 0.0170031i
\(525\) 0 0
\(526\) 76.2721i 0.145004i
\(527\) 577.517 290.749i 1.09586 0.551705i
\(528\) 0 0
\(529\) −69.8676 + 168.675i −0.132075 + 0.318857i
\(530\) −9.61078 6.42172i −0.0181336 0.0121165i
\(531\) 0 0
\(532\) −98.7011 + 19.6329i −0.185528 + 0.0369039i
\(533\) 46.8698 31.3174i 0.0879359 0.0587569i
\(534\) 0 0
\(535\) 937.695 388.406i 1.75270 0.725992i
\(536\) −75.5703 182.443i −0.140989 0.340379i
\(537\) 0 0
\(538\) 222.940 + 333.653i 0.414387 + 0.620174i
\(539\) 63.2265 + 317.861i 0.117303 + 0.589724i
\(540\) 0 0
\(541\) −397.133 + 594.351i −0.734072 + 1.09862i 0.257145 + 0.966373i \(0.417218\pi\)
−0.991217 + 0.132243i \(0.957782\pi\)
\(542\) −48.1220 19.9328i −0.0887859 0.0367763i
\(543\) 0 0
\(544\) −328.250 420.553i −0.603401 0.773075i
\(545\) 163.178 0.299409
\(546\) 0 0
\(547\) 251.742 + 168.209i 0.460223 + 0.307511i 0.763982 0.645238i \(-0.223242\pi\)
−0.303759 + 0.952749i \(0.598242\pi\)
\(548\) 208.709 + 208.709i 0.380855 + 0.380855i
\(549\) 0 0
\(550\) 102.917 68.7668i 0.187121 0.125031i
\(551\) 704.404 + 140.115i 1.27841 + 0.254292i
\(552\) 0 0
\(553\) −22.6040 54.5708i −0.0408752 0.0986815i
\(554\) −24.6708 + 124.029i −0.0445321 + 0.223878i
\(555\) 0 0
\(556\) 83.3180 + 418.868i 0.149853 + 0.753360i
\(557\) −708.431 + 708.431i −1.27187 + 1.27187i −0.326762 + 0.945107i \(0.605958\pi\)
−0.945107 + 0.326762i \(0.894042\pi\)
\(558\) 0 0
\(559\) −188.040 77.8887i −0.336386 0.139336i
\(560\) 48.7622i 0.0870753i
\(561\) 0 0
\(562\) −28.7839 −0.0512170
\(563\) 314.331 758.863i 0.558315 1.34789i −0.352784 0.935705i \(-0.614765\pi\)
0.911099 0.412187i \(-0.135235\pi\)
\(564\) 0 0
\(565\) 234.426 + 234.426i 0.414914 + 0.414914i
\(566\) 157.202 31.2694i 0.277742 0.0552463i
\(567\) 0 0
\(568\) 627.361 + 124.790i 1.10451 + 0.219701i
\(569\) −395.568 + 163.849i −0.695198 + 0.287960i −0.702164 0.712015i \(-0.747783\pi\)
0.00696604 + 0.999976i \(0.497783\pi\)
\(570\) 0 0
\(571\) 78.3724 394.005i 0.137255 0.690026i −0.849472 0.527634i \(-0.823079\pi\)
0.986726 0.162392i \(-0.0519208\pi\)
\(572\) −183.123 274.063i −0.320145 0.479132i
\(573\) 0 0
\(574\) −2.04558 + 2.04558i −0.00356372 + 0.00356372i
\(575\) −224.460 + 335.929i −0.390366 + 0.584224i
\(576\) 0 0
\(577\) 324.254i 0.561965i −0.959713 0.280982i \(-0.909340\pi\)
0.959713 0.280982i \(-0.0906602\pi\)
\(578\) −242.346 + 35.9834i −0.419283 + 0.0622550i
\(579\) 0 0
\(580\) 181.685 438.626i 0.313250 0.756252i
\(581\) 32.3133 + 21.5910i 0.0556167 + 0.0371619i
\(582\) 0 0
\(583\) 13.1612 2.61793i 0.0225750 0.00449045i
\(584\) −323.164 + 215.931i −0.553363 + 0.369745i
\(585\) 0 0
\(586\) 138.619 57.4177i 0.236551 0.0979825i
\(587\) 103.107 + 248.922i 0.175651 + 0.424058i 0.987046 0.160440i \(-0.0512914\pi\)
−0.811395 + 0.584498i \(0.801291\pi\)
\(588\) 0 0
\(589\) 716.828 + 1072.81i 1.21703 + 1.82141i
\(590\) −38.8855 195.491i −0.0659077 0.331340i
\(591\) 0 0
\(592\) 175.753 263.034i 0.296881 0.444313i
\(593\) 662.174 + 274.282i 1.11665 + 0.462532i 0.863223 0.504822i \(-0.168442\pi\)
0.253428 + 0.967354i \(0.418442\pi\)
\(594\) 0 0
\(595\) 91.3935 + 51.7653i 0.153603 + 0.0870005i
\(596\) −695.579 −1.16708
\(597\) 0 0
\(598\) −195.934 130.919i −0.327649 0.218928i
\(599\) 330.421 + 330.421i 0.551622 + 0.551622i 0.926909 0.375287i \(-0.122456\pi\)
−0.375287 + 0.926909i \(0.622456\pi\)
\(600\) 0 0
\(601\) −26.7271 + 17.8585i −0.0444710 + 0.0297146i −0.577607 0.816315i \(-0.696013\pi\)
0.533136 + 0.846030i \(0.321013\pi\)
\(602\) 10.2445 + 2.03776i 0.0170175 + 0.00338499i
\(603\) 0 0
\(604\) −75.1448 181.416i −0.124412 0.300357i
\(605\) 101.007 507.797i 0.166954 0.839334i
\(606\) 0 0
\(607\) −51.7408 260.119i −0.0852402 0.428531i −0.999715 0.0238877i \(-0.992396\pi\)
0.914474 0.404644i \(-0.132604\pi\)
\(608\) 752.780 752.780i 1.23813 1.23813i
\(609\) 0 0
\(610\) 190.042 + 78.7181i 0.311545 + 0.129046i
\(611\) 194.413i 0.318189i
\(612\) 0 0
\(613\) −700.076 −1.14205 −0.571025 0.820933i \(-0.693454\pi\)
−0.571025 + 0.820933i \(0.693454\pi\)
\(614\) −119.432 + 288.335i −0.194515 + 0.469602i
\(615\) 0 0
\(616\) 26.5421 + 26.5421i 0.0430879 + 0.0430879i
\(617\) −703.990 + 140.032i −1.14099 + 0.226957i −0.729185 0.684316i \(-0.760101\pi\)
−0.411803 + 0.911273i \(0.635101\pi\)
\(618\) 0 0
\(619\) −898.874 178.797i −1.45214 0.288848i −0.594913 0.803790i \(-0.702814\pi\)
−0.857225 + 0.514941i \(0.827814\pi\)
\(620\) 787.994 326.398i 1.27096 0.526448i
\(621\) 0 0
\(622\) 17.3803 87.3767i 0.0279426 0.140477i
\(623\) −35.2099 52.6954i −0.0565167 0.0845833i
\(624\) 0 0
\(625\) −492.490 + 492.490i −0.787984 + 0.787984i
\(626\) −204.359 + 305.845i −0.326452 + 0.488570i
\(627\) 0 0
\(628\) 484.141i 0.770926i
\(629\) −306.418 608.642i −0.487152 0.967634i
\(630\) 0 0
\(631\) 313.464 756.768i 0.496773 1.19932i −0.454439 0.890778i \(-0.650160\pi\)
0.951212 0.308538i \(-0.0998397\pi\)
\(632\) 335.333 + 224.063i 0.530591 + 0.354529i
\(633\) 0 0
\(634\) −435.698 + 86.6657i −0.687220 + 0.136697i
\(635\) 274.252 183.250i 0.431893 0.288582i
\(636\) 0 0
\(637\) −664.801 + 275.370i −1.04364 + 0.432291i
\(638\) −46.1985 111.533i −0.0724114 0.174817i
\(639\) 0 0
\(640\) −492.594 737.219i −0.769679 1.15191i
\(641\) −206.112 1036.19i −0.321547 1.61653i −0.716337 0.697754i \(-0.754183\pi\)
0.394790 0.918771i \(-0.370817\pi\)
\(642\) 0 0
\(643\) 198.642 297.289i 0.308931 0.462347i −0.644221 0.764839i \(-0.722818\pi\)
0.953152 + 0.302492i \(0.0978185\pi\)
\(644\) −51.0111 21.1295i −0.0792097 0.0328097i
\(645\) 0 0
\(646\) −130.431 471.188i −0.201905 0.729393i
\(647\) −414.046 −0.639947 −0.319973 0.947427i \(-0.603674\pi\)
−0.319973 + 0.947427i \(0.603674\pi\)
\(648\) 0 0
\(649\) 192.402 + 128.559i 0.296459 + 0.198088i
\(650\) 194.329 + 194.329i 0.298968 + 0.298968i
\(651\) 0 0
\(652\) −884.825 + 591.221i −1.35709 + 0.906781i
\(653\) −714.568 142.136i −1.09428 0.217667i −0.385230 0.922821i \(-0.625878\pi\)
−0.709054 + 0.705154i \(0.750878\pi\)
\(654\) 0 0
\(655\) −8.54075 20.6192i −0.0130393 0.0314797i
\(656\) −5.81158 + 29.2168i −0.00885911 + 0.0445378i
\(657\) 0 0
\(658\) 1.94646 + 9.78551i 0.00295815 + 0.0148716i
\(659\) 310.871 310.871i 0.471731 0.471731i −0.430743 0.902474i \(-0.641749\pi\)
0.902474 + 0.430743i \(0.141749\pi\)
\(660\) 0 0
\(661\) −163.337 67.6563i −0.247105 0.102354i 0.255693 0.966758i \(-0.417696\pi\)
−0.502799 + 0.864404i \(0.667696\pi\)
\(662\) 298.294i 0.450595i
\(663\) 0 0
\(664\) −265.351 −0.399624
\(665\) −80.2104 + 193.645i −0.120617 + 0.291196i
\(666\) 0 0
\(667\) 278.634 + 278.634i 0.417742 + 0.417742i
\(668\) −507.503 + 100.949i −0.759736 + 0.151121i
\(669\) 0 0
\(670\) −181.788 36.1600i −0.271326 0.0539701i
\(671\) −220.628 + 91.3871i −0.328805 + 0.136195i
\(672\) 0 0
\(673\) 121.389 610.263i 0.180370 0.906780i −0.779515 0.626384i \(-0.784534\pi\)
0.959884 0.280396i \(-0.0904658\pi\)
\(674\) −73.2077 109.563i −0.108617 0.162557i
\(675\) 0 0
\(676\) 125.371 125.371i 0.185460 0.185460i
\(677\) 26.5471 39.7306i 0.0392129 0.0586862i −0.811345 0.584567i \(-0.801264\pi\)
0.850558 + 0.525881i \(0.176264\pi\)
\(678\) 0 0
\(679\) 115.496i 0.170097i
\(680\) −715.220 + 52.8084i −1.05179 + 0.0776594i
\(681\) 0 0
\(682\) 82.9957 200.369i 0.121695 0.293797i
\(683\) −618.830 413.489i −0.906048 0.605402i 0.0128416 0.999918i \(-0.495912\pi\)
−0.918889 + 0.394516i \(0.870912\pi\)
\(684\) 0 0
\(685\) 602.938 119.932i 0.880202 0.175083i
\(686\) 61.9304 41.3806i 0.0902776 0.0603216i
\(687\) 0 0
\(688\) 99.3714 41.1610i 0.144435 0.0598270i
\(689\) 11.4018 + 27.5265i 0.0165484 + 0.0399514i
\(690\) 0 0
\(691\) −713.306 1067.54i −1.03228 1.54492i −0.823792 0.566893i \(-0.808145\pi\)
−0.208489 0.978025i \(-0.566855\pi\)
\(692\) 105.211 + 528.930i 0.152038 + 0.764349i
\(693\) 0 0
\(694\) −126.003 + 188.577i −0.181561 + 0.271725i
\(695\) 821.792 + 340.397i 1.18243 + 0.489780i
\(696\) 0 0
\(697\) 48.5906 + 41.9086i 0.0697140 + 0.0601271i
\(698\) −167.384 −0.239806
\(699\) 0 0
\(700\) 53.5407 + 35.7748i 0.0764868 + 0.0511068i
\(701\) 895.228 + 895.228i 1.27707 + 1.27707i 0.942298 + 0.334774i \(0.108660\pi\)
0.334774 + 0.942298i \(0.391340\pi\)
\(702\) 0 0
\(703\) 1130.63 755.461i 1.60829 1.07462i
\(704\) 32.7507 + 6.51451i 0.0465208 + 0.00925357i
\(705\) 0 0
\(706\) 139.297 + 336.292i 0.197304 + 0.476335i
\(707\) 6.54570 32.9074i 0.00925841 0.0465452i
\(708\) 0 0
\(709\) 145.154 + 729.738i 0.204730 + 1.02925i 0.937291 + 0.348547i \(0.113325\pi\)
−0.732561 + 0.680702i \(0.761675\pi\)
\(710\) 424.531 424.531i 0.597931 0.597931i
\(711\) 0 0
\(712\) 399.785 + 165.596i 0.561496 + 0.232579i
\(713\) 707.908i 0.992859i
\(714\) 0 0
\(715\) −686.511 −0.960156
\(716\) −243.699 + 588.342i −0.340362 + 0.821707i
\(717\) 0 0
\(718\) −34.0384 34.0384i −0.0474073 0.0474073i
\(719\) −141.631 + 28.1722i −0.196984 + 0.0391825i −0.292596 0.956236i \(-0.594519\pi\)
0.0956124 + 0.995419i \(0.469519\pi\)
\(720\) 0 0
\(721\) −48.6914 9.68532i −0.0675331 0.0134332i
\(722\) 618.614 256.238i 0.856806 0.354901i
\(723\) 0 0
\(724\) −31.9744 + 160.746i −0.0441635 + 0.222025i
\(725\) −255.315 382.106i −0.352159 0.527043i
\(726\) 0 0
\(727\) 33.3667 33.3667i 0.0458965 0.0458965i −0.683786 0.729683i \(-0.739668\pi\)
0.729683 + 0.683786i \(0.239668\pi\)
\(728\) −46.3023 + 69.2963i −0.0636020 + 0.0951872i
\(729\) 0 0
\(730\) 364.802i 0.499729i
\(731\) 28.3446 229.945i 0.0387750 0.314562i
\(732\) 0 0
\(733\) −250.284 + 604.239i −0.341452 + 0.824337i 0.656118 + 0.754658i \(0.272197\pi\)
−0.997569 + 0.0696787i \(0.977803\pi\)
\(734\) 160.291 + 107.103i 0.218381 + 0.145917i
\(735\) 0 0
\(736\) 572.873 113.951i 0.778360 0.154825i
\(737\) 178.916 119.548i 0.242762 0.162209i
\(738\) 0 0
\(739\) −1135.07 + 470.162i −1.53596 + 0.636214i −0.980709 0.195472i \(-0.937376\pi\)
−0.555247 + 0.831685i \(0.687376\pi\)
\(740\) −343.988 830.462i −0.464849 1.12225i
\(741\) 0 0
\(742\) −0.849490 1.27135i −0.00114486 0.00171341i
\(743\) 219.382 + 1102.91i 0.295266 + 1.48440i 0.788787 + 0.614667i \(0.210710\pi\)
−0.493521 + 0.869734i \(0.664290\pi\)
\(744\) 0 0
\(745\) −804.876 + 1204.58i −1.08037 + 1.61689i
\(746\) 360.419 + 149.290i 0.483135 + 0.200121i
\(747\) 0 0
\(748\) 245.053 284.125i 0.327612 0.379847i
\(749\) 134.262 0.179255
\(750\) 0 0
\(751\) 1063.32 + 710.490i 1.41588 + 0.946059i 0.999317 + 0.0369501i \(0.0117643\pi\)
0.416560 + 0.909108i \(0.363236\pi\)
\(752\) 72.6478 + 72.6478i 0.0966061 + 0.0966061i
\(753\) 0 0
\(754\) 222.868 148.915i 0.295580 0.197500i
\(755\) −401.122 79.7881i −0.531287 0.105680i
\(756\) 0 0
\(757\) −75.7752 182.937i −0.100099 0.241661i 0.865894 0.500227i \(-0.166750\pi\)
−0.965994 + 0.258566i \(0.916750\pi\)
\(758\) −10.1804 + 51.1802i −0.0134306 + 0.0675201i
\(759\) 0 0
\(760\) −279.198 1403.62i −0.367366 1.84687i
\(761\) −380.948 + 380.948i −0.500588 + 0.500588i −0.911621 0.411032i \(-0.865168\pi\)
0.411032 + 0.911621i \(0.365168\pi\)
\(762\) 0 0
\(763\) 19.9427 + 8.26052i 0.0261372 + 0.0108264i
\(764\) 978.888i 1.28127i
\(765\) 0 0
\(766\) 522.082 0.681570
\(767\) −196.614 + 474.669i −0.256342 + 0.618864i
\(768\) 0 0
\(769\) −90.3571 90.3571i −0.117500 0.117500i 0.645912 0.763412i \(-0.276477\pi\)
−0.763412 + 0.645912i \(0.776477\pi\)
\(770\) 34.5546 6.87333i 0.0448761 0.00892640i
\(771\) 0 0
\(772\) 181.377 + 36.0781i 0.234944 + 0.0467333i
\(773\) −134.981 + 55.9110i −0.174620 + 0.0723298i −0.468281 0.883580i \(-0.655126\pi\)
0.293661 + 0.955910i \(0.405126\pi\)
\(774\) 0 0
\(775\) 161.065 809.729i 0.207826 1.04481i
\(776\) −438.118 655.689i −0.564585 0.844961i
\(777\) 0 0
\(778\) 218.482 218.482i 0.280825 0.280825i
\(779\) −71.1386 + 106.466i −0.0913204 + 0.136671i
\(780\) 0 0
\(781\) 697.003i 0.892450i
\(782\) 84.1248 254.710i 0.107576 0.325716i
\(783\) 0 0
\(784\) 145.522 351.320i 0.185614 0.448113i
\(785\) −838.420 560.215i −1.06805 0.713649i
\(786\) 0 0
\(787\) −678.506 + 134.963i −0.862142 + 0.171491i −0.606308 0.795230i \(-0.707350\pi\)
−0.255834 + 0.966721i \(0.582350\pi\)
\(788\) −10.2159 + 6.82608i −0.0129644 + 0.00866254i
\(789\) 0 0
\(790\) 349.725 144.861i 0.442690 0.183368i
\(791\) 16.7829 + 40.5176i 0.0212174 + 0.0512232i
\(792\) 0 0
\(793\) −294.576 440.864i −0.371470 0.555944i
\(794\) −9.95687 50.0566i −0.0125401 0.0630436i
\(795\) 0 0
\(796\) −271.573 + 406.438i −0.341172 + 0.510601i
\(797\) 997.012 + 412.976i 1.25096 + 0.518163i 0.907122 0.420867i \(-0.138274\pi\)
0.343834 + 0.939030i \(0.388274\pi\)
\(798\) 0 0
\(799\) 213.284 59.0397i 0.266938 0.0738919i
\(800\) −681.198 −0.851497
\(801\) 0 0
\(802\) −13.7229 9.16932i −0.0171108 0.0114331i
\(803\) −299.470 299.470i −0.372938 0.372938i
\(804\) 0 0
\(805\) −95.6178 + 63.8898i −0.118780 + 0.0793662i
\(806\) 472.283 + 93.9430i 0.585959 + 0.116555i
\(807\) 0 0
\(808\) 87.6688 + 211.651i 0.108501 + 0.261945i
\(809\) 111.178 558.928i 0.137426 0.690887i −0.849224 0.528033i \(-0.822930\pi\)
0.986650 0.162855i \(-0.0520701\pi\)
\(810\) 0 0
\(811\) 221.750 + 1114.81i 0.273428 + 1.37461i 0.836392 + 0.548132i \(0.184661\pi\)
−0.562964 + 0.826481i \(0.690339\pi\)
\(812\) 44.4090 44.4090i 0.0546909 0.0546909i
\(813\) 0 0
\(814\) −211.168 87.4687i −0.259420 0.107455i
\(815\) 2216.43i 2.71955i
\(816\) 0 0
\(817\) 462.332 0.565890
\(818\) −141.081 + 340.600i −0.172471 + 0.416382i
\(819\) 0 0
\(820\) 59.8526 + 59.8526i 0.0729910 + 0.0729910i
\(821\) 20.5375 4.08517i 0.0250153 0.00497585i −0.182567 0.983193i \(-0.558441\pi\)
0.207582 + 0.978218i \(0.433441\pi\)
\(822\) 0 0
\(823\) 1543.55 + 307.031i 1.87551 + 0.373063i 0.994908 0.100787i \(-0.0321361\pi\)
0.880606 + 0.473850i \(0.157136\pi\)
\(824\) 313.169 129.719i 0.380059 0.157426i
\(825\) 0 0
\(826\) 5.14393 25.8603i 0.00622752 0.0313078i
\(827\) −299.622 448.417i −0.362300 0.542221i 0.604878 0.796318i \(-0.293222\pi\)
−0.967179 + 0.254097i \(0.918222\pi\)
\(828\) 0 0
\(829\) −145.931 + 145.931i −0.176032 + 0.176032i −0.789624 0.613591i \(-0.789724\pi\)
0.613591 + 0.789624i \(0.289724\pi\)
\(830\) −138.369 + 207.084i −0.166710 + 0.249499i
\(831\) 0 0
\(832\) 74.1411i 0.0891119i
\(833\) −503.985 645.703i −0.605024 0.775154i
\(834\) 0 0
\(835\) −412.428 + 995.689i −0.493926 + 1.19244i
\(836\) 622.545 + 415.971i 0.744671 + 0.497573i
\(837\) 0 0
\(838\) −67.3212 + 13.3910i −0.0803355 + 0.0159797i
\(839\) 587.153 392.323i 0.699824 0.467608i −0.154066 0.988061i \(-0.549237\pi\)
0.853890 + 0.520453i \(0.174237\pi\)
\(840\) 0 0
\(841\) 362.887 150.313i 0.431494 0.178731i
\(842\) 96.8532 + 233.824i 0.115028 + 0.277701i
\(843\) 0 0
\(844\) −541.233 810.012i −0.641271 0.959730i
\(845\) −72.0428 362.183i −0.0852577 0.428620i
\(846\) 0 0
\(847\) 38.0506 56.9468i 0.0449240 0.0672335i
\(848\) −14.5466 6.02541i −0.0171540 0.00710544i
\(849\) 0 0
\(850\) −154.177 + 272.205i −0.181385 + 0.320241i
\(851\) 746.060 0.876686
\(852\) 0 0
\(853\) −940.733 628.578i −1.10285 0.736903i −0.135612 0.990762i \(-0.543300\pi\)
−0.967241 + 0.253860i \(0.918300\pi\)
\(854\) 19.2410 + 19.2410i 0.0225304 + 0.0225304i
\(855\) 0 0
\(856\) −762.227 + 509.304i −0.890452 + 0.594981i
\(857\) 1477.19 + 293.831i 1.72368 + 0.342860i 0.954961 0.296732i \(-0.0958967\pi\)
0.768715 + 0.639592i \(0.220897\pi\)
\(858\) 0 0
\(859\) −39.2673 94.7998i −0.0457129 0.110361i 0.899374 0.437181i \(-0.144023\pi\)
−0.945087 + 0.326820i \(0.894023\pi\)
\(860\) 59.6240 299.750i 0.0693303 0.348547i
\(861\) 0 0
\(862\) 99.4434 + 499.936i 0.115364 + 0.579972i
\(863\) 533.064 533.064i 0.617687 0.617687i −0.327250 0.944938i \(-0.606122\pi\)
0.944938 + 0.327250i \(0.106122\pi\)
\(864\) 0 0
\(865\) 1037.73 + 429.840i 1.19968 + 0.496925i
\(866\) 372.300i 0.429907i
\(867\) 0 0
\(868\) 112.827 0.129985
\(869\) −168.175 + 406.010i −0.193527 + 0.467215i
\(870\) 0 0
\(871\) 337.832 + 337.832i 0.387866 + 0.387866i
\(872\) −144.553 + 28.7534i −0.165772 + 0.0329740i
\(873\) 0 0
\(874\) 524.998 + 104.429i 0.600684 + 0.119483i
\(875\) −18.7986 + 7.78664i −0.0214841 + 0.00889902i
\(876\) 0 0
\(877\) 173.231 870.893i 0.197527 0.993036i −0.747055 0.664762i \(-0.768533\pi\)
0.944582 0.328274i \(-0.106467\pi\)
\(878\) 300.879 + 450.297i 0.342687 + 0.512867i
\(879\) 0 0
\(880\) 256.534 256.534i 0.291516 0.291516i
\(881\) −850.061 + 1272.21i −0.964882 + 1.44405i −0.0701022 + 0.997540i \(0.522333\pi\)
−0.894780 + 0.446508i \(0.852667\pi\)
\(882\) 0 0
\(883\) 625.063i 0.707885i 0.935267 + 0.353943i \(0.115159\pi\)
−0.935267 + 0.353943i \(0.884841\pi\)
\(884\) 724.871 + 410.567i 0.819990 + 0.464442i
\(885\) 0 0
\(886\) −25.9224 + 62.5822i −0.0292578 + 0.0706345i
\(887\) 24.3095 + 16.2431i 0.0274064 + 0.0183124i 0.569198 0.822200i \(-0.307254\pi\)
−0.541792 + 0.840513i \(0.682254\pi\)
\(888\) 0 0
\(889\) 42.7942 8.51229i 0.0481374 0.00957513i
\(890\) 337.706 225.648i 0.379444 0.253537i
\(891\) 0 0
\(892\) −273.007 + 113.083i −0.306062 + 0.126775i
\(893\) 168.999 + 408.001i 0.189249 + 0.456888i
\(894\) 0 0
\(895\) 736.880 + 1102.82i 0.823330 + 1.23220i
\(896\) −22.8819 115.035i −0.0255379 0.128388i
\(897\) 0 0
\(898\) 69.3499 103.789i 0.0772271 0.115578i
\(899\) −743.925 308.144i −0.827503 0.342763i
\(900\) 0 0
\(901\) −26.7357 + 20.8678i −0.0296734 + 0.0231607i
\(902\) 21.5232 0.0238616
\(903\) 0 0
\(904\) −248.977 166.361i −0.275417 0.184028i
\(905\) 241.376 + 241.376i 0.266714 + 0.266714i
\(906\) 0 0
\(907\) 848.139 566.708i 0.935104 0.624816i 0.00813978 0.999967i \(-0.497409\pi\)
0.926964 + 0.375151i \(0.122409\pi\)
\(908\) 480.069 + 95.4916i 0.528710 + 0.105167i
\(909\) 0 0
\(910\) 29.9353 + 72.2702i 0.0328959 + 0.0794178i
\(911\) 281.322 1414.30i 0.308805 1.55247i −0.445097 0.895483i \(-0.646831\pi\)
0.753902 0.656987i \(-0.228169\pi\)
\(912\) 0 0
\(913\) −56.4088 283.586i −0.0617840 0.310609i
\(914\) −386.586 + 386.586i −0.422960 + 0.422960i
\(915\) 0 0
\(916\) 415.065 + 171.926i 0.453128 + 0.187692i
\(917\) 2.95232i 0.00321954i
\(918\) 0 0
\(919\) 811.637 0.883175 0.441587 0.897218i \(-0.354416\pi\)
0.441587 + 0.897218i \(0.354416\pi\)
\(920\) 300.481 725.426i 0.326610 0.788506i
\(921\) 0 0
\(922\) −153.702 153.702i −0.166705 0.166705i
\(923\) −1517.82 + 301.914i −1.64445 + 0.327101i
\(924\) 0 0
\(925\) −853.369 169.746i −0.922561 0.183509i
\(926\) −468.395 + 194.016i −0.505826 + 0.209520i
\(927\) 0 0
\(928\) −129.615 + 651.621i −0.139672 + 0.702178i
\(929\) 32.1049 + 48.0484i 0.0345586 + 0.0517206i 0.848347 0.529441i \(-0.177598\pi\)
−0.813788 + 0.581162i \(0.802598\pi\)
\(930\) 0 0
\(931\) 1155.80 1155.80i 1.24146 1.24146i
\(932\) −650.461 + 973.483i −0.697919 + 1.04451i
\(933\) 0 0
\(934\) 430.720i 0.461156i
\(935\) −208.481 753.146i −0.222974 0.805504i
\(936\) 0 0
\(937\) −571.943 + 1380.79i −0.610398 + 1.47363i 0.252167 + 0.967684i \(0.418857\pi\)
−0.862565 + 0.505946i \(0.831143\pi\)
\(938\) −20.3866 13.6219i −0.0217341 0.0145223i
\(939\) 0 0
\(940\) 286.320 56.9525i 0.304595 0.0605878i
\(941\) −834.402 + 557.530i −0.886719 + 0.592487i −0.913357 0.407159i \(-0.866520\pi\)
0.0266387 + 0.999645i \(0.491520\pi\)
\(942\) 0 0
\(943\) −64.9057 + 26.8848i −0.0688290 + 0.0285099i
\(944\) −103.903 250.843i −0.110066 0.265724i
\(945\) 0 0
\(946\) −43.1751 64.6161i −0.0456396 0.0683045i
\(947\) −271.675 1365.80i −0.286879 1.44224i −0.808215 0.588888i \(-0.799566\pi\)
0.521336 0.853352i \(-0.325434\pi\)
\(948\) 0 0
\(949\) 522.419 781.856i 0.550495 0.823873i
\(950\) −576.750 238.898i −0.607105 0.251471i
\(951\) 0 0
\(952\) −90.0835 29.7525i −0.0946255 0.0312527i
\(953\) 1378.59 1.44658 0.723292 0.690543i \(-0.242628\pi\)
0.723292 + 0.690543i \(0.242628\pi\)
\(954\) 0 0
\(955\) −1695.21 1132.70i −1.77509 1.18607i
\(956\) 923.635 + 923.635i 0.966145 + 0.966145i
\(957\) 0 0
\(958\) −279.644 + 186.852i −0.291904 + 0.195044i
\(959\) 79.7590 + 15.8650i 0.0831689 + 0.0165433i
\(960\) 0 0
\(961\) −185.823 448.616i −0.193364 0.466822i
\(962\) 99.0060 497.737i 0.102917 0.517398i
\(963\) 0 0
\(964\) −50.7924 255.351i −0.0526892 0.264887i
\(965\) 272.356 272.356i 0.282234 0.282234i
\(966\) 0 0
\(967\) −964.483 399.502i −0.997398 0.413136i −0.176555 0.984291i \(-0.556495\pi\)
−0.820842 + 0.571155i \(0.806495\pi\)
\(968\) 467.636i 0.483095i
\(969\) 0 0
\(970\) −740.172 −0.763064
\(971\) 68.3025 164.897i 0.0703424 0.169822i −0.884798 0.465975i \(-0.845704\pi\)
0.955141 + 0.296153i \(0.0957038\pi\)
\(972\) 0 0
\(973\) 83.2028 + 83.2028i 0.0855116 + 0.0855116i
\(974\) −320.872 + 63.8254i −0.329437 + 0.0655292i
\(975\) 0 0
\(976\) 274.817 + 54.6645i 0.281575 + 0.0560087i
\(977\) −1094.70 + 453.439i −1.12047 + 0.464113i −0.864531 0.502580i \(-0.832384\pi\)
−0.255938 + 0.966693i \(0.582384\pi\)
\(978\) 0 0
\(979\) −91.9894 + 462.462i −0.0939626 + 0.472382i
\(980\) −600.297 898.408i −0.612548 0.916743i
\(981\) 0 0
\(982\) 279.500 279.500i 0.284623 0.284623i
\(983\) 876.560 1311.86i 0.891719 1.33455i −0.0502093 0.998739i \(-0.515989\pi\)
0.941929 0.335813i \(-0.109011\pi\)
\(984\) 0 0
\(985\) 25.5903i 0.0259800i
\(986\) 231.050 + 199.277i 0.234331 + 0.202106i
\(987\) 0 0
\(988\) −636.175 + 1535.86i −0.643902 + 1.55452i
\(989\) 210.912 + 140.927i 0.213258 + 0.142494i
\(990\) 0 0
\(991\) −891.097 + 177.250i −0.899190 + 0.178860i −0.622980 0.782238i \(-0.714078\pi\)
−0.276209 + 0.961098i \(0.589078\pi\)
\(992\) −992.420 + 663.114i −1.00042 + 0.668462i
\(993\) 0 0
\(994\) 73.3747 30.3928i 0.0738176 0.0305763i
\(995\) 389.611 + 940.604i 0.391569 + 0.945330i
\(996\) 0 0
\(997\) −965.850 1445.50i −0.968757 1.44985i −0.891598 0.452828i \(-0.850415\pi\)
−0.0771586 0.997019i \(-0.524585\pi\)
\(998\) 30.2408 + 152.031i 0.0303014 + 0.152335i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.p.a.10.1 8
3.2 odd 2 17.3.e.b.10.1 8
12.11 even 2 272.3.bh.b.129.1 8
15.2 even 4 425.3.t.d.299.1 8
15.8 even 4 425.3.t.b.299.1 8
15.14 odd 2 425.3.u.a.401.1 8
17.12 odd 16 inner 153.3.p.a.46.1 8
51.2 odd 8 289.3.e.j.40.1 8
51.5 even 16 289.3.e.g.131.1 8
51.8 odd 8 289.3.e.e.249.1 8
51.11 even 16 289.3.e.n.224.1 8
51.14 even 16 289.3.e.f.158.1 8
51.20 even 16 289.3.e.h.158.1 8
51.23 even 16 289.3.e.j.224.1 8
51.26 odd 8 289.3.e.a.249.1 8
51.29 even 16 17.3.e.b.12.1 yes 8
51.32 odd 8 289.3.e.n.40.1 8
51.38 odd 4 289.3.e.h.75.1 8
51.41 even 16 289.3.e.a.65.1 8
51.44 even 16 289.3.e.e.65.1 8
51.47 odd 4 289.3.e.f.75.1 8
51.50 odd 2 289.3.e.g.214.1 8
204.131 odd 16 272.3.bh.b.97.1 8
255.29 even 16 425.3.u.a.301.1 8
255.182 odd 16 425.3.t.b.199.1 8
255.233 odd 16 425.3.t.d.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.10.1 8 3.2 odd 2
17.3.e.b.12.1 yes 8 51.29 even 16
153.3.p.a.10.1 8 1.1 even 1 trivial
153.3.p.a.46.1 8 17.12 odd 16 inner
272.3.bh.b.97.1 8 204.131 odd 16
272.3.bh.b.129.1 8 12.11 even 2
289.3.e.a.65.1 8 51.41 even 16
289.3.e.a.249.1 8 51.26 odd 8
289.3.e.e.65.1 8 51.44 even 16
289.3.e.e.249.1 8 51.8 odd 8
289.3.e.f.75.1 8 51.47 odd 4
289.3.e.f.158.1 8 51.14 even 16
289.3.e.g.131.1 8 51.5 even 16
289.3.e.g.214.1 8 51.50 odd 2
289.3.e.h.75.1 8 51.38 odd 4
289.3.e.h.158.1 8 51.20 even 16
289.3.e.j.40.1 8 51.2 odd 8
289.3.e.j.224.1 8 51.23 even 16
289.3.e.n.40.1 8 51.32 odd 8
289.3.e.n.224.1 8 51.11 even 16
425.3.t.b.199.1 8 255.182 odd 16
425.3.t.b.299.1 8 15.8 even 4
425.3.t.d.199.1 8 255.233 odd 16
425.3.t.d.299.1 8 15.2 even 4
425.3.u.a.301.1 8 255.29 even 16
425.3.u.a.401.1 8 15.14 odd 2