Properties

Label 289.3.e.n.224.1
Level $289$
Weight $3$
Character 289.224
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,8,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 224.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.224
Dual form 289.3.e.n.40.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.783227 - 0.324423i) q^{2} +(1.59946 + 0.318152i) q^{3} +(-2.32023 + 2.32023i) q^{4} +(-3.79690 - 5.68246i) q^{5} +(1.35595 - 0.269716i) q^{6} +(0.502268 - 0.751697i) q^{7} +(-2.36223 + 5.70292i) q^{8} +(-5.85788 - 2.42641i) q^{9} +(-4.81736 - 3.21885i) q^{10} +(1.31223 + 6.59700i) q^{11} +(-4.44930 + 2.97292i) q^{12} +(-10.5602 - 10.5602i) q^{13} +(0.149522 - 0.751697i) q^{14} +(-4.26509 - 10.2968i) q^{15} -7.89218i q^{16} -5.37523 q^{18} +(-31.3415 + 12.9821i) q^{19} +(21.9943 + 4.37494i) q^{20} +(1.04251 - 1.04251i) q^{21} +(3.16799 + 4.74123i) q^{22} +(-18.2549 + 3.63113i) q^{23} +(-5.59267 + 8.37002i) q^{24} +(-8.30682 + 20.0544i) q^{25} +(-11.6970 - 4.84504i) q^{26} +(-20.8010 - 13.8988i) q^{27} +(0.578734 + 2.90949i) q^{28} +(17.6031 - 11.7620i) q^{29} +(-6.68107 - 6.68107i) q^{30} +(7.42005 - 37.3031i) q^{31} +(-12.0093 - 28.9930i) q^{32} +10.9691i q^{33} -6.17855 q^{35} +(19.2215 - 7.96180i) q^{36} +(39.3135 + 7.81994i) q^{37} +(-20.3359 + 20.3359i) q^{38} +(-13.5308 - 20.2502i) q^{39} +(41.3757 - 8.23014i) q^{40} +(-2.09701 + 3.13840i) q^{41} +(0.478307 - 1.15474i) q^{42} +(-12.5911 - 5.21542i) q^{43} +(-18.3512 - 12.2619i) q^{44} +(8.45377 + 42.5000i) q^{45} +(-13.1197 + 8.76632i) q^{46} +(9.20504 + 9.20504i) q^{47} +(2.51091 - 12.6232i) q^{48} +(18.4387 + 44.5150i) q^{49} +18.4021i q^{50} +49.0040 q^{52} +(1.84317 - 0.763466i) q^{53} +(-20.8010 - 4.13758i) q^{54} +(32.5048 - 32.5048i) q^{55} +(3.10040 + 4.64007i) q^{56} +(-54.2597 + 10.7929i) q^{57} +(9.97136 - 14.9232i) q^{58} +(-13.1653 + 31.7838i) q^{59} +(33.7870 + 13.9951i) q^{60} +(29.5202 + 19.7248i) q^{61} +(-6.29041 - 31.6240i) q^{62} +(-4.76615 + 3.18464i) q^{63} +(3.51042 + 3.51042i) q^{64} +(-19.9118 + 100.103i) q^{65} +(3.55863 + 8.59130i) q^{66} -31.9912i q^{67} -30.3532 q^{69} +(-4.83921 + 2.00446i) q^{70} +(-101.633 - 20.2161i) q^{71} +(27.6752 - 27.6752i) q^{72} +(34.9811 + 52.3530i) q^{73} +(33.3284 - 6.62943i) q^{74} +(-19.6667 + 29.4333i) q^{75} +(42.5982 - 102.841i) q^{76} +(5.61804 + 2.32707i) q^{77} +(-17.1673 - 11.4708i) q^{78} +(-12.7463 - 64.0800i) q^{79} +(-44.8470 + 29.9658i) q^{80} +(11.5024 + 11.5024i) q^{81} +(-0.624266 + 3.13840i) q^{82} +(16.4505 + 39.7149i) q^{83} +4.83773i q^{84} -11.5537 q^{86} +(31.8975 - 13.2124i) q^{87} +(-40.7219 - 8.10009i) q^{88} +(-49.5695 + 49.5695i) q^{89} +(20.4092 + 30.5445i) q^{90} +(-13.2421 + 2.63401i) q^{91} +(33.9306 - 50.7807i) q^{92} +(23.7361 - 57.3040i) q^{93} +(10.1960 + 4.22331i) q^{94} +(192.771 + 128.805i) q^{95} +(-9.98418 - 50.1939i) q^{96} +(106.223 - 70.9756i) q^{97} +(28.8834 + 28.8834i) q^{98} +(8.32019 - 41.8284i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} + 8 q^{4} - 16 q^{5} + 8 q^{7} + 8 q^{8} - 56 q^{9} - 48 q^{10} + 24 q^{11} + 24 q^{12} - 8 q^{14} - 80 q^{15} - 136 q^{18} - 80 q^{19} + 48 q^{20} + 64 q^{21} - 16 q^{22} - 104 q^{23}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.783227 0.324423i 0.391614 0.162212i −0.178183 0.983997i \(-0.557022\pi\)
0.569797 + 0.821786i \(0.307022\pi\)
\(3\) 1.59946 + 0.318152i 0.533152 + 0.106051i 0.454322 0.890838i \(-0.349882\pi\)
0.0788300 + 0.996888i \(0.474882\pi\)
\(4\) −2.32023 + 2.32023i −0.580058 + 0.580058i
\(5\) −3.79690 5.68246i −0.759379 1.13649i −0.986681 0.162667i \(-0.947990\pi\)
0.227302 0.973824i \(-0.427010\pi\)
\(6\) 1.35595 0.269716i 0.225992 0.0449527i
\(7\) 0.502268 0.751697i 0.0717526 0.107385i −0.793858 0.608103i \(-0.791931\pi\)
0.865610 + 0.500718i \(0.166931\pi\)
\(8\) −2.36223 + 5.70292i −0.295278 + 0.712865i
\(9\) −5.85788 2.42641i −0.650875 0.269601i
\(10\) −4.81736 3.21885i −0.481736 0.321885i
\(11\) 1.31223 + 6.59700i 0.119293 + 0.599727i 0.993468 + 0.114115i \(0.0364033\pi\)
−0.874174 + 0.485612i \(0.838597\pi\)
\(12\) −4.44930 + 2.97292i −0.370775 + 0.247744i
\(13\) −10.5602 10.5602i −0.812320 0.812320i 0.172662 0.984981i \(-0.444763\pi\)
−0.984981 + 0.172662i \(0.944763\pi\)
\(14\) 0.149522 0.751697i 0.0106801 0.0536927i
\(15\) −4.26509 10.2968i −0.284339 0.686455i
\(16\) 7.89218i 0.493261i
\(17\) 0 0
\(18\) −5.37523 −0.298624
\(19\) −31.3415 + 12.9821i −1.64955 + 0.683268i −0.997209 0.0746542i \(-0.976215\pi\)
−0.652345 + 0.757922i \(0.726215\pi\)
\(20\) 21.9943 + 4.37494i 1.09972 + 0.218747i
\(21\) 1.04251 1.04251i 0.0496433 0.0496433i
\(22\) 3.16799 + 4.74123i 0.144000 + 0.215511i
\(23\) −18.2549 + 3.63113i −0.793692 + 0.157875i −0.575253 0.817975i \(-0.695096\pi\)
−0.218439 + 0.975851i \(0.570096\pi\)
\(24\) −5.59267 + 8.37002i −0.233028 + 0.348751i
\(25\) −8.30682 + 20.0544i −0.332273 + 0.802177i
\(26\) −11.6970 4.84504i −0.449883 0.186348i
\(27\) −20.8010 13.8988i −0.770409 0.514771i
\(28\) 0.578734 + 2.90949i 0.0206691 + 0.103910i
\(29\) 17.6031 11.7620i 0.607004 0.405587i −0.213734 0.976892i \(-0.568563\pi\)
0.820738 + 0.571305i \(0.193563\pi\)
\(30\) −6.68107 6.68107i −0.222702 0.222702i
\(31\) 7.42005 37.3031i 0.239356 1.20333i −0.654881 0.755732i \(-0.727281\pi\)
0.894237 0.447593i \(-0.147719\pi\)
\(32\) −12.0093 28.9930i −0.375291 0.906032i
\(33\) 10.9691i 0.332397i
\(34\) 0 0
\(35\) −6.17855 −0.176530
\(36\) 19.2215 7.96180i 0.533930 0.221161i
\(37\) 39.3135 + 7.81994i 1.06253 + 0.211350i 0.695255 0.718764i \(-0.255292\pi\)
0.367273 + 0.930113i \(0.380292\pi\)
\(38\) −20.3359 + 20.3359i −0.535154 + 0.535154i
\(39\) −13.5308 20.2502i −0.346943 0.519237i
\(40\) 41.3757 8.23014i 1.03439 0.205753i
\(41\) −2.09701 + 3.13840i −0.0511466 + 0.0765463i −0.856162 0.516708i \(-0.827157\pi\)
0.805015 + 0.593254i \(0.202157\pi\)
\(42\) 0.478307 1.15474i 0.0113883 0.0274937i
\(43\) −12.5911 5.21542i −0.292817 0.121289i 0.231439 0.972849i \(-0.425657\pi\)
−0.524256 + 0.851561i \(0.675657\pi\)
\(44\) −18.3512 12.2619i −0.417074 0.278680i
\(45\) 8.45377 + 42.5000i 0.187862 + 0.944444i
\(46\) −13.1197 + 8.76632i −0.285211 + 0.190572i
\(47\) 9.20504 + 9.20504i 0.195852 + 0.195852i 0.798219 0.602367i \(-0.205776\pi\)
−0.602367 + 0.798219i \(0.705776\pi\)
\(48\) 2.51091 12.6232i 0.0523106 0.262983i
\(49\) 18.4387 + 44.5150i 0.376300 + 0.908469i
\(50\) 18.4021i 0.368042i
\(51\) 0 0
\(52\) 49.0040 0.942385
\(53\) 1.84317 0.763466i 0.0347768 0.0144050i −0.365227 0.930918i \(-0.619009\pi\)
0.400004 + 0.916513i \(0.369009\pi\)
\(54\) −20.8010 4.13758i −0.385204 0.0766219i
\(55\) 32.5048 32.5048i 0.590996 0.590996i
\(56\) 3.10040 + 4.64007i 0.0553642 + 0.0828584i
\(57\) −54.2597 + 10.7929i −0.951924 + 0.189350i
\(58\) 9.97136 14.9232i 0.171920 0.257296i
\(59\) −13.1653 + 31.7838i −0.223140 + 0.538708i −0.995313 0.0967043i \(-0.969170\pi\)
0.772173 + 0.635412i \(0.219170\pi\)
\(60\) 33.7870 + 13.9951i 0.563117 + 0.233251i
\(61\) 29.5202 + 19.7248i 0.483937 + 0.323357i 0.773493 0.633804i \(-0.218508\pi\)
−0.289556 + 0.957161i \(0.593508\pi\)
\(62\) −6.29041 31.6240i −0.101458 0.510065i
\(63\) −4.76615 + 3.18464i −0.0756532 + 0.0505498i
\(64\) 3.51042 + 3.51042i 0.0548503 + 0.0548503i
\(65\) −19.9118 + 100.103i −0.306336 + 1.54005i
\(66\) 3.55863 + 8.59130i 0.0539187 + 0.130171i
\(67\) 31.9912i 0.477480i −0.971084 0.238740i \(-0.923266\pi\)
0.971084 0.238740i \(-0.0767344\pi\)
\(68\) 0 0
\(69\) −30.3532 −0.439901
\(70\) −4.83921 + 2.00446i −0.0691315 + 0.0286352i
\(71\) −101.633 20.2161i −1.43146 0.284734i −0.582342 0.812944i \(-0.697863\pi\)
−0.849114 + 0.528210i \(0.822863\pi\)
\(72\) 27.6752 27.6752i 0.384378 0.384378i
\(73\) 34.9811 + 52.3530i 0.479194 + 0.717164i 0.989771 0.142668i \(-0.0455681\pi\)
−0.510577 + 0.859832i \(0.670568\pi\)
\(74\) 33.3284 6.62943i 0.450384 0.0895869i
\(75\) −19.6667 + 29.4333i −0.262223 + 0.392445i
\(76\) 42.5982 102.841i 0.560502 1.35317i
\(77\) 5.61804 + 2.32707i 0.0729615 + 0.0302216i
\(78\) −17.1673 11.4708i −0.220094 0.147062i
\(79\) −12.7463 64.0800i −0.161346 0.811140i −0.973675 0.227941i \(-0.926801\pi\)
0.812329 0.583199i \(-0.198199\pi\)
\(80\) −44.8470 + 29.9658i −0.560587 + 0.374572i
\(81\) 11.5024 + 11.5024i 0.142005 + 0.142005i
\(82\) −0.624266 + 3.13840i −0.00761300 + 0.0382731i
\(83\) 16.4505 + 39.7149i 0.198198 + 0.478493i 0.991464 0.130383i \(-0.0416207\pi\)
−0.793265 + 0.608876i \(0.791621\pi\)
\(84\) 4.83773i 0.0575920i
\(85\) 0 0
\(86\) −11.5537 −0.134346
\(87\) 31.8975 13.2124i 0.366638 0.151866i
\(88\) −40.7219 8.10009i −0.462749 0.0920465i
\(89\) −49.5695 + 49.5695i −0.556961 + 0.556961i −0.928441 0.371480i \(-0.878850\pi\)
0.371480 + 0.928441i \(0.378850\pi\)
\(90\) 20.4092 + 30.5445i 0.226769 + 0.339384i
\(91\) −13.2421 + 2.63401i −0.145517 + 0.0289452i
\(92\) 33.9306 50.7807i 0.368811 0.551964i
\(93\) 23.7361 57.3040i 0.255227 0.616172i
\(94\) 10.1960 + 4.22331i 0.108468 + 0.0449288i
\(95\) 192.771 + 128.805i 2.02917 + 1.35585i
\(96\) −9.98418 50.1939i −0.104002 0.522853i
\(97\) 106.223 70.9756i 1.09508 0.731707i 0.129437 0.991588i \(-0.458683\pi\)
0.965641 + 0.259880i \(0.0836831\pi\)
\(98\) 28.8834 + 28.8834i 0.294729 + 0.294729i
\(99\) 8.32019 41.8284i 0.0840423 0.422509i
\(100\) −27.2572 65.8047i −0.272572 0.658047i
\(101\) 37.1128i 0.367453i −0.982977 0.183727i \(-0.941184\pi\)
0.982977 0.183727i \(-0.0588162\pi\)
\(102\) 0 0
\(103\) −54.9138 −0.533144 −0.266572 0.963815i \(-0.585891\pi\)
−0.266572 + 0.963815i \(0.585891\pi\)
\(104\) 85.1691 35.2782i 0.818934 0.339214i
\(105\) −9.88232 1.96571i −0.0941173 0.0187211i
\(106\) 1.19594 1.19594i 0.0112824 0.0112824i
\(107\) −82.5078 123.482i −0.771101 1.15403i −0.984210 0.177006i \(-0.943359\pi\)
0.213109 0.977029i \(-0.431641\pi\)
\(108\) 80.5117 16.0148i 0.745479 0.148285i
\(109\) 13.2651 19.8526i 0.121698 0.182134i −0.765618 0.643295i \(-0.777567\pi\)
0.887317 + 0.461161i \(0.152567\pi\)
\(110\) 14.9133 36.0040i 0.135576 0.327309i
\(111\) 60.3923 + 25.0153i 0.544075 + 0.225363i
\(112\) −5.93253 3.96399i −0.0529690 0.0353928i
\(113\) −9.46384 47.5779i −0.0837508 0.421044i −0.999800 0.0199786i \(-0.993640\pi\)
0.916050 0.401065i \(-0.131360\pi\)
\(114\) −38.9962 + 26.0564i −0.342072 + 0.228565i
\(115\) 89.9458 + 89.9458i 0.782137 + 0.782137i
\(116\) −13.5527 + 68.1339i −0.116833 + 0.587361i
\(117\) 36.2368 + 87.4834i 0.309716 + 0.747721i
\(118\) 29.1650i 0.247161i
\(119\) 0 0
\(120\) 68.7971 0.573309
\(121\) 69.9909 28.9912i 0.578437 0.239597i
\(122\) 29.5202 + 5.87193i 0.241969 + 0.0481306i
\(123\) −4.35256 + 4.35256i −0.0353867 + 0.0353867i
\(124\) 69.3356 + 103.768i 0.559158 + 0.836840i
\(125\) −22.0743 + 4.39086i −0.176595 + 0.0351269i
\(126\) −2.69981 + 4.04055i −0.0214270 + 0.0320678i
\(127\) −18.4694 + 44.5892i −0.145429 + 0.351096i −0.979762 0.200164i \(-0.935853\pi\)
0.834334 + 0.551260i \(0.185853\pi\)
\(128\) 119.860 + 49.6478i 0.936410 + 0.387874i
\(129\) −18.4797 12.3477i −0.143253 0.0957187i
\(130\) 16.8804 + 84.8636i 0.129849 + 0.652797i
\(131\) 2.71527 1.81429i 0.0207273 0.0138495i −0.545163 0.838330i \(-0.683532\pi\)
0.565891 + 0.824480i \(0.308532\pi\)
\(132\) −25.4509 25.4509i −0.192810 0.192810i
\(133\) −5.98325 + 30.0798i −0.0449868 + 0.226164i
\(134\) −10.3787 25.0563i −0.0774528 0.186988i
\(135\) 170.973i 1.26647i
\(136\) 0 0
\(137\) −89.9517 −0.656581 −0.328291 0.944577i \(-0.606473\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(138\) −23.7734 + 9.84728i −0.172271 + 0.0713571i
\(139\) −127.653 25.3917i −0.918366 0.182674i −0.286795 0.957992i \(-0.592590\pi\)
−0.631571 + 0.775318i \(0.717590\pi\)
\(140\) 14.3357 14.3357i 0.102398 0.102398i
\(141\) 11.7945 + 17.6517i 0.0836487 + 0.125189i
\(142\) −86.1606 + 17.1384i −0.606765 + 0.120693i
\(143\) 55.8081 83.5227i 0.390266 0.584074i
\(144\) −19.1497 + 46.2314i −0.132984 + 0.321051i
\(145\) −133.674 55.3697i −0.921892 0.381860i
\(146\) 44.3827 + 29.6556i 0.303991 + 0.203120i
\(147\) 15.3294 + 77.0661i 0.104282 + 0.524259i
\(148\) −109.361 + 73.0724i −0.738923 + 0.493732i
\(149\) −149.894 149.894i −1.00600 1.00600i −0.999982 0.00602015i \(-0.998084\pi\)
−0.00602015 0.999982i \(-0.501916\pi\)
\(150\) −5.85466 + 29.4333i −0.0390310 + 0.196222i
\(151\) 22.9009 + 55.2876i 0.151661 + 0.366143i 0.981390 0.192023i \(-0.0615050\pi\)
−0.829729 + 0.558167i \(0.811505\pi\)
\(152\) 209.405i 1.37766i
\(153\) 0 0
\(154\) 5.15515 0.0334750
\(155\) −240.146 + 99.4719i −1.54933 + 0.641754i
\(156\) 78.3798 + 15.5907i 0.502435 + 0.0999405i
\(157\) 104.330 104.330i 0.664524 0.664524i −0.291919 0.956443i \(-0.594294\pi\)
0.956443 + 0.291919i \(0.0942937\pi\)
\(158\) −30.7723 46.0540i −0.194762 0.291481i
\(159\) 3.19097 0.634723i 0.0200690 0.00399197i
\(160\) −119.154 + 178.326i −0.744710 + 1.11454i
\(161\) −6.43935 + 15.5460i −0.0399960 + 0.0965588i
\(162\) 12.7406 + 5.27735i 0.0786460 + 0.0325762i
\(163\) −269.657 180.179i −1.65433 1.10539i −0.883612 0.468220i \(-0.844896\pi\)
−0.770722 0.637171i \(-0.780104\pi\)
\(164\) −2.41626 12.1474i −0.0147333 0.0740693i
\(165\) 62.3315 41.6485i 0.377766 0.252415i
\(166\) 25.7689 + 25.7689i 0.155234 + 0.155234i
\(167\) 30.7648 154.665i 0.184220 0.926138i −0.772474 0.635046i \(-0.780981\pi\)
0.956695 0.291093i \(-0.0940188\pi\)
\(168\) 3.48270 + 8.40798i 0.0207304 + 0.0500475i
\(169\) 54.0337i 0.319726i
\(170\) 0 0
\(171\) 215.095 1.25786
\(172\) 41.3153 17.1134i 0.240205 0.0994963i
\(173\) 161.195 + 32.0637i 0.931763 + 0.185339i 0.637557 0.770403i \(-0.279945\pi\)
0.294205 + 0.955742i \(0.404945\pi\)
\(174\) 20.6966 20.6966i 0.118946 0.118946i
\(175\) 10.9026 + 16.3169i 0.0623006 + 0.0932395i
\(176\) 52.0647 10.3563i 0.295822 0.0588427i
\(177\) −31.1693 + 46.6482i −0.176098 + 0.263549i
\(178\) −22.7427 + 54.9057i −0.127768 + 0.308459i
\(179\) −179.301 74.2691i −1.00168 0.414911i −0.179269 0.983800i \(-0.557373\pi\)
−0.822414 + 0.568889i \(0.807373\pi\)
\(180\) −118.225 78.9951i −0.656803 0.438862i
\(181\) 9.74440 + 48.9884i 0.0538365 + 0.270654i 0.998323 0.0578972i \(-0.0184396\pi\)
−0.944486 + 0.328551i \(0.893440\pi\)
\(182\) −9.51701 + 6.35906i −0.0522913 + 0.0349399i
\(183\) 40.9408 + 40.9408i 0.223720 + 0.223720i
\(184\) 22.4142 112.684i 0.121816 0.612412i
\(185\) −104.833 253.089i −0.566664 1.36805i
\(186\) 52.5826i 0.282702i
\(187\) 0 0
\(188\) −42.7157 −0.227211
\(189\) −20.8954 + 8.65515i −0.110558 + 0.0457944i
\(190\) 192.771 + 38.3445i 1.01458 + 0.201813i
\(191\) −210.946 + 210.946i −1.10443 + 1.10443i −0.110561 + 0.993869i \(0.535265\pi\)
−0.993869 + 0.110561i \(0.964735\pi\)
\(192\) 4.49791 + 6.73160i 0.0234266 + 0.0350604i
\(193\) −55.2758 + 10.9950i −0.286403 + 0.0569692i −0.336201 0.941790i \(-0.609142\pi\)
0.0497980 + 0.998759i \(0.484142\pi\)
\(194\) 60.1702 90.0511i 0.310156 0.464181i
\(195\) −63.6961 + 153.776i −0.326647 + 0.788595i
\(196\) −146.067 60.5030i −0.745241 0.308689i
\(197\) 3.11338 + 2.08029i 0.0158040 + 0.0105599i 0.563447 0.826152i \(-0.309475\pi\)
−0.547643 + 0.836712i \(0.684475\pi\)
\(198\) −7.05352 35.4604i −0.0356238 0.179093i
\(199\) 123.865 82.7638i 0.622436 0.415898i −0.203967 0.978978i \(-0.565383\pi\)
0.826403 + 0.563079i \(0.190383\pi\)
\(200\) −94.7461 94.7461i −0.473731 0.473731i
\(201\) 10.1780 51.1685i 0.0506370 0.254569i
\(202\) −12.0403 29.0678i −0.0596052 0.143900i
\(203\) 19.1399i 0.0942851i
\(204\) 0 0
\(205\) 25.7959 0.125834
\(206\) −43.0100 + 17.8153i −0.208786 + 0.0864821i
\(207\) 115.746 + 23.0232i 0.559158 + 0.111223i
\(208\) −83.3426 + 83.3426i −0.400686 + 0.400686i
\(209\) −126.770 189.725i −0.606555 0.907774i
\(210\) −8.37782 + 1.66645i −0.0398944 + 0.00793549i
\(211\) −164.944 + 246.857i −0.781727 + 1.16994i 0.200029 + 0.979790i \(0.435896\pi\)
−0.981756 + 0.190147i \(0.939104\pi\)
\(212\) −2.50517 + 6.04800i −0.0118168 + 0.0285283i
\(213\) −156.126 64.6696i −0.732987 0.303613i
\(214\) −104.683 69.9468i −0.489172 0.326854i
\(215\) 18.1708 + 91.3509i 0.0845155 + 0.424888i
\(216\) 128.400 85.7944i 0.594446 0.397196i
\(217\) −24.3138 24.3138i −0.112045 0.112045i
\(218\) 3.94893 19.8526i 0.0181144 0.0910670i
\(219\) 39.2946 + 94.8656i 0.179428 + 0.433176i
\(220\) 150.837i 0.685625i
\(221\) 0 0
\(222\) 55.4165 0.249624
\(223\) −83.2008 + 34.4629i −0.373098 + 0.154542i −0.561350 0.827579i \(-0.689718\pi\)
0.188252 + 0.982121i \(0.439718\pi\)
\(224\) −27.8259 5.53491i −0.124223 0.0247094i
\(225\) 97.3206 97.3206i 0.432536 0.432536i
\(226\) −22.8477 34.1940i −0.101096 0.151301i
\(227\) 146.304 29.1017i 0.644512 0.128201i 0.137997 0.990433i \(-0.455934\pi\)
0.506515 + 0.862231i \(0.330934\pi\)
\(228\) 100.853 150.937i 0.442338 0.662005i
\(229\) −52.3955 + 126.494i −0.228801 + 0.552375i −0.996032 0.0889961i \(-0.971634\pi\)
0.767231 + 0.641371i \(0.221634\pi\)
\(230\) 99.6285 + 41.2675i 0.433167 + 0.179424i
\(231\) 8.24544 + 5.50943i 0.0356946 + 0.0238503i
\(232\) 25.4953 + 128.174i 0.109894 + 0.552472i
\(233\) −296.676 + 198.232i −1.27329 + 0.850782i −0.993995 0.109424i \(-0.965099\pi\)
−0.279291 + 0.960207i \(0.590099\pi\)
\(234\) 56.7633 + 56.7633i 0.242578 + 0.242578i
\(235\) 17.3567 87.2579i 0.0738582 0.371310i
\(236\) −43.1993 104.292i −0.183048 0.441916i
\(237\) 106.548i 0.449572i
\(238\) 0 0
\(239\) −398.078 −1.66560 −0.832800 0.553574i \(-0.813264\pi\)
−0.832800 + 0.553574i \(0.813264\pi\)
\(240\) −81.2644 + 33.6608i −0.338602 + 0.140253i
\(241\) 77.8198 + 15.4793i 0.322904 + 0.0642296i 0.353881 0.935291i \(-0.384862\pi\)
−0.0309769 + 0.999520i \(0.509862\pi\)
\(242\) 45.4134 45.4134i 0.187659 0.187659i
\(243\) 139.827 + 209.266i 0.575421 + 0.861179i
\(244\) −114.260 + 22.7277i −0.468278 + 0.0931462i
\(245\) 182.945 273.796i 0.746713 1.11753i
\(246\) −1.99697 + 4.82112i −0.00811777 + 0.0195980i
\(247\) 468.064 + 193.879i 1.89500 + 0.784934i
\(248\) 195.209 + 130.434i 0.787131 + 0.525944i
\(249\) 13.6764 + 68.7560i 0.0549254 + 0.276129i
\(250\) −15.8647 + 10.6005i −0.0634589 + 0.0424019i
\(251\) −320.583 320.583i −1.27722 1.27722i −0.942215 0.335010i \(-0.891260\pi\)
−0.335010 0.942215i \(-0.608740\pi\)
\(252\) 3.66947 18.4477i 0.0145614 0.0732051i
\(253\) −47.9091 115.663i −0.189364 0.457166i
\(254\) 40.9154i 0.161084i
\(255\) 0 0
\(256\) 90.1270 0.352058
\(257\) 90.9757 37.6834i 0.353991 0.146628i −0.198600 0.980081i \(-0.563639\pi\)
0.552591 + 0.833453i \(0.313639\pi\)
\(258\) −18.4797 3.67583i −0.0716266 0.0142474i
\(259\) 25.6241 25.6241i 0.0989349 0.0989349i
\(260\) −186.063 278.463i −0.715628 1.07101i
\(261\) −131.656 + 26.1881i −0.504430 + 0.100337i
\(262\) 1.53808 2.30190i 0.00587052 0.00878586i
\(263\) 34.4297 83.1206i 0.130911 0.316048i −0.844809 0.535068i \(-0.820286\pi\)
0.975720 + 0.219020i \(0.0702860\pi\)
\(264\) −62.5559 25.9115i −0.236954 0.0981496i
\(265\) −11.3367 7.57494i −0.0427800 0.0285847i
\(266\) 5.07235 + 25.5004i 0.0190690 + 0.0958663i
\(267\) −95.0549 + 63.5136i −0.356011 + 0.237879i
\(268\) 74.2269 + 74.2269i 0.276966 + 0.276966i
\(269\) −92.3448 + 464.249i −0.343289 + 1.72583i 0.294527 + 0.955643i \(0.404838\pi\)
−0.637816 + 0.770189i \(0.720162\pi\)
\(270\) 55.4677 + 133.911i 0.205436 + 0.495967i
\(271\) 61.4406i 0.226718i −0.993554 0.113359i \(-0.963839\pi\)
0.993554 0.113359i \(-0.0361611\pi\)
\(272\) 0 0
\(273\) −22.0181 −0.0806524
\(274\) −70.4526 + 29.1824i −0.257126 + 0.106505i
\(275\) −143.199 28.4841i −0.520725 0.103579i
\(276\) 70.4265 70.4265i 0.255168 0.255168i
\(277\) 82.8732 + 124.029i 0.299181 + 0.447756i 0.950353 0.311174i \(-0.100722\pi\)
−0.651172 + 0.758930i \(0.725722\pi\)
\(278\) −108.219 + 21.5261i −0.389276 + 0.0774319i
\(279\) −133.978 + 200.513i −0.480209 + 0.718684i
\(280\) 14.5951 35.2357i 0.0521254 0.125842i
\(281\) −31.3685 12.9932i −0.111632 0.0462393i 0.326169 0.945312i \(-0.394242\pi\)
−0.437800 + 0.899072i \(0.644242\pi\)
\(282\) 14.9644 + 9.99886i 0.0530651 + 0.0354570i
\(283\) −36.8848 185.432i −0.130335 0.655238i −0.989616 0.143734i \(-0.954089\pi\)
0.859281 0.511503i \(-0.170911\pi\)
\(284\) 282.719 188.907i 0.995490 0.665165i
\(285\) 267.349 + 267.349i 0.938066 + 0.938066i
\(286\) 16.6137 83.5227i 0.0580898 0.292037i
\(287\) 1.30586 + 3.15263i 0.00455005 + 0.0109848i
\(288\) 198.977i 0.690893i
\(289\) 0 0
\(290\) −122.661 −0.422968
\(291\) 192.479 79.7275i 0.661441 0.273978i
\(292\) −202.636 40.3067i −0.693957 0.138037i
\(293\) −125.147 + 125.147i −0.427121 + 0.427121i −0.887647 0.460525i \(-0.847661\pi\)
0.460525 + 0.887647i \(0.347661\pi\)
\(294\) 37.0084 + 55.3870i 0.125879 + 0.188391i
\(295\) 230.597 45.8686i 0.781685 0.155487i
\(296\) −137.464 + 205.729i −0.464405 + 0.695031i
\(297\) 64.3948 155.463i 0.216817 0.523444i
\(298\) −166.031 68.7721i −0.557149 0.230779i
\(299\) 231.120 + 154.429i 0.772977 + 0.516487i
\(300\) −22.6608 113.924i −0.0755361 0.379745i
\(301\) −10.2445 + 6.84518i −0.0340350 + 0.0227415i
\(302\) 35.8732 + 35.8732i 0.118785 + 0.118785i
\(303\) 11.8075 59.3603i 0.0389686 0.195909i
\(304\) 102.457 + 247.353i 0.337029 + 0.813661i
\(305\) 242.640i 0.795541i
\(306\) 0 0
\(307\) 368.138 1.19914 0.599572 0.800320i \(-0.295337\pi\)
0.599572 + 0.800320i \(0.295337\pi\)
\(308\) −18.4345 + 7.63581i −0.0598522 + 0.0247916i
\(309\) −87.8322 17.4709i −0.284247 0.0565402i
\(310\) −155.818 + 155.818i −0.502639 + 0.502639i
\(311\) 58.3833 + 87.3767i 0.187728 + 0.280954i 0.913381 0.407107i \(-0.133462\pi\)
−0.725653 + 0.688061i \(0.758462\pi\)
\(312\) 147.448 29.3293i 0.472590 0.0940040i
\(313\) 241.058 360.768i 0.770152 1.15261i −0.214267 0.976775i \(-0.568736\pi\)
0.984419 0.175839i \(-0.0562638\pi\)
\(314\) 47.8672 115.562i 0.152443 0.368030i
\(315\) 36.1932 + 14.9917i 0.114899 + 0.0475927i
\(316\) 178.255 + 119.106i 0.564098 + 0.376918i
\(317\) −102.229 513.941i −0.322489 1.62126i −0.713346 0.700812i \(-0.752821\pi\)
0.390857 0.920452i \(-0.372179\pi\)
\(318\) 2.29333 1.53236i 0.00721174 0.00481873i
\(319\) 100.693 + 100.693i 0.315653 + 0.315653i
\(320\) 6.61910 33.2765i 0.0206847 0.103989i
\(321\) −92.6818 223.754i −0.288728 0.697052i
\(322\) 14.2651i 0.0443016i
\(323\) 0 0
\(324\) −53.3765 −0.164742
\(325\) 299.499 124.057i 0.921536 0.381713i
\(326\) −269.657 53.6380i −0.827167 0.164534i
\(327\) 27.5331 27.5331i 0.0841990 0.0841990i
\(328\) −12.9444 19.3727i −0.0394647 0.0590630i
\(329\) 11.5428 2.29601i 0.0350845 0.00697874i
\(330\) 35.3079 52.8421i 0.106994 0.160127i
\(331\) 134.652 325.078i 0.406803 0.982109i −0.579171 0.815206i \(-0.696623\pi\)
0.985973 0.166903i \(-0.0533765\pi\)
\(332\) −130.317 53.9790i −0.392520 0.162587i
\(333\) −211.319 141.199i −0.634592 0.424021i
\(334\) −26.0811 131.119i −0.0780873 0.392571i
\(335\) −181.788 + 121.467i −0.542652 + 0.362588i
\(336\) −8.22767 8.22767i −0.0244871 0.0244871i
\(337\) −30.3236 + 152.447i −0.0899811 + 0.452366i 0.909358 + 0.416015i \(0.136573\pi\)
−0.999339 + 0.0363511i \(0.988427\pi\)
\(338\) 17.5298 + 42.3207i 0.0518633 + 0.125209i
\(339\) 79.1097i 0.233362i
\(340\) 0 0
\(341\) 255.825 0.750221
\(342\) 168.468 69.7818i 0.492597 0.204040i
\(343\) 86.1706 + 17.1404i 0.251226 + 0.0499720i
\(344\) 59.4862 59.4862i 0.172925 0.172925i
\(345\) 115.248 + 172.481i 0.334052 + 0.499944i
\(346\) 136.654 27.1823i 0.394955 0.0785614i
\(347\) −148.631 + 222.442i −0.428331 + 0.641042i −0.981373 0.192111i \(-0.938467\pi\)
0.553043 + 0.833153i \(0.313467\pi\)
\(348\) −43.3538 + 104.665i −0.124580 + 0.300763i
\(349\) 182.414 + 75.5583i 0.522676 + 0.216499i 0.628392 0.777897i \(-0.283713\pi\)
−0.105716 + 0.994396i \(0.533713\pi\)
\(350\) 13.8328 + 9.24278i 0.0395223 + 0.0264080i
\(351\) 72.8886 + 366.436i 0.207660 + 1.04398i
\(352\) 175.508 117.271i 0.498603 0.333156i
\(353\) 303.609 + 303.609i 0.860081 + 0.860081i 0.991347 0.131266i \(-0.0419041\pi\)
−0.131266 + 0.991347i \(0.541904\pi\)
\(354\) −9.27891 + 46.6482i −0.0262116 + 0.131775i
\(355\) 271.014 + 654.286i 0.763420 + 1.84306i
\(356\) 230.026i 0.646139i
\(357\) 0 0
\(358\) −164.528 −0.459576
\(359\) 52.4599 21.7296i 0.146128 0.0605281i −0.308421 0.951250i \(-0.599801\pi\)
0.454549 + 0.890722i \(0.349801\pi\)
\(360\) −262.343 52.1834i −0.728732 0.144954i
\(361\) 558.492 558.492i 1.54707 1.54707i
\(362\) 23.5251 + 35.2078i 0.0649864 + 0.0972590i
\(363\) 121.171 24.1024i 0.333804 0.0663978i
\(364\) 24.6132 36.8362i 0.0676186 0.101198i
\(365\) 164.674 397.558i 0.451161 1.08920i
\(366\) 45.3481 + 18.7838i 0.123902 + 0.0513218i
\(367\) 189.076 + 126.337i 0.515195 + 0.344242i 0.785833 0.618439i \(-0.212235\pi\)
−0.270638 + 0.962681i \(0.587235\pi\)
\(368\) 28.6575 + 144.071i 0.0778737 + 0.391497i
\(369\) 19.8991 13.2961i 0.0539270 0.0360329i
\(370\) −164.216 164.216i −0.443827 0.443827i
\(371\) 0.351870 1.76897i 0.000948437 0.00476811i
\(372\) 77.8853 + 188.032i 0.209369 + 0.505462i
\(373\) 460.172i 1.23370i 0.787079 + 0.616852i \(0.211592\pi\)
−0.787079 + 0.616852i \(0.788408\pi\)
\(374\) 0 0
\(375\) −36.7039 −0.0978771
\(376\) −74.2400 + 30.7512i −0.197447 + 0.0817851i
\(377\) −310.100 61.6828i −0.822547 0.163615i
\(378\) −13.5579 + 13.5579i −0.0358675 + 0.0358675i
\(379\) 34.1975 + 51.1802i 0.0902309 + 0.135040i 0.873839 0.486215i \(-0.161623\pi\)
−0.783608 + 0.621255i \(0.786623\pi\)
\(380\) −746.131 + 148.415i −1.96350 + 0.390565i
\(381\) −43.7272 + 65.4423i −0.114769 + 0.171765i
\(382\) −96.7829 + 233.655i −0.253358 + 0.611661i
\(383\) 568.960 + 235.671i 1.48554 + 0.615329i 0.970340 0.241744i \(-0.0777193\pi\)
0.515196 + 0.857073i \(0.327719\pi\)
\(384\) 175.916 + 117.543i 0.458115 + 0.306102i
\(385\) −8.10764 40.7599i −0.0210588 0.105870i
\(386\) −39.7265 + 26.5444i −0.102918 + 0.0687678i
\(387\) 61.1025 + 61.1025i 0.157888 + 0.157888i
\(388\) −81.7810 + 411.141i −0.210776 + 1.05964i
\(389\) −139.475 336.723i −0.358549 0.865613i −0.995505 0.0947127i \(-0.969807\pi\)
0.636956 0.770900i \(-0.280193\pi\)
\(390\) 141.106i 0.361811i
\(391\) 0 0
\(392\) −297.422 −0.758729
\(393\) 4.92017 2.03800i 0.0125195 0.00518576i
\(394\) 3.11338 + 0.619290i 0.00790198 + 0.00157180i
\(395\) −315.736 + 315.736i −0.799331 + 0.799331i
\(396\) 77.7469 + 116.356i 0.196331 + 0.293829i
\(397\) 59.0458 11.7449i 0.148730 0.0295842i −0.120164 0.992754i \(-0.538342\pi\)
0.268894 + 0.963170i \(0.413342\pi\)
\(398\) 70.1638 105.007i 0.176291 0.263838i
\(399\) −19.1399 + 46.2078i −0.0479697 + 0.115809i
\(400\) 158.273 + 65.5589i 0.395683 + 0.163897i
\(401\) 16.1872 + 10.8160i 0.0403671 + 0.0269725i 0.575590 0.817738i \(-0.304772\pi\)
−0.535223 + 0.844711i \(0.679772\pi\)
\(402\) −8.62852 43.3785i −0.0214640 0.107907i
\(403\) −472.283 + 315.570i −1.17192 + 0.783051i
\(404\) 86.1103 + 86.1103i 0.213144 + 0.213144i
\(405\) 21.6885 109.035i 0.0535518 0.269223i
\(406\) −6.20943 14.9909i −0.0152942 0.0369233i
\(407\) 269.613i 0.662439i
\(408\) 0 0
\(409\) 434.868 1.06325 0.531623 0.846981i \(-0.321582\pi\)
0.531623 + 0.846981i \(0.321582\pi\)
\(410\) 20.2041 8.36881i 0.0492783 0.0204117i
\(411\) −143.874 28.6183i −0.350058 0.0696308i
\(412\) 127.413 127.413i 0.309254 0.309254i
\(413\) 17.2793 + 25.8603i 0.0418385 + 0.0626157i
\(414\) 98.1244 19.5182i 0.237016 0.0471453i
\(415\) 163.218 244.272i 0.393296 0.588608i
\(416\) −179.351 + 432.991i −0.431132 + 1.04084i
\(417\) −196.097 81.2259i −0.470256 0.194786i
\(418\) −160.841 107.470i −0.384787 0.257106i
\(419\) −15.7958 79.4107i −0.0376988 0.189524i 0.957347 0.288940i \(-0.0933027\pi\)
−0.995046 + 0.0994154i \(0.968303\pi\)
\(420\) 27.4902 18.3684i 0.0654528 0.0437342i
\(421\) −211.099 211.099i −0.501423 0.501423i 0.410457 0.911880i \(-0.365369\pi\)
−0.911880 + 0.410457i \(0.865369\pi\)
\(422\) −49.1028 + 246.857i −0.116357 + 0.584968i
\(423\) −31.5868 76.2572i −0.0746732 0.180277i
\(424\) 12.3149i 0.0290446i
\(425\) 0 0
\(426\) −143.263 −0.336297
\(427\) 29.6541 12.2831i 0.0694475 0.0287661i
\(428\) 477.944 + 95.0689i 1.11669 + 0.222124i
\(429\) 115.835 115.835i 0.270013 0.270013i
\(430\) 43.8683 + 65.6535i 0.102019 + 0.152683i
\(431\) 589.715 117.302i 1.36825 0.272161i 0.544330 0.838871i \(-0.316784\pi\)
0.823917 + 0.566710i \(0.191784\pi\)
\(432\) −109.692 + 164.165i −0.253916 + 0.380013i
\(433\) 168.058 405.728i 0.388125 0.937017i −0.602212 0.798336i \(-0.705714\pi\)
0.990337 0.138681i \(-0.0442862\pi\)
\(434\) −26.9312 11.1553i −0.0620534 0.0257034i
\(435\) −196.190 131.090i −0.451012 0.301357i
\(436\) 15.2846 + 76.8408i 0.0350564 + 0.176240i
\(437\) 524.998 350.792i 1.20137 0.802728i
\(438\) 61.5532 + 61.5532i 0.140533 + 0.140533i
\(439\) 124.628 626.548i 0.283891 1.42722i −0.530887 0.847443i \(-0.678141\pi\)
0.814778 0.579773i \(-0.196859\pi\)
\(440\) 108.588 + 262.156i 0.246792 + 0.595809i
\(441\) 305.503i 0.692751i
\(442\) 0 0
\(443\) −79.9030 −0.180368 −0.0901839 0.995925i \(-0.528745\pi\)
−0.0901839 + 0.995925i \(0.528745\pi\)
\(444\) −198.166 + 82.0829i −0.446319 + 0.184871i
\(445\) 469.887 + 93.4663i 1.05593 + 0.210037i
\(446\) −53.9846 + 53.9846i −0.121042 + 0.121042i
\(447\) −192.060 287.438i −0.429665 0.643039i
\(448\) 4.40194 0.875600i 0.00982576 0.00195446i
\(449\) 81.8038 122.428i 0.182191 0.272668i −0.729121 0.684385i \(-0.760071\pi\)
0.911312 + 0.411717i \(0.135071\pi\)
\(450\) 44.6511 107.797i 0.0992246 0.239549i
\(451\) −23.4558 9.71569i −0.0520083 0.0215426i
\(452\) 132.350 + 88.4335i 0.292810 + 0.195649i
\(453\) 19.0391 + 95.7161i 0.0420289 + 0.211294i
\(454\) 105.148 70.2578i 0.231604 0.154753i
\(455\) 65.2464 + 65.2464i 0.143399 + 0.143399i
\(456\) 66.6225 334.934i 0.146102 0.734504i
\(457\) −246.790 595.804i −0.540022 1.30373i −0.924706 0.380681i \(-0.875690\pi\)
0.384684 0.923048i \(-0.374310\pi\)
\(458\) 116.072i 0.253432i
\(459\) 0 0
\(460\) −417.390 −0.907370
\(461\) 236.885 98.1211i 0.513851 0.212844i −0.110663 0.993858i \(-0.535297\pi\)
0.624513 + 0.781014i \(0.285297\pi\)
\(462\) 8.24544 + 1.64012i 0.0178473 + 0.00355004i
\(463\) −422.873 + 422.873i −0.913332 + 0.913332i −0.996533 0.0832008i \(-0.973486\pi\)
0.0832008 + 0.996533i \(0.473486\pi\)
\(464\) −92.8279 138.927i −0.200060 0.299411i
\(465\) −415.751 + 82.6980i −0.894088 + 0.177845i
\(466\) −168.053 + 251.509i −0.360629 + 0.539720i
\(467\) −194.429 + 469.394i −0.416337 + 1.00513i 0.567063 + 0.823674i \(0.308080\pi\)
−0.983400 + 0.181452i \(0.941920\pi\)
\(468\) −287.060 118.904i −0.613375 0.254068i
\(469\) −24.0477 16.0681i −0.0512743 0.0342604i
\(470\) −14.7143 73.9736i −0.0313070 0.157391i
\(471\) 200.065 133.679i 0.424766 0.283819i
\(472\) −150.161 150.161i −0.318137 0.318137i
\(473\) 17.8837 89.9075i 0.0378091 0.190079i
\(474\) −34.5668 83.4517i −0.0729258 0.176058i
\(475\) 736.376i 1.55027i
\(476\) 0 0
\(477\) −12.6495 −0.0265190
\(478\) −311.786 + 129.146i −0.652272 + 0.270180i
\(479\) 389.100 + 77.3968i 0.812317 + 0.161580i 0.583735 0.811944i \(-0.301591\pi\)
0.228583 + 0.973524i \(0.426591\pi\)
\(480\) −247.316 + 247.316i −0.515241 + 0.515241i
\(481\) −332.577 497.737i −0.691428 1.03480i
\(482\) 65.9725 13.1227i 0.136872 0.0272256i
\(483\) −15.2454 + 22.8164i −0.0315641 + 0.0472389i
\(484\) −95.1289 + 229.662i −0.196547 + 0.474507i
\(485\) −806.632 334.118i −1.66316 0.688903i
\(486\) 177.407 + 118.540i 0.365036 + 0.243909i
\(487\) 75.2872 + 378.494i 0.154594 + 0.777196i 0.977814 + 0.209474i \(0.0671751\pi\)
−0.823220 + 0.567722i \(0.807825\pi\)
\(488\) −182.222 + 121.757i −0.373406 + 0.249502i
\(489\) −373.980 373.980i −0.764784 0.764784i
\(490\) 54.4614 273.796i 0.111146 0.558767i
\(491\) −178.428 430.764i −0.363398 0.877319i −0.994798 0.101863i \(-0.967520\pi\)
0.631401 0.775457i \(-0.282480\pi\)
\(492\) 20.1979i 0.0410527i
\(493\) 0 0
\(494\) 429.499 0.869432
\(495\) −269.279 + 111.539i −0.543998 + 0.225331i
\(496\) −294.403 58.5603i −0.593554 0.118065i
\(497\) −66.2436 + 66.2436i −0.133287 + 0.133287i
\(498\) 33.0178 + 49.4146i 0.0663008 + 0.0992262i
\(499\) −179.332 + 35.6714i −0.359384 + 0.0714858i −0.371480 0.928441i \(-0.621150\pi\)
0.0120963 + 0.999927i \(0.496150\pi\)
\(500\) 41.0298 61.4054i 0.0820596 0.122811i
\(501\) 98.4139 237.592i 0.196435 0.474236i
\(502\) −355.094 147.085i −0.707359 0.292998i
\(503\) −533.984 356.797i −1.06160 0.709337i −0.103168 0.994664i \(-0.532898\pi\)
−0.958430 + 0.285327i \(0.907898\pi\)
\(504\) −6.90301 34.7038i −0.0136965 0.0688567i
\(505\) −210.892 + 140.913i −0.417608 + 0.279037i
\(506\) −75.0475 75.0475i −0.148315 0.148315i
\(507\) −17.1909 + 86.4246i −0.0339071 + 0.170463i
\(508\) −60.6039 146.311i −0.119299 0.288013i
\(509\) 177.040i 0.347819i 0.984762 + 0.173909i \(0.0556400\pi\)
−0.984762 + 0.173909i \(0.944360\pi\)
\(510\) 0 0
\(511\) 56.9235 0.111396
\(512\) −408.852 + 169.352i −0.798539 + 0.330766i
\(513\) 832.372 + 165.569i 1.62256 + 0.322747i
\(514\) 59.0293 59.0293i 0.114843 0.114843i
\(515\) 208.502 + 312.045i 0.404858 + 0.605913i
\(516\) 71.5267 14.2275i 0.138618 0.0275728i
\(517\) −48.6466 + 72.8048i −0.0940940 + 0.140822i
\(518\) 11.7565 28.3826i 0.0226959 0.0547927i
\(519\) 247.623 + 102.569i 0.477116 + 0.197628i
\(520\) −523.845 350.022i −1.00739 0.673120i
\(521\) −59.5841 299.550i −0.114365 0.574951i −0.994891 0.100954i \(-0.967811\pi\)
0.880526 0.473997i \(-0.157189\pi\)
\(522\) −94.6208 + 63.2236i −0.181266 + 0.121118i
\(523\) 291.958 + 291.958i 0.558238 + 0.558238i 0.928806 0.370568i \(-0.120837\pi\)
−0.370568 + 0.928806i \(0.620837\pi\)
\(524\) −2.09049 + 10.5096i −0.00398949 + 0.0200565i
\(525\) 12.2470 + 29.5669i 0.0233276 + 0.0563178i
\(526\) 76.2721i 0.145004i
\(527\) 0 0
\(528\) 86.5701 0.163959
\(529\) −168.675 + 69.8676i −0.318857 + 0.132075i
\(530\) −11.3367 2.25501i −0.0213900 0.00425473i
\(531\) 154.241 154.241i 0.290473 0.290473i
\(532\) −55.9097 83.6747i −0.105093 0.157283i
\(533\) 55.2867 10.9972i 0.103727 0.0206327i
\(534\) −53.8443 + 80.5836i −0.100832 + 0.150906i
\(535\) −388.406 + 937.695i −0.725992 + 1.75270i
\(536\) 182.443 + 75.5703i 0.340379 + 0.140989i
\(537\) −263.156 175.835i −0.490048 0.327440i
\(538\) 78.2862 + 393.571i 0.145513 + 0.731545i
\(539\) −269.470 + 180.054i −0.499944 + 0.334052i
\(540\) −396.698 396.698i −0.734626 0.734626i
\(541\) −139.455 + 701.085i −0.257772 + 1.29591i 0.607386 + 0.794407i \(0.292218\pi\)
−0.865158 + 0.501499i \(0.832782\pi\)
\(542\) −19.9328 48.1220i −0.0367763 0.0887859i
\(543\) 81.4550i 0.150009i
\(544\) 0 0
\(545\) −163.178 −0.299409
\(546\) −17.2452 + 7.14319i −0.0315846 + 0.0130828i
\(547\) −296.950 59.0670i −0.542870 0.107984i −0.0839647 0.996469i \(-0.526758\pi\)
−0.458905 + 0.888485i \(0.651758\pi\)
\(548\) 208.709 208.709i 0.380855 0.380855i
\(549\) −125.065 187.173i −0.227805 0.340935i
\(550\) −121.399 + 24.1477i −0.220725 + 0.0439049i
\(551\) −399.013 + 597.165i −0.724161 + 1.08378i
\(552\) 71.7011 173.102i 0.129893 0.313590i
\(553\) −54.5708 22.6040i −0.0986815 0.0408752i
\(554\) 105.146 + 70.2565i 0.189795 + 0.126817i
\(555\) −87.1549 438.157i −0.157036 0.789473i
\(556\) 355.099 237.270i 0.638667 0.426744i
\(557\) −708.431 708.431i −1.27187 1.27187i −0.945107 0.326762i \(-0.894042\pi\)
−0.326762 0.945107i \(-0.605958\pi\)
\(558\) −39.8845 + 200.513i −0.0714776 + 0.359342i
\(559\) 77.8887 + 188.040i 0.139336 + 0.336386i
\(560\) 48.7622i 0.0870753i
\(561\) 0 0
\(562\) −28.7839 −0.0512170
\(563\) −758.863 + 314.331i −1.34789 + 0.558315i −0.935705 0.352784i \(-0.885235\pi\)
−0.412187 + 0.911099i \(0.635235\pi\)
\(564\) −68.3219 13.5901i −0.121138 0.0240959i
\(565\) −234.426 + 234.426i −0.414914 + 0.414914i
\(566\) −89.0477 133.269i −0.157328 0.235458i
\(567\) 14.4236 2.86904i 0.0254385 0.00506003i
\(568\) 355.372 531.851i 0.625654 0.936358i
\(569\) −163.849 + 395.568i −0.287960 + 0.695198i −0.999976 0.00696604i \(-0.997783\pi\)
0.712015 + 0.702164i \(0.247783\pi\)
\(570\) 296.129 + 122.661i 0.519525 + 0.215194i
\(571\) 334.021 + 223.186i 0.584976 + 0.390868i 0.812549 0.582893i \(-0.198079\pi\)
−0.227574 + 0.973761i \(0.573079\pi\)
\(572\) 64.3043 + 323.280i 0.112420 + 0.565174i
\(573\) −404.512 + 270.286i −0.705954 + 0.471704i
\(574\) 2.04558 + 2.04558i 0.00356372 + 0.00356372i
\(575\) 78.8200 396.255i 0.137078 0.689139i
\(576\) −12.0459 29.0813i −0.0209130 0.0504884i
\(577\) 324.254i 0.561965i 0.959713 + 0.280982i \(0.0906602\pi\)
−0.959713 + 0.280982i \(0.909340\pi\)
\(578\) 0 0
\(579\) −91.9094 −0.158738
\(580\) 438.626 181.685i 0.756252 0.313250i
\(581\) 38.1161 + 7.58177i 0.0656043 + 0.0130495i
\(582\) 124.890 124.890i 0.214587 0.214587i
\(583\) 7.45524 + 11.1576i 0.0127877 + 0.0191382i
\(584\) −381.198 + 75.8250i −0.652736 + 0.129837i
\(585\) 359.533 538.079i 0.614587 0.919794i
\(586\) −57.4177 + 138.619i −0.0979825 + 0.236551i
\(587\) −248.922 103.107i −0.424058 0.175651i 0.160440 0.987046i \(-0.448709\pi\)
−0.584498 + 0.811395i \(0.698709\pi\)
\(588\) −214.379 143.243i −0.364590 0.243611i
\(589\) 251.716 + 1265.46i 0.427362 + 2.14850i
\(590\) 165.729 110.737i 0.280897 0.187689i
\(591\) 4.31787 + 4.31787i 0.00730603 + 0.00730603i
\(592\) 61.7164 310.269i 0.104251 0.524103i
\(593\) 274.282 + 662.174i 0.462532 + 1.11665i 0.967354 + 0.253428i \(0.0815581\pi\)
−0.504822 + 0.863223i \(0.668442\pi\)
\(594\) 142.654i 0.240158i
\(595\) 0 0
\(596\) 695.579 1.16708
\(597\) 224.448 92.9693i 0.375959 0.155727i
\(598\) 231.120 + 45.9726i 0.386488 + 0.0768773i
\(599\) 330.421 330.421i 0.551622 0.551622i −0.375287 0.926909i \(-0.622456\pi\)
0.926909 + 0.375287i \(0.122456\pi\)
\(600\) −121.399 181.686i −0.202331 0.302810i
\(601\) 31.5267 6.27105i 0.0524571 0.0104344i −0.168792 0.985652i \(-0.553987\pi\)
0.221249 + 0.975217i \(0.428987\pi\)
\(602\) −5.80306 + 8.68490i −0.00963964 + 0.0144267i
\(603\) −77.6237 + 187.400i −0.128729 + 0.310780i
\(604\) −181.416 75.1448i −0.300357 0.124412i
\(605\) −430.490 287.644i −0.711553 0.475445i
\(606\) −10.0099 50.3232i −0.0165180 0.0830416i
\(607\) −220.518 + 147.345i −0.363291 + 0.242744i −0.723796 0.690014i \(-0.757604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(608\) 752.780 + 752.780i 1.23813 + 1.23813i
\(609\) 6.08939 30.6134i 0.00999899 0.0502683i
\(610\) −78.7181 190.042i −0.129046 0.311545i
\(611\) 194.413i 0.318189i
\(612\) 0 0
\(613\) −700.076 −1.14205 −0.571025 0.820933i \(-0.693454\pi\)
−0.571025 + 0.820933i \(0.693454\pi\)
\(614\) 288.335 119.432i 0.469602 0.194515i
\(615\) 41.2595 + 8.20702i 0.0670886 + 0.0133447i
\(616\) −26.5421 + 26.5421i −0.0430879 + 0.0430879i
\(617\) 398.778 + 596.814i 0.646318 + 0.967283i 0.999497 + 0.0317273i \(0.0101008\pi\)
−0.353179 + 0.935556i \(0.614899\pi\)
\(618\) −74.4606 + 14.8111i −0.120486 + 0.0239662i
\(619\) −509.171 + 762.028i −0.822570 + 1.23106i 0.147698 + 0.989033i \(0.452814\pi\)
−0.970268 + 0.242031i \(0.922186\pi\)
\(620\) 326.398 787.994i 0.526448 1.27096i
\(621\) 430.190 + 178.190i 0.692737 + 0.286941i
\(622\) 74.0744 + 49.4949i 0.119091 + 0.0795738i
\(623\) 12.3641 + 62.1584i 0.0198460 + 0.0997727i
\(624\) −159.818 + 106.787i −0.256119 + 0.171133i
\(625\) 492.490 + 492.490i 0.787984 + 0.787984i
\(626\) 71.7613 360.768i 0.114635 0.576307i
\(627\) −142.402 343.788i −0.227116 0.548307i
\(628\) 484.141i 0.770926i
\(629\) 0 0
\(630\) 33.2111 0.0527161
\(631\) 756.768 313.464i 1.19932 0.496773i 0.308538 0.951212i \(-0.400160\pi\)
0.890778 + 0.454439i \(0.150160\pi\)
\(632\) 395.553 + 78.6803i 0.625875 + 0.124494i
\(633\) −342.359 + 342.359i −0.540852 + 0.540852i
\(634\) −246.803 369.367i −0.389279 0.582597i
\(635\) 323.503 64.3487i 0.509453 0.101336i
\(636\) −5.93108 + 8.87650i −0.00932560 + 0.0139568i
\(637\) 275.370 664.801i 0.432291 1.04364i
\(638\) 111.533 + 46.1985i 0.174817 + 0.0724114i
\(639\) 546.303 + 365.028i 0.854934 + 0.571249i
\(640\) −172.976 869.610i −0.270275 1.35877i
\(641\) 878.442 586.956i 1.37042 0.915688i 0.370510 0.928828i \(-0.379183\pi\)
0.999914 + 0.0131402i \(0.00418276\pi\)
\(642\) −145.182 145.182i −0.226140 0.226140i
\(643\) 69.7539 350.677i 0.108482 0.545376i −0.887874 0.460086i \(-0.847818\pi\)
0.996356 0.0852895i \(-0.0271815\pi\)
\(644\) −21.1295 51.0111i −0.0328097 0.0792097i
\(645\) 151.893i 0.235493i
\(646\) 0 0
\(647\) 414.046 0.639947 0.319973 0.947427i \(-0.396326\pi\)
0.319973 + 0.947427i \(0.396326\pi\)
\(648\) −92.7686 + 38.4260i −0.143161 + 0.0592994i
\(649\) −226.953 45.1438i −0.349697 0.0695591i
\(650\) 194.329 194.329i 0.298968 0.298968i
\(651\) −31.1534 46.6243i −0.0478546 0.0716195i
\(652\) 1043.72 207.609i 1.60080 0.318419i
\(653\) 404.770 605.781i 0.619862 0.927690i −0.380134 0.924932i \(-0.624122\pi\)
0.999996 0.00275813i \(-0.000877940\pi\)
\(654\) 12.6323 30.4970i 0.0193154 0.0466315i
\(655\) −20.6192 8.54075i −0.0314797 0.0130393i
\(656\) 24.7688 + 16.5500i 0.0377573 + 0.0252286i
\(657\) −77.8853 391.556i −0.118547 0.595976i
\(658\) 8.29576 5.54305i 0.0126075 0.00842409i
\(659\) 310.871 + 310.871i 0.471731 + 0.471731i 0.902474 0.430743i \(-0.141749\pi\)
−0.430743 + 0.902474i \(0.641749\pi\)
\(660\) −47.9892 + 241.258i −0.0727109 + 0.365542i
\(661\) 67.6563 + 163.337i 0.102354 + 0.247105i 0.966758 0.255693i \(-0.0823037\pi\)
−0.864404 + 0.502799i \(0.832304\pi\)
\(662\) 298.294i 0.450595i
\(663\) 0 0
\(664\) −265.351 −0.399624
\(665\) 193.645 80.2104i 0.291196 0.120617i
\(666\) −211.319 42.0340i −0.317296 0.0631141i
\(667\) −278.634 + 278.634i −0.417742 + 0.417742i
\(668\) 287.478 + 430.241i 0.430356 + 0.644073i
\(669\) −144.041 + 28.6514i −0.215307 + 0.0428273i
\(670\) −102.975 + 154.113i −0.153694 + 0.230019i
\(671\) −91.3871 + 220.628i −0.136195 + 0.328805i
\(672\) −42.7453 17.7057i −0.0636091 0.0263478i
\(673\) 517.356 + 345.686i 0.768731 + 0.513650i 0.877011 0.480471i \(-0.159534\pi\)
−0.108280 + 0.994120i \(0.534534\pi\)
\(674\) 25.7071 + 129.239i 0.0381412 + 0.191749i
\(675\) 451.523 301.698i 0.668923 0.446960i
\(676\) −125.371 125.371i −0.185460 0.185460i
\(677\) −9.32211 + 46.8654i −0.0137697 + 0.0692251i −0.987059 0.160356i \(-0.948736\pi\)
0.973289 + 0.229581i \(0.0737357\pi\)
\(678\) −25.6650 61.9609i −0.0378540 0.0913878i
\(679\) 115.496i 0.170097i
\(680\) 0 0
\(681\) 243.266 0.357219
\(682\) 200.369 82.9957i 0.293797 0.121695i
\(683\) −729.960 145.198i −1.06876 0.212589i −0.370788 0.928718i \(-0.620912\pi\)
−0.697968 + 0.716129i \(0.745912\pi\)
\(684\) −499.070 + 499.070i −0.729634 + 0.729634i
\(685\) 341.537 + 511.146i 0.498594 + 0.746199i
\(686\) 73.0519 14.5309i 0.106490 0.0211821i
\(687\) −124.049 + 185.652i −0.180566 + 0.270235i
\(688\) −41.1610 + 99.3714i −0.0598270 + 0.144435i
\(689\) −27.5265 11.4018i −0.0399514 0.0165484i
\(690\) 146.222 + 97.7025i 0.211916 + 0.141598i
\(691\) −250.480 1259.25i −0.362489 1.82235i −0.544144 0.838992i \(-0.683145\pi\)
0.181655 0.983362i \(-0.441855\pi\)
\(692\) −448.405 + 299.615i −0.647984 + 0.432969i
\(693\) −27.2633 27.2633i −0.0393410 0.0393410i
\(694\) −44.2464 + 222.442i −0.0637556 + 0.320521i
\(695\) 340.397 + 821.792i 0.489780 + 1.18243i
\(696\) 213.119i 0.306206i
\(697\) 0 0
\(698\) 167.384 0.239806
\(699\) −537.588 + 222.676i −0.769081 + 0.318564i
\(700\) −63.1556 12.5624i −0.0902223 0.0179463i
\(701\) 895.228 895.228i 1.27707 1.27707i 0.334774 0.942298i \(-0.391340\pi\)
0.942298 0.334774i \(-0.108660\pi\)
\(702\) 175.969 + 263.356i 0.250668 + 0.375150i
\(703\) −1333.66 + 265.282i −1.89711 + 0.377358i
\(704\) −18.5518 + 27.7647i −0.0263519 + 0.0394385i
\(705\) 55.5225 134.043i 0.0787553 0.190132i
\(706\) 336.292 + 139.297i 0.476335 + 0.197304i
\(707\) −27.8976 18.6406i −0.0394591 0.0263657i
\(708\) −35.9146 180.555i −0.0507268 0.255021i
\(709\) 618.642 413.363i 0.872555 0.583023i −0.0366699 0.999327i \(-0.511675\pi\)
0.909225 + 0.416305i \(0.136675\pi\)
\(710\) 424.531 + 424.531i 0.597931 + 0.597931i
\(711\) −80.8182 + 406.301i −0.113668 + 0.571450i
\(712\) −165.596 399.785i −0.232579 0.561496i
\(713\) 707.908i 0.992859i
\(714\) 0 0
\(715\) −686.511 −0.960156
\(716\) 588.342 243.699i 0.821707 0.340362i
\(717\) −636.709 126.649i −0.888018 0.176638i
\(718\) 34.0384 34.0384i 0.0474073 0.0474073i
\(719\) 80.2276 + 120.069i 0.111582 + 0.166995i 0.883058 0.469265i \(-0.155481\pi\)
−0.771475 + 0.636259i \(0.780481\pi\)
\(720\) 335.417 66.7187i 0.465857 0.0926648i
\(721\) −27.5814 + 41.2786i −0.0382544 + 0.0572518i
\(722\) 256.238 618.614i 0.354901 0.856806i
\(723\) 119.545 + 49.5170i 0.165345 + 0.0684883i
\(724\) −136.274 91.0553i −0.188224 0.125767i
\(725\) 89.6548 + 450.725i 0.123662 + 0.621690i
\(726\) 87.0851 58.1884i 0.119952 0.0801493i
\(727\) −33.3667 33.3667i −0.0458965 0.0458965i 0.683786 0.729683i \(-0.260332\pi\)
−0.729683 + 0.683786i \(0.760332\pi\)
\(728\) 16.2592 81.7405i 0.0223341 0.112281i
\(729\) 101.044 + 243.941i 0.138606 + 0.334624i
\(730\) 364.802i 0.499729i
\(731\) 0 0
\(732\) −189.984 −0.259541
\(733\) −604.239 + 250.284i −0.824337 + 0.341452i −0.754658 0.656118i \(-0.772197\pi\)
−0.0696787 + 0.997569i \(0.522197\pi\)
\(734\) 189.076 + 37.6097i 0.257597 + 0.0512393i
\(735\) 379.721 379.721i 0.516627 0.516627i
\(736\) 324.506 + 485.658i 0.440905 + 0.659862i
\(737\) 211.046 41.9796i 0.286358 0.0569601i
\(738\) 11.2719 16.8696i 0.0152736 0.0228586i
\(739\) 470.162 1135.07i 0.636214 1.53596i −0.195472 0.980709i \(-0.562624\pi\)
0.831685 0.555247i \(-0.187376\pi\)
\(740\) 830.462 + 343.988i 1.12225 + 0.464849i
\(741\) 686.966 + 459.016i 0.927079 + 0.619454i
\(742\) −0.298301 1.49966i −0.000402023 0.00202111i
\(743\) −935.002 + 624.748i −1.25841 + 0.840845i −0.992392 0.123121i \(-0.960710\pi\)
−0.266022 + 0.963967i \(0.585710\pi\)
\(744\) 270.730 + 270.730i 0.363884 + 0.363884i
\(745\) −282.635 + 1420.90i −0.379376 + 1.90725i
\(746\) 149.290 + 360.419i 0.200121 + 0.483135i
\(747\) 272.561i 0.364874i
\(748\) 0 0
\(749\) −134.262 −0.179255
\(750\) −28.7475 + 11.9076i −0.0383300 + 0.0158768i
\(751\) −1254.28 249.491i −1.67014 0.332212i −0.732752 0.680496i \(-0.761764\pi\)
−0.937389 + 0.348285i \(0.886764\pi\)
\(752\) 72.6478 72.6478i 0.0966061 0.0966061i
\(753\) −410.765 614.753i −0.545505 0.816405i
\(754\) −262.890 + 52.2921i −0.348661 + 0.0693529i
\(755\) 227.217 340.055i 0.300950 0.450404i
\(756\) 28.4002 68.5641i 0.0375664 0.0906933i
\(757\) −182.937 75.7752i −0.241661 0.100099i 0.258566 0.965994i \(-0.416750\pi\)
−0.500227 + 0.865894i \(0.666750\pi\)
\(758\) 43.3885 + 28.9913i 0.0572407 + 0.0382470i
\(759\) −39.8302 200.240i −0.0524772 0.263821i
\(760\) −1189.93 + 795.088i −1.56570 + 1.04617i
\(761\) −380.948 380.948i −0.500588 0.500588i 0.411032 0.911621i \(-0.365168\pi\)
−0.911621 + 0.411032i \(0.865168\pi\)
\(762\) −13.0173 + 65.4423i −0.0170831 + 0.0858823i
\(763\) −8.26052 19.9427i −0.0108264 0.0261372i
\(764\) 978.888i 1.28127i
\(765\) 0 0
\(766\) 522.082 0.681570
\(767\) 474.669 196.614i 0.618864 0.256342i
\(768\) 144.154 + 28.6740i 0.187701 + 0.0373360i
\(769\) 90.3571 90.3571i 0.117500 0.117500i −0.645912 0.763412i \(-0.723523\pi\)
0.763412 + 0.645912i \(0.223523\pi\)
\(770\) −19.5736 29.2939i −0.0254202 0.0380441i
\(771\) 157.501 31.3288i 0.204281 0.0406340i
\(772\) 102.742 153.764i 0.133085 0.199176i
\(773\) −55.9110 + 134.981i −0.0723298 + 0.174620i −0.955910 0.293661i \(-0.905126\pi\)
0.883580 + 0.468281i \(0.155126\pi\)
\(774\) 67.6802 + 28.0341i 0.0874422 + 0.0362197i
\(775\) 686.455 + 458.675i 0.885749 + 0.591838i
\(776\) 153.846 + 773.438i 0.198256 + 0.996699i
\(777\) 49.1371 32.8323i 0.0632395 0.0422553i
\(778\) −218.482 218.482i −0.280825 0.280825i
\(779\) 24.9806 125.586i 0.0320675 0.161214i
\(780\) −209.006 504.586i −0.267957 0.646905i
\(781\) 697.003i 0.892450i
\(782\) 0 0
\(783\) −529.641 −0.676425
\(784\) 351.320 145.522i 0.448113 0.185614i
\(785\) −988.984 196.721i −1.25985 0.250600i
\(786\) 3.19244 3.19244i 0.00406163 0.00406163i
\(787\) −384.343 575.209i −0.488364 0.730889i 0.502673 0.864477i \(-0.332350\pi\)
−0.991037 + 0.133588i \(0.957350\pi\)
\(788\) −12.0505 + 2.39700i −0.0152926 + 0.00304188i
\(789\) 81.5137 121.994i 0.103313 0.154618i
\(790\) −144.861 + 349.725i −0.183368 + 0.442690i
\(791\) −40.5176 16.7829i −0.0512232 0.0212174i
\(792\) 218.890 + 146.257i 0.276376 + 0.184669i
\(793\) −103.441 520.034i −0.130443 0.655781i
\(794\) 42.4359 28.3548i 0.0534457 0.0357113i
\(795\) −15.7226 15.7226i −0.0197768 0.0197768i
\(796\) −95.3638 + 479.426i −0.119804 + 0.602294i
\(797\) 412.976 + 997.012i 0.518163 + 1.25096i 0.939030 + 0.343834i \(0.111726\pi\)
−0.420867 + 0.907122i \(0.638274\pi\)
\(798\) 42.4006i 0.0531336i
\(799\) 0 0
\(800\) 681.198 0.851497
\(801\) 410.648 170.096i 0.512669 0.212355i
\(802\) 16.1872 + 3.21984i 0.0201836 + 0.00401476i
\(803\) −299.470 + 299.470i −0.372938 + 0.372938i
\(804\) 95.1073 + 142.338i 0.118293 + 0.177037i
\(805\) 112.789 22.4351i 0.140110 0.0278697i
\(806\) −267.527 + 400.382i −0.331919 + 0.496752i
\(807\) −295.403 + 713.166i −0.366051 + 0.883725i
\(808\) 211.651 + 87.6688i 0.261945 + 0.108501i
\(809\) −473.836 316.607i −0.585706 0.391356i 0.227117 0.973868i \(-0.427070\pi\)
−0.812822 + 0.582511i \(0.802070\pi\)
\(810\) −18.3866 92.4358i −0.0226995 0.114118i
\(811\) 945.092 631.490i 1.16534 0.778656i 0.186335 0.982486i \(-0.440339\pi\)
0.979006 + 0.203830i \(0.0653391\pi\)
\(812\) 44.4090 + 44.4090i 0.0546909 + 0.0546909i
\(813\) 19.5474 98.2716i 0.0240436 0.120875i
\(814\) 87.4687 + 211.168i 0.107455 + 0.259420i
\(815\) 2216.43i 2.71955i
\(816\) 0 0
\(817\) 462.332 0.565890
\(818\) 340.600 141.081i 0.416382 0.172471i
\(819\) 83.9616 + 16.7010i 0.102517 + 0.0203919i
\(820\) −59.8526 + 59.8526i −0.0729910 + 0.0729910i
\(821\) −11.6336 17.4109i −0.0141700 0.0212069i 0.824317 0.566129i \(-0.191559\pi\)
−0.838487 + 0.544922i \(0.816559\pi\)
\(822\) −121.970 + 24.2614i −0.148382 + 0.0295151i
\(823\) 874.350 1308.56i 1.06239 1.58998i 0.287620 0.957745i \(-0.407136\pi\)
0.774774 0.632239i \(-0.217864\pi\)
\(824\) 129.719 313.169i 0.157426 0.380059i
\(825\) −219.979 91.1183i −0.266641 0.110446i
\(826\) 21.9233 + 14.6487i 0.0265415 + 0.0177345i
\(827\) 105.213 + 528.944i 0.127223 + 0.639593i 0.990795 + 0.135368i \(0.0432217\pi\)
−0.863572 + 0.504225i \(0.831778\pi\)
\(828\) −321.976 + 215.138i −0.388860 + 0.259828i
\(829\) 145.931 + 145.931i 0.176032 + 0.176032i 0.789624 0.613591i \(-0.210276\pi\)
−0.613591 + 0.789624i \(0.710276\pi\)
\(830\) 48.5888 244.272i 0.0585407 0.294304i
\(831\) 93.0922 + 224.744i 0.112024 + 0.270451i
\(832\) 74.1411i 0.0891119i
\(833\) 0 0
\(834\) −179.940 −0.215755
\(835\) −995.689 + 412.428i −1.19244 + 0.493926i
\(836\) 734.341 + 146.070i 0.878399 + 0.174724i
\(837\) −672.813 + 672.813i −0.803839 + 0.803839i
\(838\) −38.1344 57.0721i −0.0455064 0.0681052i
\(839\) 692.594 137.765i 0.825499 0.164202i 0.235776 0.971807i \(-0.424237\pi\)
0.589723 + 0.807605i \(0.299237\pi\)
\(840\) 34.5546 51.7146i 0.0411364 0.0615649i
\(841\) −150.313 + 362.887i −0.178731 + 0.431494i
\(842\) −233.824 96.8532i −0.277701 0.115028i
\(843\) −46.0386 30.7620i −0.0546129 0.0364912i
\(844\) −190.056 955.474i −0.225184 1.13208i
\(845\) 307.044 205.160i 0.363366 0.242793i
\(846\) −49.4792 49.4792i −0.0584861 0.0584861i
\(847\) 13.3616 67.1733i 0.0157752 0.0793074i
\(848\) −6.02541 14.5466i −0.00710544 0.0171540i
\(849\) 308.326i 0.363163i
\(850\) 0 0
\(851\) −746.060 −0.876686
\(852\) 512.298 212.201i 0.601289 0.249062i
\(853\) 1109.67 + 220.727i 1.30090 + 0.258766i 0.796466 0.604683i \(-0.206700\pi\)
0.504437 + 0.863449i \(0.331700\pi\)
\(854\) 19.2410 19.2410i 0.0225304 0.0225304i
\(855\) −816.693 1222.27i −0.955196 1.42955i
\(856\) 899.108 178.844i 1.05036 0.208930i
\(857\) −836.761 + 1252.30i −0.976384 + 1.46126i −0.0913035 + 0.995823i \(0.529103\pi\)
−0.885080 + 0.465438i \(0.845897\pi\)
\(858\) 53.1457 128.305i 0.0619414 0.149540i
\(859\) −94.7998 39.2673i −0.110361 0.0457129i 0.326820 0.945087i \(-0.394023\pi\)
−0.437181 + 0.899374i \(0.644023\pi\)
\(860\) −254.116 169.795i −0.295484 0.197436i
\(861\) 1.08566 + 5.45796i 0.00126092 + 0.00633909i
\(862\) 423.825 283.191i 0.491677 0.328528i
\(863\) 533.064 + 533.064i 0.617687 + 0.617687i 0.944938 0.327250i \(-0.106122\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(864\) −153.163 + 770.000i −0.177271 + 0.891204i
\(865\) −429.840 1037.73i −0.496925 1.19968i
\(866\) 372.300i 0.429907i
\(867\) 0 0
\(868\) 112.827 0.129985
\(869\) 406.010 168.175i 0.467215 0.193527i
\(870\) −196.190 39.0247i −0.225506 0.0448559i
\(871\) −337.832 + 337.832i −0.387866 + 0.387866i
\(872\) 81.8826 + 122.546i 0.0939021 + 0.140534i
\(873\) −794.454 + 158.027i −0.910028 + 0.181016i
\(874\) 297.387 445.071i 0.340260 0.509235i
\(875\) −7.78664 + 18.7986i −0.00889902 + 0.0214841i
\(876\) −311.283 128.938i −0.355346 0.147189i
\(877\) 738.307 + 493.321i 0.841856 + 0.562510i 0.900046 0.435796i \(-0.143533\pi\)
−0.0581900 + 0.998306i \(0.518533\pi\)
\(878\) −105.655 531.162i −0.120336 0.604968i
\(879\) −239.982 + 160.351i −0.273017 + 0.182424i
\(880\) −256.534 256.534i −0.291516 0.291516i
\(881\) 298.502 1500.67i 0.338821 1.70337i −0.316976 0.948434i \(-0.602667\pi\)
0.655797 0.754937i \(-0.272333\pi\)
\(882\) −99.1124 239.278i −0.112372 0.271291i
\(883\) 625.063i 0.707885i −0.935267 0.353943i \(-0.884841\pi\)
0.935267 0.353943i \(-0.115159\pi\)
\(884\) 0 0
\(885\) 383.423 0.433247
\(886\) −62.5822 + 25.9224i −0.0706345 + 0.0292578i
\(887\) 28.6750 + 5.70381i 0.0323281 + 0.00643045i 0.211228 0.977437i \(-0.432254\pi\)
−0.178900 + 0.983867i \(0.557254\pi\)
\(888\) −285.320 + 285.320i −0.321307 + 0.321307i
\(889\) 24.2409 + 36.2791i 0.0272677 + 0.0408089i
\(890\) 398.351 79.2369i 0.447585 0.0890302i
\(891\) −60.7877 + 90.9752i −0.0682241 + 0.102105i
\(892\) 113.083 273.007i 0.126775 0.306062i
\(893\) −408.001 168.999i −0.456888 0.189249i
\(894\) −243.679 162.821i −0.272571 0.182126i
\(895\) 258.758 + 1300.86i 0.289115 + 1.45348i
\(896\) 97.5222 65.1622i 0.108842 0.0727257i
\(897\) 320.534 + 320.534i 0.357340 + 0.357340i
\(898\) 24.3524 122.428i 0.0271185 0.136334i
\(899\) −308.144 743.925i −0.342763 0.827503i
\(900\) 451.613i 0.501792i
\(901\) 0 0
\(902\) −21.5232 −0.0238616
\(903\) −18.5635 + 7.68925i −0.0205576 + 0.00851522i
\(904\) 293.689 + 58.4183i 0.324877 + 0.0646220i
\(905\) 241.376 241.376i 0.266714 0.266714i
\(906\) 45.9645 + 68.7907i 0.0507334 + 0.0759279i
\(907\) −1000.45 + 199.002i −1.10303 + 0.219406i −0.712839 0.701328i \(-0.752591\pi\)
−0.390191 + 0.920734i \(0.627591\pi\)
\(908\) −271.937 + 406.983i −0.299490 + 0.448219i
\(909\) −90.0509 + 217.402i −0.0990659 + 0.239166i
\(910\) 72.2702 + 29.9353i 0.0794178 + 0.0328959i
\(911\) −1198.99 801.136i −1.31612 0.879403i −0.318471 0.947933i \(-0.603169\pi\)
−0.997649 + 0.0685293i \(0.978169\pi\)
\(912\) 85.1797 + 428.227i 0.0933988 + 0.469547i
\(913\) −240.413 + 160.639i −0.263322 + 0.175946i
\(914\) −386.586 386.586i −0.422960 0.422960i
\(915\) 77.1963 388.092i 0.0843676 0.424144i
\(916\) −171.926 415.065i −0.187692 0.453128i
\(917\) 2.95232i 0.00321954i
\(918\) 0 0
\(919\) 811.637 0.883175 0.441587 0.897218i \(-0.354416\pi\)
0.441587 + 0.897218i \(0.354416\pi\)
\(920\) −725.426 + 300.481i −0.788506 + 0.326610i
\(921\) 588.820 + 117.124i 0.639327 + 0.127170i
\(922\) 153.702 153.702i 0.166705 0.166705i
\(923\) 859.778 + 1286.75i 0.931504 + 1.39409i
\(924\) −31.9145 + 6.34819i −0.0345395 + 0.00687033i
\(925\) −483.395 + 723.451i −0.522589 + 0.782109i
\(926\) −194.016 + 468.395i −0.209520 + 0.505826i
\(927\) 321.678 + 133.244i 0.347010 + 0.143736i
\(928\) −552.418 369.114i −0.595278 0.397752i
\(929\) −11.2737 56.6770i −0.0121354 0.0610086i 0.974243 0.225500i \(-0.0724016\pi\)
−0.986378 + 0.164492i \(0.947402\pi\)
\(930\) −298.798 + 199.651i −0.321288 + 0.214678i
\(931\) −1155.80 1155.80i −1.24146 1.24146i
\(932\) 228.411 1148.30i 0.245077 1.23208i
\(933\) 65.5824 + 158.330i 0.0702920 + 0.169700i
\(934\) 430.720i 0.461156i
\(935\) 0 0
\(936\) −584.510 −0.624476
\(937\) −1380.79 + 571.943i −1.47363 + 0.610398i −0.967684 0.252167i \(-0.918857\pi\)
−0.505946 + 0.862565i \(0.668857\pi\)
\(938\) −24.0477 4.78338i −0.0256372 0.00509955i
\(939\) 500.340 500.340i 0.532844 0.532844i
\(940\) 162.187 + 242.730i 0.172539 + 0.258223i
\(941\) −984.245 + 195.778i −1.04596 + 0.208054i −0.688019 0.725692i \(-0.741520\pi\)
−0.357937 + 0.933746i \(0.616520\pi\)
\(942\) 113.328 169.607i 0.120305 0.180049i
\(943\) 26.8848 64.9057i 0.0285099 0.0688290i
\(944\) 250.843 + 103.903i 0.265724 + 0.110066i
\(945\) 128.520 + 85.8744i 0.136000 + 0.0908724i
\(946\) −15.1611 76.2199i −0.0160265 0.0805707i
\(947\) 1157.87 773.664i 1.22267 0.816963i 0.234771 0.972051i \(-0.424566\pi\)
0.987901 + 0.155088i \(0.0495660\pi\)
\(948\) 247.217 + 247.217i 0.260778 + 0.260778i
\(949\) 183.449 922.262i 0.193308 0.971825i
\(950\) −238.898 576.750i −0.251471 0.607105i
\(951\) 854.550i 0.898580i
\(952\) 0 0
\(953\) −1378.59 −1.44658 −0.723292 0.690543i \(-0.757372\pi\)
−0.723292 + 0.690543i \(0.757372\pi\)
\(954\) −9.90747 + 4.10381i −0.0103852 + 0.00430169i
\(955\) 1999.63 + 397.752i 2.09386 + 0.416494i
\(956\) 923.635 923.635i 0.966145 0.966145i
\(957\) 129.019 + 193.090i 0.134816 + 0.201766i
\(958\) 329.863 65.6139i 0.344325 0.0684904i
\(959\) −45.1798 + 67.6164i −0.0471114 + 0.0705072i
\(960\) 21.1739 51.1184i 0.0220562 0.0532483i
\(961\) −448.616 185.823i −0.466822 0.193364i
\(962\) −421.961 281.945i −0.438629 0.293082i
\(963\) 183.703 + 923.538i 0.190761 + 0.959022i
\(964\) −216.476 + 144.644i −0.224560 + 0.150046i
\(965\) 272.356 + 272.356i 0.282234 + 0.282234i
\(966\) −4.53847 + 22.8164i −0.00469820 + 0.0236195i
\(967\) 399.502 + 964.483i 0.413136 + 0.997398i 0.984291 + 0.176555i \(0.0564955\pi\)
−0.571155 + 0.820842i \(0.693505\pi\)
\(968\) 467.636i 0.483095i
\(969\) 0 0
\(970\) −740.172 −0.763064
\(971\) −164.897 + 68.3025i −0.169822 + 0.0703424i −0.465975 0.884798i \(-0.654296\pi\)
0.296153 + 0.955141i \(0.404296\pi\)
\(972\) −809.979 161.115i −0.833311 0.165756i
\(973\) −83.2028 + 83.2028i −0.0855116 + 0.0855116i
\(974\) 181.759 + 272.022i 0.186611 + 0.279283i
\(975\) 518.504 103.137i 0.531799 0.105781i
\(976\) 155.671 232.979i 0.159499 0.238708i
\(977\) −453.439 + 1094.70i −0.464113 + 1.12047i 0.502580 + 0.864531i \(0.332384\pi\)
−0.966693 + 0.255938i \(0.917616\pi\)
\(978\) −414.239 171.583i −0.423557 0.175443i
\(979\) −392.056 261.964i −0.400466 0.267583i
\(980\) 210.796 + 1059.74i 0.215098 + 1.08137i
\(981\) −125.876 + 84.1076i −0.128314 + 0.0857366i
\(982\) −279.500 279.500i −0.284623 0.284623i
\(983\) −307.807 + 1547.45i −0.313130 + 1.57421i 0.428588 + 0.903500i \(0.359011\pi\)
−0.741718 + 0.670712i \(0.765989\pi\)
\(984\) −14.5406 35.1040i −0.0147770 0.0356748i
\(985\) 25.5903i 0.0259800i
\(986\) 0 0
\(987\) 19.1927 0.0194455
\(988\) −1535.86 + 636.175i −1.55452 + 0.643902i
\(989\) 248.788 + 49.4870i 0.251555 + 0.0500374i
\(990\) −174.721 + 174.721i −0.176486 + 0.176486i
\(991\) −504.766 755.435i −0.509350 0.762296i 0.484289 0.874908i \(-0.339078\pi\)
−0.993639 + 0.112612i \(0.964078\pi\)
\(992\) −1170.64 + 232.855i −1.18008 + 0.234733i
\(993\) 318.794 477.108i 0.321041 0.480472i
\(994\) −30.3928 + 73.3747i −0.0305763 + 0.0738176i
\(995\) −940.604 389.611i −0.945330 0.391569i
\(996\) −191.262 127.797i −0.192031 0.128311i
\(997\) −339.162 1705.08i −0.340182 1.71021i −0.650439 0.759558i \(-0.725415\pi\)
0.310257 0.950653i \(-0.399585\pi\)
\(998\) −128.885 + 86.1185i −0.129144 + 0.0862911i
\(999\) −709.074 709.074i −0.709783 0.709783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.n.224.1 8
17.2 even 8 289.3.e.g.131.1 8
17.3 odd 16 289.3.e.g.214.1 8
17.4 even 4 289.3.e.e.65.1 8
17.5 odd 16 289.3.e.h.75.1 8
17.6 odd 16 inner 289.3.e.n.40.1 8
17.7 odd 16 289.3.e.a.249.1 8
17.8 even 8 289.3.e.h.158.1 8
17.9 even 8 289.3.e.f.158.1 8
17.10 odd 16 289.3.e.e.249.1 8
17.11 odd 16 289.3.e.j.40.1 8
17.12 odd 16 289.3.e.f.75.1 8
17.13 even 4 289.3.e.a.65.1 8
17.14 odd 16 17.3.e.b.10.1 8
17.15 even 8 17.3.e.b.12.1 yes 8
17.16 even 2 289.3.e.j.224.1 8
51.14 even 16 153.3.p.a.10.1 8
51.32 odd 8 153.3.p.a.46.1 8
68.15 odd 8 272.3.bh.b.97.1 8
68.31 even 16 272.3.bh.b.129.1 8
85.14 odd 16 425.3.u.a.401.1 8
85.32 odd 8 425.3.t.b.199.1 8
85.48 even 16 425.3.t.b.299.1 8
85.49 even 8 425.3.u.a.301.1 8
85.82 even 16 425.3.t.d.299.1 8
85.83 odd 8 425.3.t.d.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.10.1 8 17.14 odd 16
17.3.e.b.12.1 yes 8 17.15 even 8
153.3.p.a.10.1 8 51.14 even 16
153.3.p.a.46.1 8 51.32 odd 8
272.3.bh.b.97.1 8 68.15 odd 8
272.3.bh.b.129.1 8 68.31 even 16
289.3.e.a.65.1 8 17.13 even 4
289.3.e.a.249.1 8 17.7 odd 16
289.3.e.e.65.1 8 17.4 even 4
289.3.e.e.249.1 8 17.10 odd 16
289.3.e.f.75.1 8 17.12 odd 16
289.3.e.f.158.1 8 17.9 even 8
289.3.e.g.131.1 8 17.2 even 8
289.3.e.g.214.1 8 17.3 odd 16
289.3.e.h.75.1 8 17.5 odd 16
289.3.e.h.158.1 8 17.8 even 8
289.3.e.j.40.1 8 17.11 odd 16
289.3.e.j.224.1 8 17.16 even 2
289.3.e.n.40.1 8 17.6 odd 16 inner
289.3.e.n.224.1 8 1.1 even 1 trivial
425.3.t.b.199.1 8 85.32 odd 8
425.3.t.b.299.1 8 85.48 even 16
425.3.t.d.199.1 8 85.83 odd 8
425.3.t.d.299.1 8 85.82 even 16
425.3.u.a.301.1 8 85.49 even 8
425.3.u.a.401.1 8 85.14 odd 16