Properties

Label 425.3.t.f.299.9
Level $425$
Weight $3$
Character 425.299
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 299.9
Character \(\chi\) \(=\) 425.299
Dual form 425.3.t.f.199.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.13692 + 0.885142i) q^{2} +(2.78088 - 4.16188i) q^{3} +(0.954534 + 0.954534i) q^{4} +(9.62637 - 6.43213i) q^{6} +(0.193021 - 0.970381i) q^{7} +(-2.34570 - 5.66303i) q^{8} +(-6.14378 - 14.8324i) q^{9} +(0.201395 + 0.301409i) q^{11} +(6.62710 - 1.31821i) q^{12} +(-4.39739 - 4.39739i) q^{13} +(1.27140 - 1.90278i) q^{14} -19.5774i q^{16} +(-1.86536 + 16.8974i) q^{17} -37.1338i q^{18} +(9.20107 - 22.2133i) q^{19} +(-3.50184 - 3.50184i) q^{21} +(0.163576 + 0.822350i) q^{22} +(14.4201 + 21.5813i) q^{23} +(-30.0919 - 5.98565i) q^{24} +(-5.50456 - 13.2892i) q^{26} +(-34.6323 - 6.88880i) q^{27} +(1.11051 - 0.742017i) q^{28} +(8.40610 + 42.2603i) q^{29} +(9.36788 - 14.0200i) q^{31} +(7.94597 - 19.1833i) q^{32} +1.81448 q^{33} +(-18.9427 + 34.4572i) q^{34} +(8.29359 - 20.0225i) q^{36} +(12.0064 - 17.9689i) q^{37} +(39.3239 - 39.3239i) q^{38} +(-30.5300 + 6.07279i) q^{39} +(67.7453 + 13.4754i) q^{41} +(-4.38353 - 10.5828i) q^{42} +(5.12800 - 2.12409i) q^{43} +(-0.0954667 + 0.479943i) q^{44} +(11.7122 + 58.8814i) q^{46} +(-60.9689 - 60.9689i) q^{47} +(-81.4787 - 54.4423i) q^{48} +(44.3657 + 18.3769i) q^{49} +(65.1373 + 54.7528i) q^{51} -8.39491i q^{52} +(14.9763 + 6.20340i) q^{53} +(-67.9091 - 45.3754i) q^{54} +(-5.94806 + 1.18314i) q^{56} +(-66.8621 - 100.066i) q^{57} +(-19.4432 + 97.7476i) q^{58} +(-60.5743 + 25.0907i) q^{59} +(2.42535 - 12.1930i) q^{61} +(32.4281 - 21.6678i) q^{62} +(-15.5790 + 3.09885i) q^{63} +(-21.4134 + 21.4134i) q^{64} +(3.87740 + 1.60607i) q^{66} +39.4771 q^{67} +(-17.9097 + 14.3486i) q^{68} +129.919 q^{69} +(-65.4676 - 43.7440i) q^{71} +(-69.5848 + 69.5848i) q^{72} +(-0.0692193 - 0.347989i) q^{73} +(41.5619 - 27.7708i) q^{74} +(29.9861 - 12.4207i) q^{76} +(0.331355 - 0.137252i) q^{77} +(-70.6154 - 14.0463i) q^{78} +(44.3559 + 66.3833i) q^{79} +(-22.8085 + 22.8085i) q^{81} +(132.839 + 88.7601i) q^{82} +(-32.8738 + 79.3643i) q^{83} -6.68525i q^{84} +12.8383 q^{86} +(199.259 + 82.5356i) q^{87} +(1.23447 - 1.84752i) q^{88} +(120.939 + 120.939i) q^{89} +(-5.11592 + 3.41835i) q^{91} +(-6.83554 + 34.3646i) q^{92} +(-32.2987 - 77.9759i) q^{93} +(-76.3197 - 184.252i) q^{94} +(-57.7416 - 86.4164i) q^{96} +(-86.7371 + 17.2531i) q^{97} +(78.5399 + 78.5399i) q^{98} +(3.23329 - 4.83896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 24 q^{13} - 32 q^{14} + 64 q^{17} + 24 q^{19} + 48 q^{22} + 72 q^{23} + 336 q^{24} - 224 q^{26} - 64 q^{31} + 400 q^{32} - 256 q^{33} - 64 q^{34} + 192 q^{36} + 72 q^{37} + 496 q^{38} - 16 q^{39}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.13692 + 0.885142i 1.06846 + 0.442571i 0.846447 0.532472i \(-0.178737\pi\)
0.222014 + 0.975043i \(0.428737\pi\)
\(3\) 2.78088 4.16188i 0.926959 1.38729i 0.00500688 0.999987i \(-0.498406\pi\)
0.921952 0.387304i \(-0.126594\pi\)
\(4\) 0.954534 + 0.954534i 0.238634 + 0.238634i
\(5\) 0 0
\(6\) 9.62637 6.43213i 1.60440 1.07202i
\(7\) 0.193021 0.970381i 0.0275744 0.138626i −0.964546 0.263915i \(-0.914986\pi\)
0.992120 + 0.125290i \(0.0399860\pi\)
\(8\) −2.34570 5.66303i −0.293213 0.707878i
\(9\) −6.14378 14.8324i −0.682643 1.64805i
\(10\) 0 0
\(11\) 0.201395 + 0.301409i 0.0183086 + 0.0274008i 0.840511 0.541794i \(-0.182255\pi\)
−0.822202 + 0.569195i \(0.807255\pi\)
\(12\) 6.62710 1.31821i 0.552258 0.109851i
\(13\) −4.39739 4.39739i −0.338260 0.338260i 0.517452 0.855712i \(-0.326881\pi\)
−0.855712 + 0.517452i \(0.826881\pi\)
\(14\) 1.27140 1.90278i 0.0908140 0.135913i
\(15\) 0 0
\(16\) 19.5774i 1.22359i
\(17\) −1.86536 + 16.8974i −0.109727 + 0.993962i
\(18\) 37.1338i 2.06299i
\(19\) 9.20107 22.2133i 0.484267 1.16912i −0.473297 0.880903i \(-0.656936\pi\)
0.957564 0.288221i \(-0.0930636\pi\)
\(20\) 0 0
\(21\) −3.50184 3.50184i −0.166754 0.166754i
\(22\) 0.163576 + 0.822350i 0.00743526 + 0.0373796i
\(23\) 14.4201 + 21.5813i 0.626963 + 0.938316i 0.999945 + 0.0104775i \(0.00333515\pi\)
−0.372982 + 0.927838i \(0.621665\pi\)
\(24\) −30.0919 5.98565i −1.25383 0.249402i
\(25\) 0 0
\(26\) −5.50456 13.2892i −0.211714 0.511123i
\(27\) −34.6323 6.88880i −1.28268 0.255141i
\(28\) 1.11051 0.742017i 0.0396610 0.0265006i
\(29\) 8.40610 + 42.2603i 0.289866 + 1.45725i 0.801472 + 0.598032i \(0.204051\pi\)
−0.511606 + 0.859220i \(0.670949\pi\)
\(30\) 0 0
\(31\) 9.36788 14.0200i 0.302190 0.452259i −0.649035 0.760759i \(-0.724827\pi\)
0.951224 + 0.308500i \(0.0998270\pi\)
\(32\) 7.94597 19.1833i 0.248312 0.599477i
\(33\) 1.81448 0.0549842
\(34\) −18.9427 + 34.4572i −0.557138 + 1.01345i
\(35\) 0 0
\(36\) 8.29359 20.0225i 0.230377 0.556180i
\(37\) 12.0064 17.9689i 0.324499 0.485646i −0.632973 0.774174i \(-0.718166\pi\)
0.957472 + 0.288527i \(0.0931656\pi\)
\(38\) 39.3239 39.3239i 1.03484 1.03484i
\(39\) −30.5300 + 6.07279i −0.782819 + 0.155712i
\(40\) 0 0
\(41\) 67.7453 + 13.4754i 1.65232 + 0.328668i 0.931303 0.364245i \(-0.118673\pi\)
0.721022 + 0.692913i \(0.243673\pi\)
\(42\) −4.38353 10.5828i −0.104370 0.251971i
\(43\) 5.12800 2.12409i 0.119256 0.0493974i −0.322258 0.946652i \(-0.604442\pi\)
0.441513 + 0.897255i \(0.354442\pi\)
\(44\) −0.0954667 + 0.479943i −0.00216970 + 0.0109078i
\(45\) 0 0
\(46\) 11.7122 + 58.8814i 0.254614 + 1.28003i
\(47\) −60.9689 60.9689i −1.29721 1.29721i −0.930227 0.366984i \(-0.880390\pi\)
−0.366984 0.930227i \(-0.619610\pi\)
\(48\) −81.4787 54.4423i −1.69747 1.13421i
\(49\) 44.3657 + 18.3769i 0.905423 + 0.375038i
\(50\) 0 0
\(51\) 65.1373 + 54.7528i 1.27720 + 1.07358i
\(52\) 8.39491i 0.161441i
\(53\) 14.9763 + 6.20340i 0.282572 + 0.117045i 0.519468 0.854490i \(-0.326130\pi\)
−0.236896 + 0.971535i \(0.576130\pi\)
\(54\) −67.9091 45.3754i −1.25758 0.840285i
\(55\) 0 0
\(56\) −5.94806 + 1.18314i −0.106215 + 0.0211275i
\(57\) −66.8621 100.066i −1.17302 1.75555i
\(58\) −19.4432 + 97.7476i −0.335228 + 1.68530i
\(59\) −60.5743 + 25.0907i −1.02668 + 0.425266i −0.831514 0.555503i \(-0.812526\pi\)
−0.195169 + 0.980770i \(0.562526\pi\)
\(60\) 0 0
\(61\) 2.42535 12.1930i 0.0397598 0.199886i −0.955800 0.294018i \(-0.905008\pi\)
0.995560 + 0.0941318i \(0.0300075\pi\)
\(62\) 32.4281 21.6678i 0.523035 0.349481i
\(63\) −15.5790 + 3.09885i −0.247285 + 0.0491881i
\(64\) −21.4134 + 21.4134i −0.334584 + 0.334584i
\(65\) 0 0
\(66\) 3.87740 + 1.60607i 0.0587485 + 0.0243344i
\(67\) 39.4771 0.589210 0.294605 0.955619i \(-0.404812\pi\)
0.294605 + 0.955619i \(0.404812\pi\)
\(68\) −17.9097 + 14.3486i −0.263377 + 0.211008i
\(69\) 129.919 1.88289
\(70\) 0 0
\(71\) −65.4676 43.7440i −0.922079 0.616113i 0.00130176 0.999999i \(-0.499586\pi\)
−0.923381 + 0.383886i \(0.874586\pi\)
\(72\) −69.5848 + 69.5848i −0.966456 + 0.966456i
\(73\) −0.0692193 0.347989i −0.000948210 0.00476697i 0.980308 0.197473i \(-0.0632736\pi\)
−0.981256 + 0.192706i \(0.938274\pi\)
\(74\) 41.5619 27.7708i 0.561647 0.375281i
\(75\) 0 0
\(76\) 29.9861 12.4207i 0.394554 0.163430i
\(77\) 0.331355 0.137252i 0.00430331 0.00178249i
\(78\) −70.6154 14.0463i −0.905326 0.180081i
\(79\) 44.3559 + 66.3833i 0.561468 + 0.840296i 0.998242 0.0592757i \(-0.0188791\pi\)
−0.436774 + 0.899571i \(0.643879\pi\)
\(80\) 0 0
\(81\) −22.8085 + 22.8085i −0.281586 + 0.281586i
\(82\) 132.839 + 88.7601i 1.61999 + 1.08244i
\(83\) −32.8738 + 79.3643i −0.396070 + 0.956197i 0.592519 + 0.805556i \(0.298133\pi\)
−0.988589 + 0.150640i \(0.951867\pi\)
\(84\) 6.68525i 0.0795863i
\(85\) 0 0
\(86\) 12.8383 0.149282
\(87\) 199.259 + 82.5356i 2.29033 + 0.948685i
\(88\) 1.23447 1.84752i 0.0140281 0.0209945i
\(89\) 120.939 + 120.939i 1.35887 + 1.35887i 0.875314 + 0.483555i \(0.160655\pi\)
0.483555 + 0.875314i \(0.339345\pi\)
\(90\) 0 0
\(91\) −5.11592 + 3.41835i −0.0562190 + 0.0375643i
\(92\) −6.83554 + 34.3646i −0.0742993 + 0.373528i
\(93\) −32.2987 77.9759i −0.347298 0.838450i
\(94\) −76.3197 184.252i −0.811912 1.96013i
\(95\) 0 0
\(96\) −57.7416 86.4164i −0.601475 0.900171i
\(97\) −86.7371 + 17.2531i −0.894197 + 0.177867i −0.620739 0.784017i \(-0.713167\pi\)
−0.273458 + 0.961884i \(0.588167\pi\)
\(98\) 78.5399 + 78.5399i 0.801428 + 0.801428i
\(99\) 3.23329 4.83896i 0.0326595 0.0488784i
\(100\) 0 0
\(101\) 68.9645i 0.682816i 0.939915 + 0.341408i \(0.110904\pi\)
−0.939915 + 0.341408i \(0.889096\pi\)
\(102\) 90.7294 + 174.658i 0.889504 + 1.71234i
\(103\) 143.720i 1.39534i 0.716418 + 0.697671i \(0.245780\pi\)
−0.716418 + 0.697671i \(0.754220\pi\)
\(104\) −14.5876 + 35.2175i −0.140265 + 0.338629i
\(105\) 0 0
\(106\) 26.5124 + 26.5124i 0.250117 + 0.250117i
\(107\) −37.4541 188.295i −0.350039 1.75976i −0.608319 0.793693i \(-0.708156\pi\)
0.258280 0.966070i \(-0.416844\pi\)
\(108\) −26.4822 39.6334i −0.245205 0.366975i
\(109\) 97.4423 + 19.3825i 0.893966 + 0.177821i 0.620635 0.784099i \(-0.286875\pi\)
0.273330 + 0.961920i \(0.411875\pi\)
\(110\) 0 0
\(111\) −41.3960 99.9387i −0.372937 0.900348i
\(112\) −18.9975 3.77884i −0.169621 0.0337397i
\(113\) 97.9029 65.4166i 0.866397 0.578908i −0.0410109 0.999159i \(-0.513058\pi\)
0.907408 + 0.420251i \(0.138058\pi\)
\(114\) −54.3063 273.016i −0.476371 2.39488i
\(115\) 0 0
\(116\) −32.3150 + 48.3628i −0.278578 + 0.416921i
\(117\) −38.2072 + 92.2404i −0.326557 + 0.788380i
\(118\) −151.652 −1.28518
\(119\) 16.0368 + 5.07165i 0.134763 + 0.0426189i
\(120\) 0 0
\(121\) 46.2544 111.668i 0.382268 0.922876i
\(122\) 15.9754 23.9088i 0.130946 0.195974i
\(123\) 244.474 244.474i 1.98760 1.98760i
\(124\) 22.3246 4.44063i 0.180037 0.0358115i
\(125\) 0 0
\(126\) −36.0340 7.16760i −0.285984 0.0568857i
\(127\) 45.9034 + 110.821i 0.361444 + 0.872603i 0.995089 + 0.0989792i \(0.0315577\pi\)
−0.633646 + 0.773623i \(0.718442\pi\)
\(128\) −141.446 + 58.5887i −1.10504 + 0.457724i
\(129\) 5.42014 27.2489i 0.0420166 0.211232i
\(130\) 0 0
\(131\) 41.9499 + 210.896i 0.320228 + 1.60990i 0.720469 + 0.693487i \(0.243926\pi\)
−0.400241 + 0.916410i \(0.631074\pi\)
\(132\) 1.73198 + 1.73198i 0.0131211 + 0.0131211i
\(133\) −19.7794 13.2162i −0.148717 0.0993697i
\(134\) 84.3594 + 34.9428i 0.629548 + 0.260767i
\(135\) 0 0
\(136\) 100.066 29.0726i 0.735777 0.213769i
\(137\) 82.8569i 0.604795i 0.953182 + 0.302398i \(0.0977870\pi\)
−0.953182 + 0.302398i \(0.902213\pi\)
\(138\) 277.627 + 114.997i 2.01179 + 0.833311i
\(139\) −137.679 91.9943i −0.990498 0.661829i −0.0489823 0.998800i \(-0.515598\pi\)
−0.941515 + 0.336970i \(0.890598\pi\)
\(140\) 0 0
\(141\) −423.292 + 84.1981i −3.00207 + 0.597149i
\(142\) −101.179 151.426i −0.712532 1.06638i
\(143\) 0.439800 2.21102i 0.00307552 0.0154617i
\(144\) −290.380 + 120.279i −2.01653 + 0.835273i
\(145\) 0 0
\(146\) 0.160103 0.804894i 0.00109660 0.00551298i
\(147\) 199.858 133.541i 1.35958 0.908440i
\(148\) 28.6125 5.69138i 0.193328 0.0384553i
\(149\) −114.653 + 114.653i −0.769486 + 0.769486i −0.978016 0.208530i \(-0.933132\pi\)
0.208530 + 0.978016i \(0.433132\pi\)
\(150\) 0 0
\(151\) −144.717 59.9439i −0.958394 0.396980i −0.152014 0.988378i \(-0.548576\pi\)
−0.806379 + 0.591399i \(0.798576\pi\)
\(152\) −147.378 −0.969590
\(153\) 262.089 76.1459i 1.71300 0.497686i
\(154\) 0.829566 0.00538680
\(155\) 0 0
\(156\) −34.9386 23.3452i −0.223965 0.149649i
\(157\) −88.8938 + 88.8938i −0.566203 + 0.566203i −0.931062 0.364860i \(-0.881117\pi\)
0.364860 + 0.931062i \(0.381117\pi\)
\(158\) 36.0265 + 181.117i 0.228016 + 1.14631i
\(159\) 67.4651 45.0787i 0.424309 0.283514i
\(160\) 0 0
\(161\) 23.7254 9.82739i 0.147363 0.0610397i
\(162\) −68.9287 + 28.5512i −0.425486 + 0.176242i
\(163\) −104.248 20.7361i −0.639556 0.127216i −0.135348 0.990798i \(-0.543215\pi\)
−0.504208 + 0.863582i \(0.668215\pi\)
\(164\) 51.8025 + 77.5280i 0.315869 + 0.472731i
\(165\) 0 0
\(166\) −140.497 + 140.497i −0.846370 + 0.846370i
\(167\) −124.453 83.1570i −0.745229 0.497946i 0.124045 0.992277i \(-0.460413\pi\)
−0.869274 + 0.494331i \(0.835413\pi\)
\(168\) −11.6167 + 28.0453i −0.0691472 + 0.166936i
\(169\) 130.326i 0.771160i
\(170\) 0 0
\(171\) −386.007 −2.25735
\(172\) 6.92236 + 2.86734i 0.0402463 + 0.0166706i
\(173\) 15.1413 22.6606i 0.0875220 0.130986i −0.785125 0.619337i \(-0.787401\pi\)
0.872647 + 0.488351i \(0.162401\pi\)
\(174\) 352.744 + 352.744i 2.02727 + 2.02727i
\(175\) 0 0
\(176\) 5.90080 3.94279i 0.0335273 0.0224022i
\(177\) −64.0253 + 321.877i −0.361725 + 1.81851i
\(178\) 151.389 + 365.487i 0.850503 + 2.05330i
\(179\) 20.5361 + 49.5786i 0.114727 + 0.276976i 0.970805 0.239872i \(-0.0771054\pi\)
−0.856077 + 0.516847i \(0.827105\pi\)
\(180\) 0 0
\(181\) 64.7443 + 96.8967i 0.357703 + 0.535341i 0.966058 0.258324i \(-0.0831702\pi\)
−0.608355 + 0.793665i \(0.708170\pi\)
\(182\) −13.9581 + 2.77643i −0.0766927 + 0.0152551i
\(183\) −44.0013 44.0013i −0.240445 0.240445i
\(184\) 88.3899 132.285i 0.480380 0.718939i
\(185\) 0 0
\(186\) 195.217i 1.04956i
\(187\) −5.46868 + 2.84080i −0.0292443 + 0.0151915i
\(188\) 116.394i 0.619116i
\(189\) −13.3695 + 32.2769i −0.0707382 + 0.170777i
\(190\) 0 0
\(191\) −54.0250 54.0250i −0.282853 0.282853i 0.551393 0.834246i \(-0.314097\pi\)
−0.834246 + 0.551393i \(0.814097\pi\)
\(192\) 29.5719 + 148.668i 0.154020 + 0.774311i
\(193\) −120.442 180.254i −0.624052 0.933960i −0.999973 0.00730837i \(-0.997674\pi\)
0.375921 0.926652i \(-0.377326\pi\)
\(194\) −200.622 39.9062i −1.03413 0.205702i
\(195\) 0 0
\(196\) 24.8072 + 59.8900i 0.126568 + 0.305561i
\(197\) −244.405 48.6152i −1.24064 0.246778i −0.469204 0.883090i \(-0.655459\pi\)
−0.771432 + 0.636312i \(0.780459\pi\)
\(198\) 11.1925 7.47856i 0.0565276 0.0377705i
\(199\) −52.4658 263.763i −0.263647 1.32544i −0.854831 0.518906i \(-0.826339\pi\)
0.591184 0.806537i \(-0.298661\pi\)
\(200\) 0 0
\(201\) 109.781 164.299i 0.546173 0.817406i
\(202\) −61.0434 + 147.372i −0.302195 + 0.729563i
\(203\) 42.6312 0.210006
\(204\) 9.91237 + 114.439i 0.0485901 + 0.560977i
\(205\) 0 0
\(206\) −127.213 + 307.119i −0.617538 + 1.49087i
\(207\) 231.508 346.476i 1.11840 1.67380i
\(208\) −86.0893 + 86.0893i −0.413891 + 0.413891i
\(209\) 8.54834 1.70037i 0.0409012 0.00813575i
\(210\) 0 0
\(211\) 199.610 + 39.7050i 0.946021 + 0.188175i 0.643913 0.765099i \(-0.277310\pi\)
0.302107 + 0.953274i \(0.402310\pi\)
\(212\) 8.37406 + 20.2168i 0.0395003 + 0.0953621i
\(213\) −364.115 + 150.821i −1.70946 + 0.708081i
\(214\) 86.6310 435.523i 0.404818 2.03516i
\(215\) 0 0
\(216\) 42.2257 + 212.283i 0.195489 + 0.982791i
\(217\) −11.7966 11.7966i −0.0543620 0.0543620i
\(218\) 191.070 + 127.669i 0.876469 + 0.585638i
\(219\) −1.64078 0.679632i −0.00749213 0.00310334i
\(220\) 0 0
\(221\) 82.5069 66.1015i 0.373334 0.299102i
\(222\) 250.203i 1.12704i
\(223\) −301.515 124.891i −1.35208 0.560051i −0.415212 0.909725i \(-0.636292\pi\)
−0.936872 + 0.349674i \(0.886292\pi\)
\(224\) −17.0813 11.4134i −0.0762560 0.0509526i
\(225\) 0 0
\(226\) 267.114 53.1323i 1.18192 0.235098i
\(227\) −86.6828 129.730i −0.381863 0.571498i 0.589895 0.807480i \(-0.299169\pi\)
−0.971757 + 0.235982i \(0.924169\pi\)
\(228\) 31.6945 159.339i 0.139011 0.698855i
\(229\) −280.820 + 116.319i −1.22629 + 0.507945i −0.899403 0.437120i \(-0.855999\pi\)
−0.326884 + 0.945065i \(0.605999\pi\)
\(230\) 0 0
\(231\) 0.350232 1.76074i 0.00151616 0.00762224i
\(232\) 219.603 146.734i 0.946565 0.632474i
\(233\) −101.530 + 20.1955i −0.435749 + 0.0866759i −0.408090 0.912942i \(-0.633805\pi\)
−0.0276587 + 0.999617i \(0.508805\pi\)
\(234\) −163.292 + 163.292i −0.697828 + 0.697828i
\(235\) 0 0
\(236\) −81.7702 33.8703i −0.346484 0.143518i
\(237\) 399.628 1.68619
\(238\) 29.7803 + 25.0326i 0.125127 + 0.105179i
\(239\) 388.547 1.62572 0.812860 0.582459i \(-0.197909\pi\)
0.812860 + 0.582459i \(0.197909\pi\)
\(240\) 0 0
\(241\) 282.183 + 188.549i 1.17088 + 0.782359i 0.979950 0.199244i \(-0.0638486\pi\)
0.190933 + 0.981603i \(0.438849\pi\)
\(242\) 197.684 197.684i 0.816877 0.816877i
\(243\) −30.5007 153.337i −0.125517 0.631018i
\(244\) 13.9538 9.32360i 0.0571875 0.0382115i
\(245\) 0 0
\(246\) 738.817 306.028i 3.00332 1.24402i
\(247\) −138.141 + 57.2200i −0.559276 + 0.231660i
\(248\) −101.370 20.1637i −0.408750 0.0813054i
\(249\) 238.887 + 357.519i 0.959384 + 1.43582i
\(250\) 0 0
\(251\) 87.2461 87.2461i 0.347594 0.347594i −0.511619 0.859213i \(-0.670954\pi\)
0.859213 + 0.511619i \(0.170954\pi\)
\(252\) −17.8286 11.9127i −0.0707485 0.0472726i
\(253\) −3.60064 + 8.69271i −0.0142318 + 0.0343585i
\(254\) 277.446i 1.09231i
\(255\) 0 0
\(256\) −232.986 −0.910100
\(257\) 71.2832 + 29.5265i 0.277367 + 0.114889i 0.517031 0.855967i \(-0.327037\pi\)
−0.239664 + 0.970856i \(0.577037\pi\)
\(258\) 35.7016 53.4312i 0.138378 0.207098i
\(259\) −15.1192 15.1192i −0.0583753 0.0583753i
\(260\) 0 0
\(261\) 575.177 384.321i 2.20374 1.47249i
\(262\) −97.0297 + 487.801i −0.370342 + 1.86184i
\(263\) −28.7756 69.4703i −0.109413 0.264146i 0.859684 0.510826i \(-0.170660\pi\)
−0.969097 + 0.246680i \(0.920660\pi\)
\(264\) −4.25623 10.2754i −0.0161221 0.0389221i
\(265\) 0 0
\(266\) −30.5689 45.7495i −0.114921 0.171991i
\(267\) 839.652 167.017i 3.14476 0.625532i
\(268\) 37.6822 + 37.6822i 0.140605 + 0.140605i
\(269\) 100.440 150.319i 0.373383 0.558807i −0.596428 0.802667i \(-0.703414\pi\)
0.969810 + 0.243860i \(0.0784137\pi\)
\(270\) 0 0
\(271\) 241.430i 0.890886i −0.895310 0.445443i \(-0.853046\pi\)
0.895310 0.445443i \(-0.146954\pi\)
\(272\) 330.806 + 36.5188i 1.21620 + 0.134260i
\(273\) 30.7979i 0.112813i
\(274\) −73.3402 + 177.059i −0.267665 + 0.646200i
\(275\) 0 0
\(276\) 124.012 + 124.012i 0.449320 + 0.449320i
\(277\) 60.3707 + 303.504i 0.217945 + 1.09568i 0.922489 + 0.386022i \(0.126151\pi\)
−0.704545 + 0.709660i \(0.748849\pi\)
\(278\) −212.782 318.450i −0.765402 1.14550i
\(279\) −265.505 52.8122i −0.951630 0.189291i
\(280\) 0 0
\(281\) −8.71849 21.0483i −0.0310267 0.0749050i 0.907607 0.419821i \(-0.137907\pi\)
−0.938633 + 0.344916i \(0.887907\pi\)
\(282\) −979.070 194.749i −3.47188 0.690600i
\(283\) 86.2953 57.6606i 0.304930 0.203748i −0.393685 0.919245i \(-0.628800\pi\)
0.698615 + 0.715498i \(0.253800\pi\)
\(284\) −20.7359 104.246i −0.0730136 0.367064i
\(285\) 0 0
\(286\) 2.89689 4.33550i 0.0101290 0.0151591i
\(287\) 26.1525 63.1377i 0.0911237 0.219992i
\(288\) −333.352 −1.15747
\(289\) −282.041 63.0392i −0.975920 0.218129i
\(290\) 0 0
\(291\) −169.400 + 408.968i −0.582130 + 1.40539i
\(292\) 0.266095 0.398240i 0.000911285 0.00136383i
\(293\) 20.1749 20.1749i 0.0688564 0.0688564i −0.671840 0.740696i \(-0.734496\pi\)
0.740696 + 0.671840i \(0.234496\pi\)
\(294\) 545.283 108.464i 1.85471 0.368924i
\(295\) 0 0
\(296\) −129.922 25.8431i −0.438926 0.0873077i
\(297\) −4.89843 11.8259i −0.0164930 0.0398177i
\(298\) −346.490 + 143.521i −1.16272 + 0.481613i
\(299\) 31.4902 158.312i 0.105318 0.529472i
\(300\) 0 0
\(301\) −1.07136 5.38610i −0.00355934 0.0178940i
\(302\) −256.191 256.191i −0.848315 0.848315i
\(303\) 287.021 + 191.782i 0.947266 + 0.632943i
\(304\) −434.879 180.133i −1.43052 0.592542i
\(305\) 0 0
\(306\) 627.463 + 69.2679i 2.05053 + 0.226366i
\(307\) 178.586i 0.581714i −0.956766 0.290857i \(-0.906060\pi\)
0.956766 0.290857i \(-0.0939405\pi\)
\(308\) 0.447301 + 0.185278i 0.00145228 + 0.000601552i
\(309\) 598.146 + 399.668i 1.93575 + 1.29342i
\(310\) 0 0
\(311\) −91.7576 + 18.2517i −0.295041 + 0.0586872i −0.340391 0.940284i \(-0.610560\pi\)
0.0453506 + 0.998971i \(0.485560\pi\)
\(312\) 106.005 + 158.647i 0.339758 + 0.508484i
\(313\) −49.0559 + 246.620i −0.156728 + 0.787925i 0.819819 + 0.572622i \(0.194074\pi\)
−0.976547 + 0.215303i \(0.930926\pi\)
\(314\) −268.643 + 111.276i −0.855551 + 0.354381i
\(315\) 0 0
\(316\) −21.0259 + 105.704i −0.0665377 + 0.334508i
\(317\) −439.929 + 293.951i −1.38779 + 0.927291i −0.387805 + 0.921742i \(0.626767\pi\)
−0.999985 + 0.00554969i \(0.998233\pi\)
\(318\) 184.069 36.6135i 0.578832 0.115137i
\(319\) −11.0447 + 11.0447i −0.0346228 + 0.0346228i
\(320\) 0 0
\(321\) −887.814 367.745i −2.76578 1.14562i
\(322\) 59.3981 0.184466
\(323\) 358.183 + 196.910i 1.10893 + 0.609627i
\(324\) −43.5429 −0.134392
\(325\) 0 0
\(326\) −204.415 136.586i −0.627039 0.418974i
\(327\) 351.642 351.642i 1.07536 1.07536i
\(328\) −82.5989 415.253i −0.251826 1.26601i
\(329\) −70.9313 + 47.3948i −0.215597 + 0.144057i
\(330\) 0 0
\(331\) 359.665 148.978i 1.08660 0.450085i 0.233781 0.972289i \(-0.424890\pi\)
0.852821 + 0.522204i \(0.174890\pi\)
\(332\) −107.135 + 44.3768i −0.322696 + 0.133665i
\(333\) −340.287 67.6873i −1.02188 0.203265i
\(334\) −192.341 287.859i −0.575871 0.861853i
\(335\) 0 0
\(336\) −68.5568 + 68.5568i −0.204038 + 0.204038i
\(337\) −450.870 301.262i −1.33789 0.893952i −0.338991 0.940790i \(-0.610085\pi\)
−0.998902 + 0.0468383i \(0.985085\pi\)
\(338\) 115.357 278.497i 0.341293 0.823954i
\(339\) 589.375i 1.73857i
\(340\) 0 0
\(341\) 6.11240 0.0179249
\(342\) −824.867 341.671i −2.41189 0.999038i
\(343\) 53.3302 79.8143i 0.155482 0.232695i
\(344\) −24.0575 24.0575i −0.0699346 0.0699346i
\(345\) 0 0
\(346\) 52.4136 35.0217i 0.151484 0.101219i
\(347\) −12.2863 + 61.7675i −0.0354072 + 0.178004i −0.994442 0.105283i \(-0.966425\pi\)
0.959035 + 0.283288i \(0.0914251\pi\)
\(348\) 111.416 + 268.982i 0.320161 + 0.772937i
\(349\) 164.739 + 397.715i 0.472031 + 1.13958i 0.963264 + 0.268556i \(0.0865465\pi\)
−0.491233 + 0.871028i \(0.663454\pi\)
\(350\) 0 0
\(351\) 121.999 + 182.584i 0.347576 + 0.520184i
\(352\) 7.38228 1.46843i 0.0209724 0.00417167i
\(353\) 27.5316 + 27.5316i 0.0779933 + 0.0779933i 0.745027 0.667034i \(-0.232436\pi\)
−0.667034 + 0.745027i \(0.732436\pi\)
\(354\) −421.724 + 631.155i −1.19131 + 1.78292i
\(355\) 0 0
\(356\) 230.882i 0.648544i
\(357\) 65.7039 52.6396i 0.184045 0.147450i
\(358\) 124.123i 0.346713i
\(359\) −228.318 + 551.208i −0.635983 + 1.53540i 0.196004 + 0.980603i \(0.437203\pi\)
−0.831987 + 0.554795i \(0.812797\pi\)
\(360\) 0 0
\(361\) −153.507 153.507i −0.425228 0.425228i
\(362\) 52.5862 + 264.369i 0.145266 + 0.730300i
\(363\) −336.121 503.040i −0.925952 1.38579i
\(364\) −8.14626 1.62039i −0.0223798 0.00445163i
\(365\) 0 0
\(366\) −55.0800 132.975i −0.150492 0.363319i
\(367\) −107.558 21.3947i −0.293074 0.0582961i 0.0463633 0.998925i \(-0.485237\pi\)
−0.339438 + 0.940629i \(0.610237\pi\)
\(368\) 422.505 282.309i 1.14811 0.767143i
\(369\) −216.340 1087.62i −0.586288 2.94747i
\(370\) 0 0
\(371\) 8.91040 13.3354i 0.0240172 0.0359443i
\(372\) 43.6005 105.261i 0.117206 0.282959i
\(373\) 187.710 0.503243 0.251622 0.967826i \(-0.419036\pi\)
0.251622 + 0.967826i \(0.419036\pi\)
\(374\) −14.2007 + 1.23002i −0.0379697 + 0.00328882i
\(375\) 0 0
\(376\) −202.254 + 488.284i −0.537909 + 1.29863i
\(377\) 148.870 222.800i 0.394881 0.590981i
\(378\) −57.1392 + 57.1392i −0.151162 + 0.151162i
\(379\) 33.4960 6.66277i 0.0883799 0.0175799i −0.150702 0.988579i \(-0.548153\pi\)
0.239082 + 0.970999i \(0.423153\pi\)
\(380\) 0 0
\(381\) 588.873 + 117.134i 1.54560 + 0.307439i
\(382\) −67.6274 163.267i −0.177035 0.427401i
\(383\) 629.678 260.821i 1.64407 0.680995i 0.647368 0.762178i \(-0.275870\pi\)
0.996699 + 0.0811827i \(0.0258697\pi\)
\(384\) −149.504 + 751.607i −0.389333 + 1.95731i
\(385\) 0 0
\(386\) −97.8247 491.798i −0.253432 1.27409i
\(387\) −63.0106 63.0106i −0.162818 0.162818i
\(388\) −99.2622 66.3249i −0.255830 0.170940i
\(389\) 10.8240 + 4.48344i 0.0278251 + 0.0115255i 0.396553 0.918012i \(-0.370206\pi\)
−0.368727 + 0.929538i \(0.620206\pi\)
\(390\) 0 0
\(391\) −391.565 + 203.405i −1.00144 + 0.520218i
\(392\) 294.351i 0.750895i
\(393\) 994.382 + 411.887i 2.53024 + 1.04806i
\(394\) −479.244 320.220i −1.21635 0.812742i
\(395\) 0 0
\(396\) 7.70524 1.53267i 0.0194577 0.00387037i
\(397\) 11.9231 + 17.8441i 0.0300329 + 0.0449474i 0.846182 0.532894i \(-0.178895\pi\)
−0.816149 + 0.577841i \(0.803895\pi\)
\(398\) 121.353 610.081i 0.304906 1.53287i
\(399\) −110.008 + 45.5669i −0.275710 + 0.114203i
\(400\) 0 0
\(401\) −6.89278 + 34.6523i −0.0171890 + 0.0864148i −0.988428 0.151694i \(-0.951527\pi\)
0.971239 + 0.238108i \(0.0765273\pi\)
\(402\) 380.021 253.922i 0.945325 0.631646i
\(403\) −102.846 + 20.4573i −0.255200 + 0.0507624i
\(404\) −65.8289 + 65.8289i −0.162943 + 0.162943i
\(405\) 0 0
\(406\) 91.0995 + 37.7346i 0.224383 + 0.0929425i
\(407\) 7.83403 0.0192482
\(408\) 157.274 497.308i 0.385475 1.21889i
\(409\) −280.116 −0.684879 −0.342440 0.939540i \(-0.611253\pi\)
−0.342440 + 0.939540i \(0.611253\pi\)
\(410\) 0 0
\(411\) 344.840 + 230.415i 0.839027 + 0.560620i
\(412\) −137.186 + 137.186i −0.332976 + 0.332976i
\(413\) 12.6554 + 63.6232i 0.0306427 + 0.154051i
\(414\) 801.395 535.475i 1.93574 1.29342i
\(415\) 0 0
\(416\) −119.298 + 49.4147i −0.286773 + 0.118785i
\(417\) −765.737 + 317.179i −1.83630 + 0.760621i
\(418\) 19.7722 + 3.93294i 0.0473020 + 0.00940895i
\(419\) 76.3556 + 114.274i 0.182233 + 0.272731i 0.911328 0.411682i \(-0.135059\pi\)
−0.729095 + 0.684413i \(0.760059\pi\)
\(420\) 0 0
\(421\) 183.297 183.297i 0.435385 0.435385i −0.455070 0.890455i \(-0.650386\pi\)
0.890455 + 0.455070i \(0.150386\pi\)
\(422\) 391.407 + 261.530i 0.927505 + 0.619739i
\(423\) −529.736 + 1278.90i −1.25233 + 3.02339i
\(424\) 99.3626i 0.234346i
\(425\) 0 0
\(426\) −911.583 −2.13987
\(427\) −11.3638 4.70702i −0.0266130 0.0110235i
\(428\) 143.982 215.485i 0.336408 0.503470i
\(429\) −7.97897 7.97897i −0.0185990 0.0185990i
\(430\) 0 0
\(431\) 419.398 280.233i 0.973080 0.650192i 0.0360172 0.999351i \(-0.488533\pi\)
0.937063 + 0.349160i \(0.113533\pi\)
\(432\) −134.865 + 678.011i −0.312187 + 1.56947i
\(433\) −316.814 764.858i −0.731673 1.76641i −0.636942 0.770912i \(-0.719801\pi\)
−0.0947312 0.995503i \(-0.530199\pi\)
\(434\) −14.7667 35.6500i −0.0340247 0.0821428i
\(435\) 0 0
\(436\) 74.5108 + 111.513i 0.170896 + 0.255764i
\(437\) 612.073 121.749i 1.40062 0.278601i
\(438\) −2.90464 2.90464i −0.00663160 0.00663160i
\(439\) −37.2714 + 55.7806i −0.0849006 + 0.127063i −0.871489 0.490415i \(-0.836845\pi\)
0.786589 + 0.617477i \(0.211845\pi\)
\(440\) 0 0
\(441\) 770.954i 1.74819i
\(442\) 234.820 68.2234i 0.531267 0.154352i
\(443\) 602.890i 1.36093i 0.732783 + 0.680463i \(0.238221\pi\)
−0.732783 + 0.680463i \(0.761779\pi\)
\(444\) 55.8810 134.909i 0.125858 0.303849i
\(445\) 0 0
\(446\) −533.767 533.767i −1.19679 1.19679i
\(447\) 158.336 + 796.010i 0.354220 + 1.78078i
\(448\) 16.6459 + 24.9124i 0.0371560 + 0.0556079i
\(449\) 702.019 + 139.640i 1.56352 + 0.311003i 0.899570 0.436777i \(-0.143880\pi\)
0.663947 + 0.747780i \(0.268880\pi\)
\(450\) 0 0
\(451\) 9.58196 + 23.1329i 0.0212460 + 0.0512925i
\(452\) 155.894 + 31.0093i 0.344898 + 0.0686046i
\(453\) −651.920 + 435.599i −1.43912 + 0.961588i
\(454\) −70.4050 353.950i −0.155077 0.779625i
\(455\) 0 0
\(456\) −409.839 + 613.368i −0.898770 + 1.34510i
\(457\) −179.878 + 434.264i −0.393606 + 0.950250i 0.595541 + 0.803325i \(0.296938\pi\)
−0.989148 + 0.146925i \(0.953062\pi\)
\(458\) −703.049 −1.53504
\(459\) 181.004 572.345i 0.394345 1.24694i
\(460\) 0 0
\(461\) −152.470 + 368.096i −0.330739 + 0.798474i 0.667795 + 0.744345i \(0.267238\pi\)
−0.998534 + 0.0541287i \(0.982762\pi\)
\(462\) 2.30692 3.45255i 0.00499334 0.00747306i
\(463\) 96.2811 96.2811i 0.207950 0.207950i −0.595445 0.803396i \(-0.703024\pi\)
0.803396 + 0.595445i \(0.203024\pi\)
\(464\) 827.347 164.570i 1.78307 0.354676i
\(465\) 0 0
\(466\) −234.837 46.7119i −0.503941 0.100240i
\(467\) 165.232 + 398.906i 0.353816 + 0.854188i 0.996142 + 0.0877563i \(0.0279697\pi\)
−0.642326 + 0.766432i \(0.722030\pi\)
\(468\) −124.517 + 51.5765i −0.266061 + 0.110206i
\(469\) 7.61989 38.3078i 0.0162471 0.0816797i
\(470\) 0 0
\(471\) 122.762 + 617.168i 0.260642 + 1.31034i
\(472\) 284.179 + 284.179i 0.602073 + 0.602073i
\(473\) 1.67297 + 1.11784i 0.00353694 + 0.00236331i
\(474\) 853.973 + 353.727i 1.80163 + 0.746260i
\(475\) 0 0
\(476\) 10.4666 + 20.1487i 0.0219887 + 0.0423293i
\(477\) 260.247i 0.545592i
\(478\) 830.295 + 343.920i 1.73702 + 0.719497i
\(479\) −352.426 235.484i −0.735755 0.491616i 0.130356 0.991467i \(-0.458388\pi\)
−0.866111 + 0.499852i \(0.833388\pi\)
\(480\) 0 0
\(481\) −131.813 + 26.2193i −0.274040 + 0.0545099i
\(482\) 436.111 + 652.686i 0.904794 + 1.35412i
\(483\) 25.0771 126.071i 0.0519194 0.261017i
\(484\) 150.742 62.4395i 0.311451 0.129007i
\(485\) 0 0
\(486\) 70.5478 354.668i 0.145160 0.729769i
\(487\) −398.602 + 266.338i −0.818486 + 0.546895i −0.892859 0.450336i \(-0.851304\pi\)
0.0743736 + 0.997230i \(0.476304\pi\)
\(488\) −74.7387 + 14.8664i −0.153153 + 0.0304640i
\(489\) −376.201 + 376.201i −0.769327 + 0.769327i
\(490\) 0 0
\(491\) −2.48118 1.02774i −0.00505332 0.00209315i 0.380155 0.924923i \(-0.375871\pi\)
−0.385209 + 0.922830i \(0.625871\pi\)
\(492\) 466.718 0.948614
\(493\) −729.768 + 63.2102i −1.48026 + 0.128215i
\(494\) −345.845 −0.700091
\(495\) 0 0
\(496\) −274.475 183.399i −0.553378 0.369755i
\(497\) −55.0850 + 55.0850i −0.110835 + 0.110835i
\(498\) 194.027 + 975.439i 0.389612 + 1.95871i
\(499\) −300.741 + 200.949i −0.602688 + 0.402703i −0.819143 0.573589i \(-0.805551\pi\)
0.216455 + 0.976293i \(0.430551\pi\)
\(500\) 0 0
\(501\) −692.178 + 286.709i −1.38159 + 0.572274i
\(502\) 263.663 109.213i 0.525226 0.217556i
\(503\) 141.236 + 28.0936i 0.280787 + 0.0558521i 0.333475 0.942759i \(-0.391779\pi\)
−0.0526876 + 0.998611i \(0.516779\pi\)
\(504\) 54.0924 + 80.9551i 0.107326 + 0.160625i
\(505\) 0 0
\(506\) −15.3886 + 15.3886i −0.0304122 + 0.0304122i
\(507\) −542.401 362.420i −1.06982 0.714833i
\(508\) −61.9657 + 149.598i −0.121980 + 0.294485i
\(509\) 281.872i 0.553776i −0.960902 0.276888i \(-0.910697\pi\)
0.960902 0.276888i \(-0.0893031\pi\)
\(510\) 0 0
\(511\) −0.351042 −0.000686972
\(512\) 67.9107 + 28.1295i 0.132638 + 0.0549405i
\(513\) −471.678 + 705.916i −0.919450 + 1.37605i
\(514\) 126.192 + 126.192i 0.245509 + 0.245509i
\(515\) 0 0
\(516\) 31.1837 20.8363i 0.0604336 0.0403804i
\(517\) 6.09774 30.6554i 0.0117945 0.0592948i
\(518\) −18.9259 45.6912i −0.0365365 0.0882069i
\(519\) −52.2044 126.032i −0.100586 0.242837i
\(520\) 0 0
\(521\) −403.558 603.967i −0.774583 1.15925i −0.983428 0.181297i \(-0.941971\pi\)
0.208846 0.977949i \(-0.433029\pi\)
\(522\) 1569.29 312.151i 3.00630 0.597990i
\(523\) 658.045 + 658.045i 1.25821 + 1.25821i 0.951946 + 0.306266i \(0.0990796\pi\)
0.306266 + 0.951946i \(0.400920\pi\)
\(524\) −161.265 + 241.351i −0.307758 + 0.460593i
\(525\) 0 0
\(526\) 173.923i 0.330652i
\(527\) 219.427 + 184.445i 0.416370 + 0.349990i
\(528\) 35.5228i 0.0672780i
\(529\) −55.3710 + 133.677i −0.104671 + 0.252698i
\(530\) 0 0
\(531\) 744.311 + 744.311i 1.40172 + 1.40172i
\(532\) −6.26483 31.4954i −0.0117760 0.0592019i
\(533\) −238.646 357.159i −0.447741 0.670091i
\(534\) 1942.10 + 386.309i 3.63690 + 0.723425i
\(535\) 0 0
\(536\) −92.6014 223.560i −0.172764 0.417089i
\(537\) 263.449 + 52.4032i 0.490593 + 0.0975851i
\(538\) 347.686 232.317i 0.646257 0.431815i
\(539\) 3.39608 + 17.0732i 0.00630070 + 0.0316757i
\(540\) 0 0
\(541\) −190.737 + 285.458i −0.352563 + 0.527648i −0.964786 0.263037i \(-0.915276\pi\)
0.612222 + 0.790686i \(0.290276\pi\)
\(542\) 213.700 515.918i 0.394281 0.951878i
\(543\) 583.318 1.07425
\(544\) 309.324 + 170.049i 0.568611 + 0.312591i
\(545\) 0 0
\(546\) −27.2605 + 65.8126i −0.0499276 + 0.120536i
\(547\) −341.029 + 510.386i −0.623453 + 0.933064i 0.376525 + 0.926407i \(0.377119\pi\)
−0.999978 + 0.00665718i \(0.997881\pi\)
\(548\) −79.0898 + 79.0898i −0.144324 + 0.144324i
\(549\) −195.753 + 38.9377i −0.356563 + 0.0709248i
\(550\) 0 0
\(551\) 1016.09 + 202.112i 1.84408 + 0.366810i
\(552\) −304.752 735.736i −0.552086 1.33285i
\(553\) 72.9787 30.2288i 0.131969 0.0546633i
\(554\) −139.637 + 702.001i −0.252052 + 1.26715i
\(555\) 0 0
\(556\) −43.6078 219.231i −0.0784313 0.394301i
\(557\) −41.7424 41.7424i −0.0749415 0.0749415i 0.668643 0.743584i \(-0.266876\pi\)
−0.743584 + 0.668643i \(0.766876\pi\)
\(558\) −520.617 347.865i −0.933005 0.623414i
\(559\) −31.8902 13.2094i −0.0570487 0.0236303i
\(560\) 0 0
\(561\) −3.38465 + 30.6599i −0.00603325 + 0.0546522i
\(562\) 52.6957i 0.0937646i
\(563\) −474.709 196.631i −0.843177 0.349255i −0.0810717 0.996708i \(-0.525834\pi\)
−0.762106 + 0.647453i \(0.775834\pi\)
\(564\) −484.417 323.677i −0.858895 0.573895i
\(565\) 0 0
\(566\) 235.444 46.8328i 0.415979 0.0827434i
\(567\) 17.7304 + 26.5354i 0.0312705 + 0.0467997i
\(568\) −94.1562 + 473.355i −0.165768 + 0.833372i
\(569\) 327.271 135.560i 0.575169 0.238243i −0.0760868 0.997101i \(-0.524243\pi\)
0.651256 + 0.758859i \(0.274243\pi\)
\(570\) 0 0
\(571\) −160.319 + 805.978i −0.280769 + 1.41152i 0.540676 + 0.841231i \(0.318169\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(572\) 2.53030 1.69069i 0.00442360 0.00295576i
\(573\) −375.082 + 74.6085i −0.654594 + 0.130207i
\(574\) 111.772 111.772i 0.194724 0.194724i
\(575\) 0 0
\(576\) 449.171 + 186.053i 0.779811 + 0.323008i
\(577\) −337.479 −0.584886 −0.292443 0.956283i \(-0.594468\pi\)
−0.292443 + 0.956283i \(0.594468\pi\)
\(578\) −546.901 384.356i −0.946195 0.664976i
\(579\) −1085.13 −1.87415
\(580\) 0 0
\(581\) 70.6683 + 47.2190i 0.121632 + 0.0812720i
\(582\) −723.989 + 723.989i −1.24397 + 1.24397i
\(583\) 1.14640 + 5.76333i 0.00196638 + 0.00988564i
\(584\) −1.80830 + 1.20827i −0.00309641 + 0.00206895i
\(585\) 0 0
\(586\) 60.9699 25.2546i 0.104044 0.0430965i
\(587\) 162.837 67.4493i 0.277405 0.114905i −0.239644 0.970861i \(-0.577031\pi\)
0.517049 + 0.855956i \(0.327031\pi\)
\(588\) 318.240 + 63.3020i 0.541225 + 0.107656i
\(589\) −225.237 337.091i −0.382406 0.572311i
\(590\) 0 0
\(591\) −881.991 + 881.991i −1.49237 + 1.49237i
\(592\) −351.784 235.055i −0.594231 0.397052i
\(593\) −97.6406 + 235.725i −0.164655 + 0.397513i −0.984574 0.174966i \(-0.944018\pi\)
0.819919 + 0.572479i \(0.194018\pi\)
\(594\) 29.6068i 0.0498430i
\(595\) 0 0
\(596\) −218.881 −0.367250
\(597\) −1243.65 515.137i −2.08317 0.862876i
\(598\) 207.421 310.427i 0.346858 0.519109i
\(599\) −47.8438 47.8438i −0.0798728 0.0798728i 0.666042 0.745914i \(-0.267987\pi\)
−0.745914 + 0.666042i \(0.767987\pi\)
\(600\) 0 0
\(601\) 380.371 254.155i 0.632896 0.422888i −0.197312 0.980341i \(-0.563221\pi\)
0.830208 + 0.557453i \(0.188221\pi\)
\(602\) 2.47805 12.4580i 0.00411636 0.0206943i
\(603\) −242.539 585.540i −0.402220 0.971044i
\(604\) −80.9192 195.356i −0.133972 0.323438i
\(605\) 0 0
\(606\) 443.589 + 663.877i 0.731994 + 1.09551i
\(607\) 258.994 51.5172i 0.426679 0.0848718i 0.0229205 0.999737i \(-0.492704\pi\)
0.403759 + 0.914866i \(0.367704\pi\)
\(608\) −353.013 353.013i −0.580614 0.580614i
\(609\) 118.552 177.426i 0.194667 0.291339i
\(610\) 0 0
\(611\) 536.208i 0.877591i
\(612\) 322.857 + 177.489i 0.527544 + 0.290014i
\(613\) 320.858i 0.523422i 0.965146 + 0.261711i \(0.0842868\pi\)
−0.965146 + 0.261711i \(0.915713\pi\)
\(614\) 158.074 381.625i 0.257450 0.621539i
\(615\) 0 0
\(616\) −1.55452 1.55452i −0.00252357 0.00252357i
\(617\) −109.348 549.727i −0.177225 0.890968i −0.962388 0.271679i \(-0.912421\pi\)
0.785163 0.619289i \(-0.212579\pi\)
\(618\) 924.428 + 1383.50i 1.49584 + 2.23868i
\(619\) −102.300 20.3487i −0.165266 0.0328735i 0.111764 0.993735i \(-0.464350\pi\)
−0.277030 + 0.960861i \(0.589350\pi\)
\(620\) 0 0
\(621\) −350.734 846.747i −0.564789 1.36352i
\(622\) −212.234 42.2160i −0.341213 0.0678715i
\(623\) 140.701 94.0134i 0.225844 0.150904i
\(624\) 118.889 + 597.697i 0.190528 + 0.957848i
\(625\) 0 0
\(626\) −323.123 + 483.587i −0.516171 + 0.772504i
\(627\) 16.6952 40.3057i 0.0266270 0.0642834i
\(628\) −169.704 −0.270230
\(629\) 281.231 + 236.396i 0.447108 + 0.375828i
\(630\) 0 0
\(631\) −141.756 + 342.229i −0.224652 + 0.542359i −0.995511 0.0946475i \(-0.969828\pi\)
0.770858 + 0.637007i \(0.219828\pi\)
\(632\) 271.885 406.904i 0.430197 0.643836i
\(633\) 720.339 720.339i 1.13798 1.13798i
\(634\) −1200.28 + 238.751i −1.89319 + 0.376579i
\(635\) 0 0
\(636\) 107.427 + 21.3685i 0.168910 + 0.0335983i
\(637\) −114.283 275.903i −0.179408 0.433129i
\(638\) −33.3778 + 13.8255i −0.0523162 + 0.0216701i
\(639\) −246.611 + 1239.80i −0.385932 + 1.94021i
\(640\) 0 0
\(641\) −58.4526 293.861i −0.0911897 0.458442i −0.999218 0.0395334i \(-0.987413\pi\)
0.908029 0.418908i \(-0.137587\pi\)
\(642\) −1571.68 1571.68i −2.44811 2.44811i
\(643\) −220.125 147.083i −0.342341 0.228745i 0.372500 0.928032i \(-0.378501\pi\)
−0.714841 + 0.699287i \(0.753501\pi\)
\(644\) 32.0273 + 13.2662i 0.0497319 + 0.0205996i
\(645\) 0 0
\(646\) 591.117 + 737.824i 0.915042 + 1.14214i
\(647\) 501.378i 0.774927i 0.921885 + 0.387464i \(0.126649\pi\)
−0.921885 + 0.387464i \(0.873351\pi\)
\(648\) 182.667 + 75.6631i 0.281893 + 0.116764i
\(649\) −19.7619 13.2045i −0.0304498 0.0203459i
\(650\) 0 0
\(651\) −81.9006 + 16.2910i −0.125807 + 0.0250246i
\(652\) −79.7146 119.301i −0.122262 0.182978i
\(653\) −204.042 + 1025.79i −0.312468 + 1.57088i 0.431152 + 0.902279i \(0.358107\pi\)
−0.743620 + 0.668603i \(0.766893\pi\)
\(654\) 1062.69 440.179i 1.62490 0.673056i
\(655\) 0 0
\(656\) 263.813 1326.28i 0.402154 2.02176i
\(657\) −4.73624 + 3.16466i −0.00720890 + 0.00481683i
\(658\) −193.526 + 38.4947i −0.294112 + 0.0585026i
\(659\) 874.251 874.251i 1.32663 1.32663i 0.418344 0.908289i \(-0.362611\pi\)
0.908289 0.418344i \(-0.137389\pi\)
\(660\) 0 0
\(661\) −1061.36 439.631i −1.60569 0.665099i −0.613486 0.789706i \(-0.710233\pi\)
−0.992206 + 0.124607i \(0.960233\pi\)
\(662\) 900.444 1.36019
\(663\) −45.6647 527.203i −0.0688759 0.795178i
\(664\) 526.554 0.793003
\(665\) 0 0
\(666\) −667.255 445.845i −1.00188 0.669437i
\(667\) −790.814 + 790.814i −1.18563 + 1.18563i
\(668\) −39.4187 198.171i −0.0590100 0.296663i
\(669\) −1358.26 + 907.558i −2.03028 + 1.35659i
\(670\) 0 0
\(671\) 4.16354 1.72460i 0.00620498 0.00257019i
\(672\) −95.0022 + 39.3512i −0.141372 + 0.0585583i
\(673\) 1088.11 + 216.439i 1.61681 + 0.321603i 0.918872 0.394555i \(-0.129101\pi\)
0.697938 + 0.716159i \(0.254101\pi\)
\(674\) −696.815 1042.86i −1.03385 1.54727i
\(675\) 0 0
\(676\) 124.401 124.401i 0.184025 0.184025i
\(677\) 538.907 + 360.086i 0.796023 + 0.531885i 0.885795 0.464077i \(-0.153614\pi\)
−0.0897723 + 0.995962i \(0.528614\pi\)
\(678\) 521.681 1259.45i 0.769441 1.85759i
\(679\) 87.4982i 0.128863i
\(680\) 0 0
\(681\) −780.974 −1.14681
\(682\) 13.0617 + 5.41034i 0.0191521 + 0.00793306i
\(683\) 182.884 273.705i 0.267766 0.400739i −0.673083 0.739567i \(-0.735030\pi\)
0.940849 + 0.338828i \(0.110030\pi\)
\(684\) −368.457 368.457i −0.538679 0.538679i
\(685\) 0 0
\(686\) 184.610 123.352i 0.269110 0.179814i
\(687\) −296.818 + 1492.21i −0.432050 + 2.17206i
\(688\) −41.5841 100.393i −0.0604420 0.145920i
\(689\) −38.5779 93.1354i −0.0559912 0.135175i
\(690\) 0 0
\(691\) −137.814 206.253i −0.199441 0.298485i 0.718245 0.695790i \(-0.244946\pi\)
−0.917687 + 0.397305i \(0.869946\pi\)
\(692\) 36.0832 7.17739i 0.0521433 0.0103720i
\(693\) −4.07154 4.07154i −0.00587524 0.00587524i
\(694\) −80.9279 + 121.117i −0.116611 + 0.174520i
\(695\) 0 0
\(696\) 1322.01i 1.89944i
\(697\) −354.068 + 1119.58i −0.507988 + 1.60628i
\(698\) 995.704i 1.42651i
\(699\) −198.290 + 478.714i −0.283677 + 0.684856i
\(700\) 0 0
\(701\) 479.136 + 479.136i 0.683504 + 0.683504i 0.960788 0.277284i \(-0.0894342\pi\)
−0.277284 + 0.960788i \(0.589434\pi\)
\(702\) 99.0893 + 498.155i 0.141153 + 0.709623i
\(703\) −288.678 432.037i −0.410637 0.614561i
\(704\) −10.7667 2.14163i −0.0152936 0.00304209i
\(705\) 0 0
\(706\) 34.4636 + 83.2024i 0.0488152 + 0.117850i
\(707\) 66.9218 + 13.3116i 0.0946560 + 0.0188282i
\(708\) −368.357 + 246.128i −0.520278 + 0.347639i
\(709\) 237.118 + 1192.07i 0.334440 + 1.68134i 0.672403 + 0.740185i \(0.265262\pi\)
−0.337963 + 0.941160i \(0.609738\pi\)
\(710\) 0 0
\(711\) 712.112 1065.75i 1.00156 1.49895i
\(712\) 401.195 968.570i 0.563476 1.36035i
\(713\) 437.656 0.613823
\(714\) 186.998 54.3294i 0.261902 0.0760916i
\(715\) 0 0
\(716\) −27.7221 + 66.9270i −0.0387180 + 0.0934734i
\(717\) 1080.50 1617.09i 1.50698 2.25535i
\(718\) −975.795 + 975.795i −1.35905 + 1.35905i
\(719\) −494.558 + 98.3738i −0.687842 + 0.136820i −0.526624 0.850099i \(-0.676542\pi\)
−0.161218 + 0.986919i \(0.551542\pi\)
\(720\) 0 0
\(721\) 139.463 + 27.7410i 0.193430 + 0.0384757i
\(722\) −192.158 463.909i −0.266146 0.642534i
\(723\) 1569.43 650.080i 2.17072 0.899142i
\(724\) −30.6906 + 154.292i −0.0423903 + 0.213110i
\(725\) 0 0
\(726\) −273.002 1372.47i −0.376035 1.89046i
\(727\) −972.990 972.990i −1.33836 1.33836i −0.897646 0.440718i \(-0.854724\pi\)
−0.440718 0.897646i \(-0.645276\pi\)
\(728\) 31.3586 + 20.9532i 0.0430751 + 0.0287818i
\(729\) −991.196 410.567i −1.35967 0.563192i
\(730\) 0 0
\(731\) 26.3259 + 90.6118i 0.0360135 + 0.123956i
\(732\) 84.0016i 0.114756i
\(733\) −1328.67 550.353i −1.81265 0.750823i −0.980572 0.196159i \(-0.937153\pi\)
−0.832074 0.554664i \(-0.812847\pi\)
\(734\) −210.906 140.923i −0.287339 0.191993i
\(735\) 0 0
\(736\) 528.581 105.141i 0.718181 0.142855i
\(737\) 7.95048 + 11.8987i 0.0107876 + 0.0161448i
\(738\) 500.393 2515.64i 0.678039 3.40873i
\(739\) 347.484 143.933i 0.470209 0.194767i −0.134981 0.990848i \(-0.543097\pi\)
0.605190 + 0.796081i \(0.293097\pi\)
\(740\) 0 0
\(741\) −146.011 + 734.049i −0.197046 + 0.990619i
\(742\) 30.8445 20.6096i 0.0415694 0.0277758i
\(743\) 865.508 172.160i 1.16488 0.231710i 0.425477 0.904969i \(-0.360107\pi\)
0.739406 + 0.673260i \(0.235107\pi\)
\(744\) −365.816 + 365.816i −0.491689 + 0.491689i
\(745\) 0 0
\(746\) 401.121 + 166.150i 0.537696 + 0.222721i
\(747\) 1379.13 1.84623
\(748\) −7.93169 2.50840i −0.0106039 0.00335348i
\(749\) −189.947 −0.253601
\(750\) 0 0
\(751\) −5.26712 3.51938i −0.00701347 0.00468625i 0.552059 0.833805i \(-0.313842\pi\)
−0.559072 + 0.829119i \(0.688842\pi\)
\(752\) −1193.61 + 1193.61i −1.58725 + 1.58725i
\(753\) −120.487 605.728i −0.160009 0.804420i
\(754\) 515.333 344.335i 0.683466 0.456677i
\(755\) 0 0
\(756\) −43.5710 + 18.0477i −0.0576337 + 0.0238726i
\(757\) 981.619 406.600i 1.29672 0.537120i 0.375741 0.926725i \(-0.377388\pi\)
0.920982 + 0.389605i \(0.127388\pi\)
\(758\) 77.4758 + 15.4109i 0.102211 + 0.0203310i
\(759\) 26.1651 + 39.1588i 0.0344731 + 0.0515926i
\(760\) 0 0
\(761\) 172.386 172.386i 0.226526 0.226526i −0.584714 0.811240i \(-0.698793\pi\)
0.811240 + 0.584714i \(0.198793\pi\)
\(762\) 1154.70 + 771.543i 1.51535 + 1.01252i
\(763\) 37.6168 90.8149i 0.0493011 0.119023i
\(764\) 103.137i 0.134997i
\(765\) 0 0
\(766\) 1576.44 2.05801
\(767\) 376.702 + 156.035i 0.491137 + 0.203436i
\(768\) −647.904 + 969.657i −0.843625 + 1.26257i
\(769\) −682.514 682.514i −0.887535 0.887535i 0.106751 0.994286i \(-0.465955\pi\)
−0.994286 + 0.106751i \(0.965955\pi\)
\(770\) 0 0
\(771\) 321.115 214.562i 0.416492 0.278291i
\(772\) 57.0928 287.025i 0.0739544 0.371794i
\(773\) −288.856 697.360i −0.373682 0.902147i −0.993120 0.117102i \(-0.962640\pi\)
0.619438 0.785045i \(-0.287360\pi\)
\(774\) −78.8755 190.422i −0.101906 0.246024i
\(775\) 0 0
\(776\) 301.164 + 450.724i 0.388098 + 0.580830i
\(777\) −104.969 + 20.8796i −0.135095 + 0.0268721i
\(778\) 19.1615 + 19.1615i 0.0246292 + 0.0246292i
\(779\) 922.663 1380.86i 1.18442 1.77261i
\(780\) 0 0
\(781\) 28.5423i 0.0365459i
\(782\) −1016.79 + 88.0709i −1.30024 + 0.112623i
\(783\) 1521.48i 1.94314i
\(784\) 359.771 868.565i 0.458892 1.10786i
\(785\) 0 0
\(786\) 1760.34 + 1760.34i 2.23962 + 2.23962i
\(787\) −126.416 635.538i −0.160631 0.807545i −0.974132 0.225981i \(-0.927441\pi\)
0.813501 0.581564i \(-0.197559\pi\)
\(788\) −186.888 279.698i −0.237168 0.354947i
\(789\) −369.148 73.4281i −0.467868 0.0930648i
\(790\) 0 0
\(791\) −44.5817 107.630i −0.0563612 0.136068i
\(792\) −34.9875 6.95945i −0.0441761 0.00878718i
\(793\) −64.2827 + 42.9523i −0.0810627 + 0.0541644i
\(794\) 9.68407 + 48.6851i 0.0121966 + 0.0613163i
\(795\) 0 0
\(796\) 201.691 301.851i 0.253380 0.379210i
\(797\) −511.203 + 1234.15i −0.641409 + 1.54850i 0.183371 + 0.983044i \(0.441299\pi\)
−0.824780 + 0.565454i \(0.808701\pi\)
\(798\) −275.412 −0.345128
\(799\) 1143.94 916.485i 1.43172 1.14704i
\(800\) 0 0
\(801\) 1050.80 2536.85i 1.31186 3.16710i
\(802\) −45.4016 + 67.9483i −0.0566104 + 0.0847235i
\(803\) 0.0909465 0.0909465i 0.000113258 0.000113258i
\(804\) 261.618 52.0391i 0.325396 0.0647253i
\(805\) 0 0
\(806\) −237.881 47.3174i −0.295137 0.0587065i
\(807\) −346.298 836.037i −0.429118 1.03598i
\(808\) 390.547 161.770i 0.483351 0.200210i
\(809\) 12.7373 64.0346i 0.0157445 0.0791528i −0.972114 0.234508i \(-0.924652\pi\)
0.987859 + 0.155355i \(0.0496522\pi\)
\(810\) 0 0
\(811\) −60.0421 301.852i −0.0740347 0.372197i 0.925950 0.377645i \(-0.123266\pi\)
−0.999985 + 0.00544749i \(0.998266\pi\)
\(812\) 40.6929 + 40.6929i 0.0501144 + 0.0501144i
\(813\) −1004.80 671.388i −1.23592 0.825815i
\(814\) 16.7407 + 6.93423i 0.0205660 + 0.00851871i
\(815\) 0 0
\(816\) 1071.92 1275.22i 1.31362 1.56277i
\(817\) 133.454i 0.163346i
\(818\) −598.585 247.942i −0.731767 0.303108i
\(819\) 82.1335 + 54.8799i 0.100285 + 0.0670084i
\(820\) 0 0
\(821\) 691.877 137.623i 0.842725 0.167628i 0.245194 0.969474i \(-0.421148\pi\)
0.597531 + 0.801846i \(0.296148\pi\)
\(822\) 532.947 + 797.612i 0.648354 + 0.970330i
\(823\) 116.643 586.402i 0.141729 0.712517i −0.842930 0.538024i \(-0.819171\pi\)
0.984658 0.174494i \(-0.0558289\pi\)
\(824\) 813.892 337.125i 0.987732 0.409132i
\(825\) 0 0
\(826\) −29.2719 + 147.160i −0.0354381 + 0.178159i
\(827\) 423.511 282.981i 0.512106 0.342178i −0.272518 0.962151i \(-0.587856\pi\)
0.784623 + 0.619973i \(0.212856\pi\)
\(828\) 551.706 109.741i 0.666311 0.132538i
\(829\) −804.169 + 804.169i −0.970046 + 0.970046i −0.999564 0.0295178i \(-0.990603\pi\)
0.0295178 + 0.999564i \(0.490603\pi\)
\(830\) 0 0
\(831\) 1431.03 + 592.751i 1.72206 + 0.713299i
\(832\) 188.326 0.226353
\(833\) −393.279 + 715.384i −0.472123 + 0.858804i
\(834\) −1917.07 −2.29865
\(835\) 0 0
\(836\) 9.78275 + 6.53663i 0.0117019 + 0.00781893i
\(837\) −421.013 + 421.013i −0.503002 + 0.503002i
\(838\) 62.0171 + 311.781i 0.0740060 + 0.372053i
\(839\) −799.310 + 534.082i −0.952694 + 0.636570i −0.931707 0.363210i \(-0.881681\pi\)
−0.0209867 + 0.999780i \(0.506681\pi\)
\(840\) 0 0
\(841\) −938.290 + 388.652i −1.11568 + 0.462131i
\(842\) 553.936 229.448i 0.657881 0.272503i
\(843\) −111.845 22.2475i −0.132676 0.0263908i
\(844\) 152.635 + 228.435i 0.180847 + 0.270657i
\(845\) 0 0
\(846\) −2264.01 + 2264.01i −2.67613 + 2.67613i
\(847\) −99.4324 66.4386i −0.117394 0.0784399i
\(848\) 121.446 293.197i 0.143215 0.345752i
\(849\) 519.497i 0.611893i
\(850\) 0 0
\(851\) 560.927 0.659138
\(852\) −491.524 203.596i −0.576906 0.238962i
\(853\) −702.238 + 1050.97i −0.823257 + 1.23209i 0.146789 + 0.989168i \(0.453106\pi\)
−0.970046 + 0.242923i \(0.921894\pi\)
\(854\) −20.1171 20.1171i −0.0235563 0.0235563i
\(855\) 0 0
\(856\) −978.461 + 653.787i −1.14306 + 0.763770i
\(857\) 195.681 983.753i 0.228332 1.14790i −0.681145 0.732149i \(-0.738518\pi\)
0.909477 0.415754i \(-0.136482\pi\)
\(858\) −9.98792 24.1130i −0.0116409 0.0281037i
\(859\) 412.502 + 995.868i 0.480212 + 1.15933i 0.959508 + 0.281681i \(0.0908920\pi\)
−0.479296 + 0.877653i \(0.659108\pi\)
\(860\) 0 0
\(861\) −190.044 284.422i −0.220725 0.330339i
\(862\) 1144.27 227.609i 1.32745 0.264047i
\(863\) 245.882 + 245.882i 0.284915 + 0.284915i 0.835066 0.550151i \(-0.185430\pi\)
−0.550151 + 0.835066i \(0.685430\pi\)
\(864\) −407.337 + 609.623i −0.471455 + 0.705582i
\(865\) 0 0
\(866\) 1914.87i 2.21116i
\(867\) −1046.68 + 998.515i −1.20725 + 1.15169i
\(868\) 22.5205i 0.0259452i
\(869\) −11.0755 + 26.7385i −0.0127451 + 0.0307693i
\(870\) 0 0
\(871\) −173.596 173.596i −0.199306 0.199306i
\(872\) −118.807 597.283i −0.136247 0.684958i
\(873\) 788.799 + 1180.52i 0.903550 + 1.35226i
\(874\) 1415.72 + 281.604i 1.61981 + 0.322201i
\(875\) 0 0
\(876\) −0.917446 2.21491i −0.00104731 0.00252844i
\(877\) −148.338 29.5063i −0.169143 0.0336446i 0.109792 0.993955i \(-0.464981\pi\)
−0.278935 + 0.960310i \(0.589981\pi\)
\(878\) −129.020 + 86.2083i −0.146947 + 0.0981871i
\(879\) −27.8615 140.069i −0.0316969 0.159351i
\(880\) 0 0
\(881\) 459.227 687.281i 0.521256 0.780115i −0.473672 0.880701i \(-0.657072\pi\)
0.994928 + 0.100586i \(0.0320719\pi\)
\(882\) 682.404 1647.47i 0.773701 1.86788i
\(883\) −362.947 −0.411038 −0.205519 0.978653i \(-0.565888\pi\)
−0.205519 + 0.978653i \(0.565888\pi\)
\(884\) 141.852 + 15.6595i 0.160466 + 0.0177144i
\(885\) 0 0
\(886\) −533.643 + 1288.33i −0.602306 + 1.45410i
\(887\) 538.457 805.857i 0.607054 0.908520i −0.392885 0.919588i \(-0.628523\pi\)
0.999939 + 0.0110675i \(0.00352296\pi\)
\(888\) −468.853 + 468.853i −0.527987 + 0.527987i
\(889\) 116.398 23.1531i 0.130932 0.0260440i
\(890\) 0 0
\(891\) −11.4682 2.28116i −0.0128711 0.00256023i
\(892\) −168.593 407.019i −0.189005 0.456300i
\(893\) −1915.30 + 793.345i −2.14480 + 0.888404i
\(894\) −366.230 + 1841.16i −0.409653 + 2.05946i
\(895\) 0 0
\(896\) 29.5514 + 148.565i 0.0329815 + 0.165809i
\(897\) −571.305 571.305i −0.636906 0.636906i
\(898\) 1376.56 + 919.787i 1.53292 + 1.02426i
\(899\) 671.238 + 278.036i 0.746649 + 0.309272i
\(900\) 0 0
\(901\) −132.757 + 241.489i −0.147344 + 0.268023i
\(902\) 57.9146i 0.0642069i
\(903\) −25.3956 10.5192i −0.0281236 0.0116492i
\(904\) −600.107 400.979i −0.663835 0.443560i
\(905\) 0 0
\(906\) −1778.67 + 353.800i −1.96321 + 0.390507i
\(907\) −20.2068 30.2417i −0.0222788 0.0333425i 0.820163 0.572130i \(-0.193883\pi\)
−0.842442 + 0.538787i \(0.818883\pi\)
\(908\) 41.0900 206.573i 0.0452533 0.227504i
\(909\) 1022.91 423.703i 1.12531 0.466120i
\(910\) 0 0
\(911\) −294.154 + 1478.81i −0.322891 + 1.62328i 0.389171 + 0.921166i \(0.372762\pi\)
−0.712062 + 0.702117i \(0.752238\pi\)
\(912\) −1959.04 + 1308.99i −2.14807 + 1.43529i
\(913\) −30.5417 + 6.07512i −0.0334520 + 0.00665402i
\(914\) −768.771 + 768.771i −0.841106 + 0.841106i
\(915\) 0 0
\(916\) −379.083 157.021i −0.413846 0.171421i
\(917\) 212.747 0.232003
\(918\) 893.398 1062.84i 0.973201 1.15778i
\(919\) 682.108 0.742229 0.371114 0.928587i \(-0.378976\pi\)
0.371114 + 0.928587i \(0.378976\pi\)
\(920\) 0 0
\(921\) −743.254 496.626i −0.807008 0.539225i
\(922\) −651.635 + 651.635i −0.706763 + 0.706763i
\(923\) 95.5268 + 480.246i 0.103496 + 0.520310i
\(924\) 2.01499 1.34637i 0.00218073 0.00145712i
\(925\) 0 0
\(926\) 290.968 120.523i 0.314220 0.130154i
\(927\) 2131.72 882.986i 2.29959 0.952520i
\(928\) 877.486 + 174.543i 0.945566 + 0.188085i
\(929\) −403.390 603.716i −0.434219 0.649855i 0.548242 0.836320i \(-0.315297\pi\)
−0.982462 + 0.186464i \(0.940297\pi\)
\(930\) 0 0
\(931\) 816.424 816.424i 0.876932 0.876932i
\(932\) −116.191 77.6362i −0.124668 0.0833006i
\(933\) −179.205 + 432.640i −0.192074 + 0.463708i
\(934\) 998.685i 1.06926i
\(935\) 0 0
\(936\) 611.983 0.653827
\(937\) 803.778 + 332.936i 0.857820 + 0.355321i 0.767855 0.640624i \(-0.221324\pi\)
0.0899657 + 0.995945i \(0.471324\pi\)
\(938\) 50.1910 75.1161i 0.0535085 0.0800811i
\(939\) 889.985 + 889.985i 0.947801 + 0.947801i
\(940\) 0 0
\(941\) −831.285 + 555.447i −0.883406 + 0.590273i −0.912397 0.409306i \(-0.865771\pi\)
0.0289906 + 0.999580i \(0.490771\pi\)
\(942\) −283.948 + 1427.50i −0.301431 + 1.51539i
\(943\) 686.081 + 1656.35i 0.727552 + 1.75647i
\(944\) 491.211 + 1185.89i 0.520350 + 1.25624i
\(945\) 0 0
\(946\) 2.58556 + 3.86956i 0.00273315 + 0.00409045i
\(947\) −1739.96 + 346.100i −1.83734 + 0.365470i −0.986994 0.160754i \(-0.948607\pi\)
−0.850346 + 0.526224i \(0.823607\pi\)
\(948\) 381.458 + 381.458i 0.402382 + 0.402382i
\(949\) −1.22586 + 1.83463i −0.00129174 + 0.00193322i
\(950\) 0 0
\(951\) 2648.37i 2.78483i
\(952\) −8.89671 102.713i −0.00934529 0.107892i
\(953\) 1184.60i 1.24302i 0.783405 + 0.621512i \(0.213481\pi\)
−0.783405 + 0.621512i \(0.786519\pi\)
\(954\) 230.356 556.128i 0.241463 0.582944i
\(955\) 0 0
\(956\) 370.882 + 370.882i 0.387952 + 0.387952i
\(957\) 15.2527 + 76.6805i 0.0159380 + 0.0801259i
\(958\) −544.671 815.158i −0.568551 0.850896i
\(959\) 80.4028 + 15.9931i 0.0838402 + 0.0166769i
\(960\) 0 0
\(961\) 258.955 + 625.173i 0.269464 + 0.650544i
\(962\) −304.882 60.6449i −0.316926 0.0630404i
\(963\) −2562.75 + 1712.38i −2.66122 + 1.77817i
\(964\) 89.3772 + 449.329i 0.0927149 + 0.466109i
\(965\) 0 0
\(966\) 165.179 247.207i 0.170992 0.255908i
\(967\) −287.336 + 693.690i −0.297141 + 0.717363i 0.702840 + 0.711348i \(0.251915\pi\)
−0.999982 + 0.00601538i \(0.998085\pi\)
\(968\) −740.878 −0.765370
\(969\) 1815.58 943.134i 1.87366 0.973306i
\(970\) 0 0
\(971\) −267.835 + 646.610i −0.275834 + 0.665922i −0.999712 0.0240064i \(-0.992358\pi\)
0.723878 + 0.689928i \(0.242358\pi\)
\(972\) 117.252 175.480i 0.120630 0.180535i
\(973\) −115.844 + 115.844i −0.119059 + 0.119059i
\(974\) −1087.53 + 216.323i −1.11656 + 0.222098i
\(975\) 0 0
\(976\) −238.708 47.4820i −0.244578 0.0486496i
\(977\) 82.1596 + 198.351i 0.0840938 + 0.203020i 0.960333 0.278856i \(-0.0899553\pi\)
−0.876239 + 0.481877i \(0.839955\pi\)
\(978\) −1136.90 + 470.921i −1.16248 + 0.481514i
\(979\) −12.0956 + 60.8087i −0.0123551 + 0.0621131i
\(980\) 0 0
\(981\) −311.176 1564.38i −0.317202 1.59468i
\(982\) −4.39240 4.39240i −0.00447291 0.00447291i
\(983\) 1257.79 + 840.427i 1.27954 + 0.854962i 0.994620 0.103590i \(-0.0330329\pi\)
0.284920 + 0.958551i \(0.408033\pi\)
\(984\) −1957.93 811.000i −1.98976 0.824187i
\(985\) 0 0
\(986\) −1615.41 510.873i −1.63834 0.518127i
\(987\) 427.007i 0.432631i
\(988\) −186.479 77.2422i −0.188744 0.0781803i
\(989\) 119.787 + 80.0391i 0.121119 + 0.0809293i
\(990\) 0 0
\(991\) 1575.69 313.425i 1.59000 0.316272i 0.680751 0.732515i \(-0.261653\pi\)
0.909253 + 0.416243i \(0.136653\pi\)
\(992\) −194.513 291.109i −0.196082 0.293457i
\(993\) 380.156 1911.17i 0.382836 1.92465i
\(994\) −166.470 + 68.9543i −0.167475 + 0.0693705i
\(995\) 0 0
\(996\) −113.239 + 569.290i −0.113693 + 0.571576i
\(997\) 959.213 640.926i 0.962099 0.642854i 0.0279018 0.999611i \(-0.491117\pi\)
0.934197 + 0.356757i \(0.116117\pi\)
\(998\) −820.529 + 163.213i −0.822174 + 0.163541i
\(999\) −539.595 + 539.595i −0.540136 + 0.540136i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.f.299.9 96
5.2 odd 4 425.3.u.c.401.4 yes 96
5.3 odd 4 425.3.u.d.401.9 yes 96
5.4 even 2 425.3.t.g.299.4 96
17.12 odd 16 425.3.t.g.199.4 96
85.12 even 16 425.3.u.c.301.4 96
85.29 odd 16 inner 425.3.t.f.199.9 96
85.63 even 16 425.3.u.d.301.9 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.3.t.f.199.9 96 85.29 odd 16 inner
425.3.t.f.299.9 96 1.1 even 1 trivial
425.3.t.g.199.4 96 17.12 odd 16
425.3.t.g.299.4 96 5.4 even 2
425.3.u.c.301.4 96 85.12 even 16
425.3.u.c.401.4 yes 96 5.2 odd 4
425.3.u.d.301.9 yes 96 85.63 even 16
425.3.u.d.401.9 yes 96 5.3 odd 4