gp: [N,k,chi] = [425,3,Mod(24,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.24");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 11]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [96,0,0,0,0,0,0,0,0,0,0,0,-24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{96} - 80 T_{2}^{91} + 472 T_{2}^{90} + 640 T_{2}^{89} + 104176 T_{2}^{88} + 16504 T_{2}^{87} + \cdots + 10\!\cdots\!61 \)
T2^96 - 80*T2^91 + 472*T2^90 + 640*T2^89 + 104176*T2^88 + 16504*T2^87 + 78868*T2^86 - 454712*T2^85 + 60192*T2^84 - 1933880*T2^83 + 37798204*T2^82 - 21414288*T2^81 + 3735787386*T2^80 + 163456008*T2^79 + 6319837808*T2^78 - 24520313256*T2^77 + 8209699880*T2^76 + 36798917896*T2^75 + 939069595432*T2^74 - 2286875501352*T2^73 + 55322216367928*T2^72 - 23887461622064*T2^71 + 167003077391772*T2^70 - 401957549479664*T2^69 + 301632551088968*T2^68 + 607404082431280*T2^67 + 6156305623876188*T2^66 - 26543339851475800*T2^65 + 367603839841969263*T2^64 - 345283782714322224*T2^63 + 1496683810703630216*T2^62 - 2996461323936353504*T2^61 + 3128559682793399968*T2^60 + 4670365288953458176*T2^59 - 8508925580306697912*T2^58 - 11113732622064693184*T2^57 + 811232532657685572164*T2^56 - 538047969450758543600*T2^55 + 2813285471326896496352*T2^54 - 4848574371040751731232*T2^53 + 5792850906918073944800*T2^52 + 7665606906796881912096*T2^51 - 42756239085711290862720*T2^50 + 49578206474857610109296*T2^49 + 815985051775777411356036*T2^48 - 169768468172908652568768*T2^47 + 1561410820719875781920008*T2^46 - 1243482172563909027836688*T2^45 + 2832570849016539607191472*T2^44 - 2268940575342361841588208*T2^43 - 25707152838520389928729848*T2^42 + 40074085394408647410470672*T2^41 + 303694128798188903975787084*T2^40 + 116443305222853854117913696*T2^39 + 306253895831672216831957680*T2^38 - 9509711418444870643119152*T2^37 + 347989335240304982459434224*T2^36 - 1929599840284863652705972720*T2^35 - 5978232044502059498931516864*T2^34 + 3798843066140009815696169728*T2^33 + 31922581579474517882480875167*T2^32 + 27458671518448387845019776752*T2^31 - 17249291230107295318894630632*T2^30 - 90379309428615351646149741984*T2^29 - 32627360698845533322024691168*T2^28 + 109062929810158158613912410448*T2^27 + 125890711123404633347482264256*T2^26 + 42949326943901996742052749120*T2^25 + 18565958053929021725170048460*T2^24 + 10384003868435478282936263032*T2^23 + 40671045382672091486951827372*T2^22 - 139589766819870884460699712616*T2^21 - 29965450559395566721356891456*T2^20 + 271632849264272007039277315032*T2^19 + 198270590533681311560079105252*T2^18 + 112693686370337835042819952096*T2^17 + 223672963025114329259447697938*T2^16 + 142767850400647063649616392440*T2^15 + 30405330469034318105653629416*T2^14 + 14578464585884748304288409912*T2^13 + 10356970033679068741369000808*T2^12 + 582284296315927426248511976*T2^11 - 631747273727973063698630160*T2^10 + 245521531310318477568879640*T2^9 + 138773948320938989899590652*T2^8 + 24431690472523423874888144*T2^7 + 18169965816331898475538196*T2^6 + 7643570691054886756404192*T2^5 + 1589398684999345568362248*T2^4 + 313462779388079881783296*T2^3 + 62034093211328944051140*T2^2 + 7488322402668895317144*T2 + 1037945960268512100961
acting on \(S_{3}^{\mathrm{new}}(425, [\chi])\).