Properties

Label 425.3.u.d.401.9
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.9
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.d.301.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.885142 - 2.13692i) q^{2} +(4.16188 + 2.78088i) q^{3} +(-0.954534 - 0.954534i) q^{4} +(9.62637 - 6.43213i) q^{6} +(-0.970381 - 0.193021i) q^{7} +(5.66303 - 2.34570i) q^{8} +(6.14378 + 14.8324i) q^{9} +(0.201395 + 0.301409i) q^{11} +(-1.31821 - 6.62710i) q^{12} +(4.39739 - 4.39739i) q^{13} +(-1.27140 + 1.90278i) q^{14} -19.5774i q^{16} +(16.8974 + 1.86536i) q^{17} +37.1338 q^{18} +(-9.20107 + 22.2133i) q^{19} +(-3.50184 - 3.50184i) q^{21} +(0.822350 - 0.163576i) q^{22} +(-21.5813 + 14.4201i) q^{23} +(30.0919 + 5.98565i) q^{24} +(-5.50456 - 13.2892i) q^{26} +(-6.88880 + 34.6323i) q^{27} +(0.742017 + 1.11051i) q^{28} +(-8.40610 - 42.2603i) q^{29} +(9.36788 - 14.0200i) q^{31} +(-19.1833 - 7.94597i) q^{32} +1.81448i q^{33} +(18.9427 - 34.4572i) q^{34} +(8.29359 - 20.0225i) q^{36} +(-17.9689 - 12.0064i) q^{37} +(39.3239 + 39.3239i) q^{38} +(30.5300 - 6.07279i) q^{39} +(67.7453 + 13.4754i) q^{41} +(-10.5828 + 4.38353i) q^{42} +(2.12409 + 5.12800i) q^{43} +(0.0954667 - 0.479943i) q^{44} +(11.7122 + 58.8814i) q^{46} +(-60.9689 + 60.9689i) q^{47} +(54.4423 - 81.4787i) q^{48} +(-44.3657 - 18.3769i) q^{49} +(65.1373 + 54.7528i) q^{51} -8.39491 q^{52} +(-6.20340 + 14.9763i) q^{53} +(67.9091 + 45.3754i) q^{54} +(-5.94806 + 1.18314i) q^{56} +(-100.066 + 66.8621i) q^{57} +(-97.7476 - 19.4432i) q^{58} +(60.5743 - 25.0907i) q^{59} +(2.42535 - 12.1930i) q^{61} +(-21.6678 - 32.4281i) q^{62} +(-3.09885 - 15.5790i) q^{63} +(21.4134 - 21.4134i) q^{64} +(3.87740 + 1.60607i) q^{66} -39.4771i q^{67} +(-14.3486 - 17.9097i) q^{68} -129.919 q^{69} +(-65.4676 - 43.7440i) q^{71} +(69.5848 + 69.5848i) q^{72} +(0.347989 - 0.0692193i) q^{73} +(-41.5619 + 27.7708i) q^{74} +(29.9861 - 12.4207i) q^{76} +(-0.137252 - 0.331355i) q^{77} +(14.0463 - 70.6154i) q^{78} +(-44.3559 - 66.3833i) q^{79} +(-22.8085 + 22.8085i) q^{81} +(88.7601 - 132.839i) q^{82} +(-79.3643 - 32.8738i) q^{83} +6.68525i q^{84} +12.8383 q^{86} +(82.5356 - 199.259i) q^{87} +(1.84752 + 1.23447i) q^{88} +(-120.939 - 120.939i) q^{89} +(-5.11592 + 3.41835i) q^{91} +(34.3646 + 6.83554i) q^{92} +(77.9759 - 32.2987i) q^{93} +(76.3197 + 184.252i) q^{94} +(-57.7416 - 86.4164i) q^{96} +(17.2531 + 86.7371i) q^{97} +(-78.5399 + 78.5399i) q^{98} +(-3.23329 + 4.83896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 96 q^{12} + 24 q^{13} + 32 q^{14} - 8 q^{17} - 64 q^{18} - 24 q^{19} - 96 q^{22} - 56 q^{23} - 336 q^{24} - 224 q^{26} + 144 q^{27} - 480 q^{28} - 64 q^{31} + 40 q^{32} + 64 q^{34} + 192 q^{36} - 128 q^{37}+ \cdots - 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.885142 2.13692i 0.442571 1.06846i −0.532472 0.846447i \(-0.678737\pi\)
0.975043 0.222014i \(-0.0712630\pi\)
\(3\) 4.16188 + 2.78088i 1.38729 + 0.926959i 0.999987 + 0.00500688i \(0.00159375\pi\)
0.387304 + 0.921952i \(0.373406\pi\)
\(4\) −0.954534 0.954534i −0.238634 0.238634i
\(5\) 0 0
\(6\) 9.62637 6.43213i 1.60440 1.07202i
\(7\) −0.970381 0.193021i −0.138626 0.0275744i 0.125290 0.992120i \(-0.460014\pi\)
−0.263915 + 0.964546i \(0.585014\pi\)
\(8\) 5.66303 2.34570i 0.707878 0.293213i
\(9\) 6.14378 + 14.8324i 0.682643 + 1.64805i
\(10\) 0 0
\(11\) 0.201395 + 0.301409i 0.0183086 + 0.0274008i 0.840511 0.541794i \(-0.182255\pi\)
−0.822202 + 0.569195i \(0.807255\pi\)
\(12\) −1.31821 6.62710i −0.109851 0.552258i
\(13\) 4.39739 4.39739i 0.338260 0.338260i −0.517452 0.855712i \(-0.673119\pi\)
0.855712 + 0.517452i \(0.173119\pi\)
\(14\) −1.27140 + 1.90278i −0.0908140 + 0.135913i
\(15\) 0 0
\(16\) 19.5774i 1.22359i
\(17\) 16.8974 + 1.86536i 0.993962 + 0.109727i
\(18\) 37.1338 2.06299
\(19\) −9.20107 + 22.2133i −0.484267 + 1.16912i 0.473297 + 0.880903i \(0.343064\pi\)
−0.957564 + 0.288221i \(0.906936\pi\)
\(20\) 0 0
\(21\) −3.50184 3.50184i −0.166754 0.166754i
\(22\) 0.822350 0.163576i 0.0373796 0.00743526i
\(23\) −21.5813 + 14.4201i −0.938316 + 0.626963i −0.927838 0.372982i \(-0.878335\pi\)
−0.0104775 + 0.999945i \(0.503335\pi\)
\(24\) 30.0919 + 5.98565i 1.25383 + 0.249402i
\(25\) 0 0
\(26\) −5.50456 13.2892i −0.211714 0.511123i
\(27\) −6.88880 + 34.6323i −0.255141 + 1.28268i
\(28\) 0.742017 + 1.11051i 0.0265006 + 0.0396610i
\(29\) −8.40610 42.2603i −0.289866 1.45725i −0.801472 0.598032i \(-0.795949\pi\)
0.511606 0.859220i \(-0.329051\pi\)
\(30\) 0 0
\(31\) 9.36788 14.0200i 0.302190 0.452259i −0.649035 0.760759i \(-0.724827\pi\)
0.951224 + 0.308500i \(0.0998270\pi\)
\(32\) −19.1833 7.94597i −0.599477 0.248312i
\(33\) 1.81448i 0.0549842i
\(34\) 18.9427 34.4572i 0.557138 1.01345i
\(35\) 0 0
\(36\) 8.29359 20.0225i 0.230377 0.556180i
\(37\) −17.9689 12.0064i −0.485646 0.324499i 0.288527 0.957472i \(-0.406834\pi\)
−0.774174 + 0.632973i \(0.781834\pi\)
\(38\) 39.3239 + 39.3239i 1.03484 + 1.03484i
\(39\) 30.5300 6.07279i 0.782819 0.155712i
\(40\) 0 0
\(41\) 67.7453 + 13.4754i 1.65232 + 0.328668i 0.931303 0.364245i \(-0.118673\pi\)
0.721022 + 0.692913i \(0.243673\pi\)
\(42\) −10.5828 + 4.38353i −0.251971 + 0.104370i
\(43\) 2.12409 + 5.12800i 0.0493974 + 0.119256i 0.946652 0.322258i \(-0.104442\pi\)
−0.897255 + 0.441513i \(0.854442\pi\)
\(44\) 0.0954667 0.479943i 0.00216970 0.0109078i
\(45\) 0 0
\(46\) 11.7122 + 58.8814i 0.254614 + 1.28003i
\(47\) −60.9689 + 60.9689i −1.29721 + 1.29721i −0.366984 + 0.930227i \(0.619610\pi\)
−0.930227 + 0.366984i \(0.880390\pi\)
\(48\) 54.4423 81.4787i 1.13421 1.69747i
\(49\) −44.3657 18.3769i −0.905423 0.375038i
\(50\) 0 0
\(51\) 65.1373 + 54.7528i 1.27720 + 1.07358i
\(52\) −8.39491 −0.161441
\(53\) −6.20340 + 14.9763i −0.117045 + 0.282572i −0.971535 0.236896i \(-0.923870\pi\)
0.854490 + 0.519468i \(0.173870\pi\)
\(54\) 67.9091 + 45.3754i 1.25758 + 0.840285i
\(55\) 0 0
\(56\) −5.94806 + 1.18314i −0.106215 + 0.0211275i
\(57\) −100.066 + 66.8621i −1.75555 + 1.17302i
\(58\) −97.7476 19.4432i −1.68530 0.335228i
\(59\) 60.5743 25.0907i 1.02668 0.425266i 0.195169 0.980770i \(-0.437474\pi\)
0.831514 + 0.555503i \(0.187474\pi\)
\(60\) 0 0
\(61\) 2.42535 12.1930i 0.0397598 0.199886i −0.955800 0.294018i \(-0.905008\pi\)
0.995560 + 0.0941318i \(0.0300075\pi\)
\(62\) −21.6678 32.4281i −0.349481 0.523035i
\(63\) −3.09885 15.5790i −0.0491881 0.247285i
\(64\) 21.4134 21.4134i 0.334584 0.334584i
\(65\) 0 0
\(66\) 3.87740 + 1.60607i 0.0587485 + 0.0243344i
\(67\) 39.4771i 0.589210i −0.955619 0.294605i \(-0.904812\pi\)
0.955619 0.294605i \(-0.0951880\pi\)
\(68\) −14.3486 17.9097i −0.211008 0.263377i
\(69\) −129.919 −1.88289
\(70\) 0 0
\(71\) −65.4676 43.7440i −0.922079 0.616113i 0.00130176 0.999999i \(-0.499586\pi\)
−0.923381 + 0.383886i \(0.874586\pi\)
\(72\) 69.5848 + 69.5848i 0.966456 + 0.966456i
\(73\) 0.347989 0.0692193i 0.00476697 0.000948210i −0.192706 0.981256i \(-0.561726\pi\)
0.197473 + 0.980308i \(0.436726\pi\)
\(74\) −41.5619 + 27.7708i −0.561647 + 0.375281i
\(75\) 0 0
\(76\) 29.9861 12.4207i 0.394554 0.163430i
\(77\) −0.137252 0.331355i −0.00178249 0.00430331i
\(78\) 14.0463 70.6154i 0.180081 0.905326i
\(79\) −44.3559 66.3833i −0.561468 0.840296i 0.436774 0.899571i \(-0.356121\pi\)
−0.998242 + 0.0592757i \(0.981121\pi\)
\(80\) 0 0
\(81\) −22.8085 + 22.8085i −0.281586 + 0.281586i
\(82\) 88.7601 132.839i 1.08244 1.61999i
\(83\) −79.3643 32.8738i −0.956197 0.396070i −0.150640 0.988589i \(-0.548133\pi\)
−0.805556 + 0.592519i \(0.798133\pi\)
\(84\) 6.68525i 0.0795863i
\(85\) 0 0
\(86\) 12.8383 0.149282
\(87\) 82.5356 199.259i 0.948685 2.29033i
\(88\) 1.84752 + 1.23447i 0.0209945 + 0.0140281i
\(89\) −120.939 120.939i −1.35887 1.35887i −0.875314 0.483555i \(-0.839345\pi\)
−0.483555 0.875314i \(-0.660655\pi\)
\(90\) 0 0
\(91\) −5.11592 + 3.41835i −0.0562190 + 0.0375643i
\(92\) 34.3646 + 6.83554i 0.373528 + 0.0742993i
\(93\) 77.9759 32.2987i 0.838450 0.347298i
\(94\) 76.3197 + 184.252i 0.811912 + 1.96013i
\(95\) 0 0
\(96\) −57.7416 86.4164i −0.601475 0.900171i
\(97\) 17.2531 + 86.7371i 0.177867 + 0.894197i 0.961884 + 0.273458i \(0.0881674\pi\)
−0.784017 + 0.620739i \(0.786833\pi\)
\(98\) −78.5399 + 78.5399i −0.801428 + 0.801428i
\(99\) −3.23329 + 4.83896i −0.0326595 + 0.0488784i
\(100\) 0 0
\(101\) 68.9645i 0.682816i 0.939915 + 0.341408i \(0.110904\pi\)
−0.939915 + 0.341408i \(0.889096\pi\)
\(102\) 174.658 90.7294i 1.71234 0.889504i
\(103\) −143.720 −1.39534 −0.697671 0.716418i \(-0.745780\pi\)
−0.697671 + 0.716418i \(0.745780\pi\)
\(104\) 14.5876 35.2175i 0.140265 0.338629i
\(105\) 0 0
\(106\) 26.5124 + 26.5124i 0.250117 + 0.250117i
\(107\) −188.295 + 37.4541i −1.75976 + 0.350039i −0.966070 0.258280i \(-0.916844\pi\)
−0.793693 + 0.608319i \(0.791844\pi\)
\(108\) 39.6334 26.4822i 0.366975 0.245205i
\(109\) −97.4423 19.3825i −0.893966 0.177821i −0.273330 0.961920i \(-0.588125\pi\)
−0.620635 + 0.784099i \(0.713125\pi\)
\(110\) 0 0
\(111\) −41.3960 99.9387i −0.372937 0.900348i
\(112\) −3.77884 + 18.9975i −0.0337397 + 0.169621i
\(113\) 65.4166 + 97.9029i 0.578908 + 0.866397i 0.999159 0.0410109i \(-0.0130578\pi\)
−0.420251 + 0.907408i \(0.638058\pi\)
\(114\) 54.3063 + 273.016i 0.476371 + 2.39488i
\(115\) 0 0
\(116\) −32.3150 + 48.3628i −0.278578 + 0.416921i
\(117\) 92.2404 + 38.2072i 0.788380 + 0.326557i
\(118\) 151.652i 1.28518i
\(119\) −16.0368 5.07165i −0.134763 0.0426189i
\(120\) 0 0
\(121\) 46.2544 111.668i 0.382268 0.922876i
\(122\) −23.9088 15.9754i −0.195974 0.130946i
\(123\) 244.474 + 244.474i 1.98760 + 1.98760i
\(124\) −22.3246 + 4.44063i −0.180037 + 0.0358115i
\(125\) 0 0
\(126\) −36.0340 7.16760i −0.285984 0.0568857i
\(127\) 110.821 45.9034i 0.872603 0.361444i 0.0989792 0.995089i \(-0.468442\pi\)
0.773623 + 0.633646i \(0.218442\pi\)
\(128\) −58.5887 141.446i −0.457724 1.10504i
\(129\) −5.42014 + 27.2489i −0.0420166 + 0.211232i
\(130\) 0 0
\(131\) 41.9499 + 210.896i 0.320228 + 1.60990i 0.720469 + 0.693487i \(0.243926\pi\)
−0.400241 + 0.916410i \(0.631074\pi\)
\(132\) 1.73198 1.73198i 0.0131211 0.0131211i
\(133\) 13.2162 19.7794i 0.0993697 0.148717i
\(134\) −84.3594 34.9428i −0.629548 0.260767i
\(135\) 0 0
\(136\) 100.066 29.0726i 0.735777 0.213769i
\(137\) 82.8569 0.604795 0.302398 0.953182i \(-0.402213\pi\)
0.302398 + 0.953182i \(0.402213\pi\)
\(138\) −114.997 + 277.627i −0.833311 + 2.01179i
\(139\) 137.679 + 91.9943i 0.990498 + 0.661829i 0.941515 0.336970i \(-0.109402\pi\)
0.0489823 + 0.998800i \(0.484402\pi\)
\(140\) 0 0
\(141\) −423.292 + 84.1981i −3.00207 + 0.597149i
\(142\) −151.426 + 101.179i −1.06638 + 0.712532i
\(143\) 2.21102 + 0.439800i 0.0154617 + 0.00307552i
\(144\) 290.380 120.279i 2.01653 0.835273i
\(145\) 0 0
\(146\) 0.160103 0.804894i 0.00109660 0.00551298i
\(147\) −133.541 199.858i −0.908440 1.35958i
\(148\) 5.69138 + 28.6125i 0.0384553 + 0.193328i
\(149\) 114.653 114.653i 0.769486 0.769486i −0.208530 0.978016i \(-0.566868\pi\)
0.978016 + 0.208530i \(0.0668680\pi\)
\(150\) 0 0
\(151\) −144.717 59.9439i −0.958394 0.396980i −0.152014 0.988378i \(-0.548576\pi\)
−0.806379 + 0.591399i \(0.798576\pi\)
\(152\) 147.378i 0.969590i
\(153\) 76.1459 + 262.089i 0.497686 + 1.71300i
\(154\) −0.829566 −0.00538680
\(155\) 0 0
\(156\) −34.9386 23.3452i −0.223965 0.149649i
\(157\) 88.8938 + 88.8938i 0.566203 + 0.566203i 0.931062 0.364860i \(-0.118883\pi\)
−0.364860 + 0.931062i \(0.618883\pi\)
\(158\) −181.117 + 36.0265i −1.14631 + 0.228016i
\(159\) −67.4651 + 45.0787i −0.424309 + 0.283514i
\(160\) 0 0
\(161\) 23.7254 9.82739i 0.147363 0.0610397i
\(162\) 28.5512 + 68.9287i 0.176242 + 0.425486i
\(163\) 20.7361 104.248i 0.127216 0.639556i −0.863582 0.504208i \(-0.831785\pi\)
0.990798 0.135348i \(-0.0432154\pi\)
\(164\) −51.8025 77.5280i −0.315869 0.472731i
\(165\) 0 0
\(166\) −140.497 + 140.497i −0.846370 + 0.846370i
\(167\) −83.1570 + 124.453i −0.497946 + 0.745229i −0.992277 0.124045i \(-0.960413\pi\)
0.494331 + 0.869274i \(0.335413\pi\)
\(168\) −28.0453 11.6167i −0.166936 0.0691472i
\(169\) 130.326i 0.771160i
\(170\) 0 0
\(171\) −386.007 −2.25735
\(172\) 2.86734 6.92236i 0.0166706 0.0402463i
\(173\) 22.6606 + 15.1413i 0.130986 + 0.0875220i 0.619337 0.785125i \(-0.287401\pi\)
−0.488351 + 0.872647i \(0.662401\pi\)
\(174\) −352.744 352.744i −2.02727 2.02727i
\(175\) 0 0
\(176\) 5.90080 3.94279i 0.0335273 0.0224022i
\(177\) 321.877 + 64.0253i 1.81851 + 0.361725i
\(178\) −365.487 + 151.389i −2.05330 + 0.850503i
\(179\) −20.5361 49.5786i −0.114727 0.276976i 0.856077 0.516847i \(-0.172895\pi\)
−0.970805 + 0.239872i \(0.922895\pi\)
\(180\) 0 0
\(181\) 64.7443 + 96.8967i 0.357703 + 0.535341i 0.966058 0.258324i \(-0.0831702\pi\)
−0.608355 + 0.793665i \(0.708170\pi\)
\(182\) 2.77643 + 13.9581i 0.0152551 + 0.0766927i
\(183\) 44.0013 44.0013i 0.240445 0.240445i
\(184\) −88.3899 + 132.285i −0.480380 + 0.718939i
\(185\) 0 0
\(186\) 195.217i 1.04956i
\(187\) 2.84080 + 5.46868i 0.0151915 + 0.0292443i
\(188\) 116.394 0.619116
\(189\) 13.3695 32.2769i 0.0707382 0.170777i
\(190\) 0 0
\(191\) −54.0250 54.0250i −0.282853 0.282853i 0.551393 0.834246i \(-0.314097\pi\)
−0.834246 + 0.551393i \(0.814097\pi\)
\(192\) 148.668 29.5719i 0.774311 0.154020i
\(193\) 180.254 120.442i 0.933960 0.624052i 0.00730837 0.999973i \(-0.497674\pi\)
0.926652 + 0.375921i \(0.122674\pi\)
\(194\) 200.622 + 39.9062i 1.03413 + 0.205702i
\(195\) 0 0
\(196\) 24.8072 + 59.8900i 0.126568 + 0.305561i
\(197\) −48.6152 + 244.405i −0.246778 + 1.24064i 0.636312 + 0.771432i \(0.280459\pi\)
−0.883090 + 0.469204i \(0.844541\pi\)
\(198\) 7.47856 + 11.1925i 0.0377705 + 0.0565276i
\(199\) 52.4658 + 263.763i 0.263647 + 1.32544i 0.854831 + 0.518906i \(0.173661\pi\)
−0.591184 + 0.806537i \(0.701339\pi\)
\(200\) 0 0
\(201\) 109.781 164.299i 0.546173 0.817406i
\(202\) 147.372 + 61.0434i 0.729563 + 0.302195i
\(203\) 42.6312i 0.210006i
\(204\) −9.91237 114.439i −0.0485901 0.560977i
\(205\) 0 0
\(206\) −127.213 + 307.119i −0.617538 + 1.49087i
\(207\) −346.476 231.508i −1.67380 1.11840i
\(208\) −86.0893 86.0893i −0.413891 0.413891i
\(209\) −8.54834 + 1.70037i −0.0409012 + 0.00813575i
\(210\) 0 0
\(211\) 199.610 + 39.7050i 0.946021 + 0.188175i 0.643913 0.765099i \(-0.277310\pi\)
0.302107 + 0.953274i \(0.402310\pi\)
\(212\) 20.2168 8.37406i 0.0953621 0.0395003i
\(213\) −150.821 364.115i −0.708081 1.70946i
\(214\) −86.6310 + 435.523i −0.404818 + 2.03516i
\(215\) 0 0
\(216\) 42.2257 + 212.283i 0.195489 + 0.982791i
\(217\) −11.7966 + 11.7966i −0.0543620 + 0.0543620i
\(218\) −127.669 + 191.070i −0.585638 + 0.876469i
\(219\) 1.64078 + 0.679632i 0.00749213 + 0.00310334i
\(220\) 0 0
\(221\) 82.5069 66.1015i 0.373334 0.299102i
\(222\) −250.203 −1.12704
\(223\) 124.891 301.515i 0.560051 1.35208i −0.349674 0.936872i \(-0.613708\pi\)
0.909725 0.415212i \(-0.136292\pi\)
\(224\) 17.0813 + 11.4134i 0.0762560 + 0.0509526i
\(225\) 0 0
\(226\) 267.114 53.1323i 1.18192 0.235098i
\(227\) −129.730 + 86.6828i −0.571498 + 0.381863i −0.807480 0.589895i \(-0.799169\pi\)
0.235982 + 0.971757i \(0.424169\pi\)
\(228\) 159.339 + 31.6945i 0.698855 + 0.139011i
\(229\) 280.820 116.319i 1.22629 0.507945i 0.326884 0.945065i \(-0.394001\pi\)
0.899403 + 0.437120i \(0.144001\pi\)
\(230\) 0 0
\(231\) 0.350232 1.76074i 0.00151616 0.00762224i
\(232\) −146.734 219.603i −0.632474 0.946565i
\(233\) −20.1955 101.530i −0.0866759 0.435749i −0.999617 0.0276587i \(-0.991195\pi\)
0.912942 0.408090i \(-0.133805\pi\)
\(234\) 163.292 163.292i 0.697828 0.697828i
\(235\) 0 0
\(236\) −81.7702 33.8703i −0.346484 0.143518i
\(237\) 399.628i 1.68619i
\(238\) −25.0326 + 29.7803i −0.105179 + 0.125127i
\(239\) −388.547 −1.62572 −0.812860 0.582459i \(-0.802091\pi\)
−0.812860 + 0.582459i \(0.802091\pi\)
\(240\) 0 0
\(241\) 282.183 + 188.549i 1.17088 + 0.782359i 0.979950 0.199244i \(-0.0638486\pi\)
0.190933 + 0.981603i \(0.438849\pi\)
\(242\) −197.684 197.684i −0.816877 0.816877i
\(243\) 153.337 30.5007i 0.631018 0.125517i
\(244\) −13.9538 + 9.32360i −0.0571875 + 0.0382115i
\(245\) 0 0
\(246\) 738.817 306.028i 3.00332 1.24402i
\(247\) 57.2200 + 138.141i 0.231660 + 0.559276i
\(248\) 20.1637 101.370i 0.0813054 0.408750i
\(249\) −238.887 357.519i −0.959384 1.43582i
\(250\) 0 0
\(251\) 87.2461 87.2461i 0.347594 0.347594i −0.511619 0.859213i \(-0.670954\pi\)
0.859213 + 0.511619i \(0.170954\pi\)
\(252\) −11.9127 + 17.8286i −0.0472726 + 0.0707485i
\(253\) −8.69271 3.60064i −0.0343585 0.0142318i
\(254\) 277.446i 1.09231i
\(255\) 0 0
\(256\) −232.986 −0.910100
\(257\) 29.5265 71.2832i 0.114889 0.277367i −0.855967 0.517031i \(-0.827037\pi\)
0.970856 + 0.239664i \(0.0770373\pi\)
\(258\) 53.4312 + 35.7016i 0.207098 + 0.138378i
\(259\) 15.1192 + 15.1192i 0.0583753 + 0.0583753i
\(260\) 0 0
\(261\) 575.177 384.321i 2.20374 1.47249i
\(262\) 487.801 + 97.0297i 1.86184 + 0.370342i
\(263\) 69.4703 28.7756i 0.264146 0.109413i −0.246680 0.969097i \(-0.579340\pi\)
0.510826 + 0.859684i \(0.329340\pi\)
\(264\) 4.25623 + 10.2754i 0.0161221 + 0.0389221i
\(265\) 0 0
\(266\) −30.5689 45.7495i −0.114921 0.171991i
\(267\) −167.017 839.652i −0.625532 3.14476i
\(268\) −37.6822 + 37.6822i −0.140605 + 0.140605i
\(269\) −100.440 + 150.319i −0.373383 + 0.558807i −0.969810 0.243860i \(-0.921586\pi\)
0.596428 + 0.802667i \(0.296586\pi\)
\(270\) 0 0
\(271\) 241.430i 0.890886i −0.895310 0.445443i \(-0.853046\pi\)
0.895310 0.445443i \(-0.146954\pi\)
\(272\) 36.5188 330.806i 0.134260 1.21620i
\(273\) −30.7979 −0.112813
\(274\) 73.3402 177.059i 0.267665 0.646200i
\(275\) 0 0
\(276\) 124.012 + 124.012i 0.449320 + 0.449320i
\(277\) 303.504 60.3707i 1.09568 0.217945i 0.386022 0.922489i \(-0.373849\pi\)
0.709660 + 0.704545i \(0.248849\pi\)
\(278\) 318.450 212.782i 1.14550 0.765402i
\(279\) 265.505 + 52.8122i 0.951630 + 0.189291i
\(280\) 0 0
\(281\) −8.71849 21.0483i −0.0310267 0.0749050i 0.907607 0.419821i \(-0.137907\pi\)
−0.938633 + 0.344916i \(0.887907\pi\)
\(282\) −194.749 + 979.070i −0.690600 + 3.47188i
\(283\) 57.6606 + 86.2953i 0.203748 + 0.304930i 0.919245 0.393685i \(-0.128800\pi\)
−0.715498 + 0.698615i \(0.753800\pi\)
\(284\) 20.7359 + 104.246i 0.0730136 + 0.367064i
\(285\) 0 0
\(286\) 2.89689 4.33550i 0.0101290 0.0151591i
\(287\) −63.1377 26.1525i −0.219992 0.0911237i
\(288\) 333.352i 1.15747i
\(289\) 282.041 + 63.0392i 0.975920 + 0.218129i
\(290\) 0 0
\(291\) −169.400 + 408.968i −0.582130 + 1.40539i
\(292\) −0.398240 0.266095i −0.00136383 0.000911285i
\(293\) 20.1749 + 20.1749i 0.0688564 + 0.0688564i 0.740696 0.671840i \(-0.234496\pi\)
−0.671840 + 0.740696i \(0.734496\pi\)
\(294\) −545.283 + 108.464i −1.85471 + 0.368924i
\(295\) 0 0
\(296\) −129.922 25.8431i −0.438926 0.0873077i
\(297\) −11.8259 + 4.89843i −0.0398177 + 0.0164930i
\(298\) −143.521 346.490i −0.481613 1.16272i
\(299\) −31.4902 + 158.312i −0.105318 + 0.529472i
\(300\) 0 0
\(301\) −1.07136 5.38610i −0.00355934 0.0178940i
\(302\) −256.191 + 256.191i −0.848315 + 0.848315i
\(303\) −191.782 + 287.021i −0.632943 + 0.947266i
\(304\) 434.879 + 180.133i 1.43052 + 0.592542i
\(305\) 0 0
\(306\) 627.463 + 69.2679i 2.05053 + 0.226366i
\(307\) −178.586 −0.581714 −0.290857 0.956766i \(-0.593940\pi\)
−0.290857 + 0.956766i \(0.593940\pi\)
\(308\) −0.185278 + 0.447301i −0.000601552 + 0.00145228i
\(309\) −598.146 399.668i −1.93575 1.29342i
\(310\) 0 0
\(311\) −91.7576 + 18.2517i −0.295041 + 0.0586872i −0.340391 0.940284i \(-0.610560\pi\)
0.0453506 + 0.998971i \(0.485560\pi\)
\(312\) 158.647 106.005i 0.508484 0.339758i
\(313\) −246.620 49.0559i −0.787925 0.156728i −0.215303 0.976547i \(-0.569074\pi\)
−0.572622 + 0.819819i \(0.694074\pi\)
\(314\) 268.643 111.276i 0.855551 0.354381i
\(315\) 0 0
\(316\) −21.0259 + 105.704i −0.0665377 + 0.334508i
\(317\) 293.951 + 439.929i 0.927291 + 1.38779i 0.921742 + 0.387805i \(0.126767\pi\)
0.00554969 + 0.999985i \(0.498233\pi\)
\(318\) 36.6135 + 184.069i 0.115137 + 0.578832i
\(319\) 11.0447 11.0447i 0.0346228 0.0346228i
\(320\) 0 0
\(321\) −887.814 367.745i −2.76578 1.14562i
\(322\) 59.3981i 0.184466i
\(323\) −196.910 + 358.183i −0.609627 + 1.10893i
\(324\) 43.5429 0.134392
\(325\) 0 0
\(326\) −204.415 136.586i −0.627039 0.418974i
\(327\) −351.642 351.642i −1.07536 1.07536i
\(328\) 415.253 82.5989i 1.26601 0.251826i
\(329\) 70.9313 47.3948i 0.215597 0.144057i
\(330\) 0 0
\(331\) 359.665 148.978i 1.08660 0.450085i 0.233781 0.972289i \(-0.424890\pi\)
0.852821 + 0.522204i \(0.174890\pi\)
\(332\) 44.3768 + 107.135i 0.133665 + 0.322696i
\(333\) 67.6873 340.287i 0.203265 1.02188i
\(334\) 192.341 + 287.859i 0.575871 + 0.861853i
\(335\) 0 0
\(336\) −68.5568 + 68.5568i −0.204038 + 0.204038i
\(337\) −301.262 + 450.870i −0.893952 + 1.33789i 0.0468383 + 0.998902i \(0.485085\pi\)
−0.940790 + 0.338991i \(0.889915\pi\)
\(338\) 278.497 + 115.357i 0.823954 + 0.341293i
\(339\) 589.375i 1.73857i
\(340\) 0 0
\(341\) 6.11240 0.0179249
\(342\) −341.671 + 824.867i −0.999038 + 2.41189i
\(343\) 79.8143 + 53.3302i 0.232695 + 0.155482i
\(344\) 24.0575 + 24.0575i 0.0699346 + 0.0699346i
\(345\) 0 0
\(346\) 52.4136 35.0217i 0.151484 0.101219i
\(347\) 61.7675 + 12.2863i 0.178004 + 0.0354072i 0.283288 0.959035i \(-0.408575\pi\)
−0.105283 + 0.994442i \(0.533575\pi\)
\(348\) −268.982 + 111.416i −0.772937 + 0.320161i
\(349\) −164.739 397.715i −0.472031 1.13958i −0.963264 0.268556i \(-0.913454\pi\)
0.491233 0.871028i \(-0.336546\pi\)
\(350\) 0 0
\(351\) 121.999 + 182.584i 0.347576 + 0.520184i
\(352\) −1.46843 7.38228i −0.00417167 0.0209724i
\(353\) −27.5316 + 27.5316i −0.0779933 + 0.0779933i −0.745027 0.667034i \(-0.767564\pi\)
0.667034 + 0.745027i \(0.267564\pi\)
\(354\) 421.724 631.155i 1.19131 1.78292i
\(355\) 0 0
\(356\) 230.882i 0.648544i
\(357\) −52.6396 65.7039i −0.147450 0.184045i
\(358\) −124.123 −0.346713
\(359\) 228.318 551.208i 0.635983 1.53540i −0.196004 0.980603i \(-0.562797\pi\)
0.831987 0.554795i \(-0.187203\pi\)
\(360\) 0 0
\(361\) −153.507 153.507i −0.425228 0.425228i
\(362\) 264.369 52.5862i 0.730300 0.145266i
\(363\) 503.040 336.121i 1.38579 0.925952i
\(364\) 8.14626 + 1.62039i 0.0223798 + 0.00445163i
\(365\) 0 0
\(366\) −55.0800 132.975i −0.150492 0.363319i
\(367\) −21.3947 + 107.558i −0.0582961 + 0.293074i −0.998925 0.0463633i \(-0.985237\pi\)
0.940629 + 0.339438i \(0.110237\pi\)
\(368\) 282.309 + 422.505i 0.767143 + 1.14811i
\(369\) 216.340 + 1087.62i 0.586288 + 2.94747i
\(370\) 0 0
\(371\) 8.91040 13.3354i 0.0240172 0.0359443i
\(372\) −105.261 43.6005i −0.282959 0.117206i
\(373\) 187.710i 0.503243i 0.967826 + 0.251622i \(0.0809639\pi\)
−0.967826 + 0.251622i \(0.919036\pi\)
\(374\) 14.2007 1.23002i 0.0379697 0.00328882i
\(375\) 0 0
\(376\) −202.254 + 488.284i −0.537909 + 1.29863i
\(377\) −222.800 148.870i −0.590981 0.394881i
\(378\) −57.1392 57.1392i −0.151162 0.151162i
\(379\) −33.4960 + 6.66277i −0.0883799 + 0.0175799i −0.239082 0.970999i \(-0.576847\pi\)
0.150702 + 0.988579i \(0.451847\pi\)
\(380\) 0 0
\(381\) 588.873 + 117.134i 1.54560 + 0.307439i
\(382\) −163.267 + 67.6274i −0.427401 + 0.177035i
\(383\) 260.821 + 629.678i 0.680995 + 1.64407i 0.762178 + 0.647368i \(0.224130\pi\)
−0.0811827 + 0.996699i \(0.525870\pi\)
\(384\) 149.504 751.607i 0.389333 1.95731i
\(385\) 0 0
\(386\) −97.8247 491.798i −0.253432 1.27409i
\(387\) −63.0106 + 63.0106i −0.162818 + 0.162818i
\(388\) 66.3249 99.2622i 0.170940 0.255830i
\(389\) −10.8240 4.48344i −0.0278251 0.0115255i 0.368727 0.929538i \(-0.379794\pi\)
−0.396553 + 0.918012i \(0.629794\pi\)
\(390\) 0 0
\(391\) −391.565 + 203.405i −1.00144 + 0.520218i
\(392\) −294.351 −0.750895
\(393\) −411.887 + 994.382i −1.04806 + 2.53024i
\(394\) 479.244 + 320.220i 1.21635 + 0.812742i
\(395\) 0 0
\(396\) 7.70524 1.53267i 0.0194577 0.00387037i
\(397\) 17.8441 11.9231i 0.0449474 0.0300329i −0.532894 0.846182i \(-0.678895\pi\)
0.577841 + 0.816149i \(0.303895\pi\)
\(398\) 610.081 + 121.353i 1.53287 + 0.304906i
\(399\) 110.008 45.5669i 0.275710 0.114203i
\(400\) 0 0
\(401\) −6.89278 + 34.6523i −0.0171890 + 0.0864148i −0.988428 0.151694i \(-0.951527\pi\)
0.971239 + 0.238108i \(0.0765273\pi\)
\(402\) −253.922 380.021i −0.631646 0.945325i
\(403\) −20.4573 102.846i −0.0507624 0.255200i
\(404\) 65.8289 65.8289i 0.162943 0.162943i
\(405\) 0 0
\(406\) 91.0995 + 37.7346i 0.224383 + 0.0929425i
\(407\) 7.83403i 0.0192482i
\(408\) 497.308 + 157.274i 1.21889 + 0.385475i
\(409\) 280.116 0.684879 0.342440 0.939540i \(-0.388747\pi\)
0.342440 + 0.939540i \(0.388747\pi\)
\(410\) 0 0
\(411\) 344.840 + 230.415i 0.839027 + 0.560620i
\(412\) 137.186 + 137.186i 0.332976 + 0.332976i
\(413\) −63.6232 + 12.6554i −0.154051 + 0.0306427i
\(414\) −801.395 + 535.475i −1.93574 + 1.29342i
\(415\) 0 0
\(416\) −119.298 + 49.4147i −0.286773 + 0.118785i
\(417\) 317.179 + 765.737i 0.760621 + 1.83630i
\(418\) −3.93294 + 19.7722i −0.00940895 + 0.0473020i
\(419\) −76.3556 114.274i −0.182233 0.272731i 0.729095 0.684413i \(-0.239941\pi\)
−0.911328 + 0.411682i \(0.864941\pi\)
\(420\) 0 0
\(421\) 183.297 183.297i 0.435385 0.435385i −0.455070 0.890455i \(-0.650386\pi\)
0.890455 + 0.455070i \(0.150386\pi\)
\(422\) 261.530 391.407i 0.619739 0.927505i
\(423\) −1278.90 529.736i −3.02339 1.25233i
\(424\) 99.3626i 0.234346i
\(425\) 0 0
\(426\) −911.583 −2.13987
\(427\) −4.70702 + 11.3638i −0.0110235 + 0.0266130i
\(428\) 215.485 + 143.982i 0.503470 + 0.336408i
\(429\) 7.97897 + 7.97897i 0.0185990 + 0.0185990i
\(430\) 0 0
\(431\) 419.398 280.233i 0.973080 0.650192i 0.0360172 0.999351i \(-0.488533\pi\)
0.937063 + 0.349160i \(0.113533\pi\)
\(432\) 678.011 + 134.865i 1.56947 + 0.312187i
\(433\) 764.858 316.814i 1.76641 0.731673i 0.770912 0.636942i \(-0.219801\pi\)
0.995503 0.0947312i \(-0.0301991\pi\)
\(434\) 14.7667 + 35.6500i 0.0340247 + 0.0821428i
\(435\) 0 0
\(436\) 74.5108 + 111.513i 0.170896 + 0.255764i
\(437\) −121.749 612.073i −0.278601 1.40062i
\(438\) 2.90464 2.90464i 0.00663160 0.00663160i
\(439\) 37.2714 55.7806i 0.0849006 0.127063i −0.786589 0.617477i \(-0.788155\pi\)
0.871489 + 0.490415i \(0.163155\pi\)
\(440\) 0 0
\(441\) 770.954i 1.74819i
\(442\) −68.2234 234.820i −0.154352 0.531267i
\(443\) −602.890 −1.36093 −0.680463 0.732783i \(-0.738221\pi\)
−0.680463 + 0.732783i \(0.738221\pi\)
\(444\) −55.8810 + 134.909i −0.125858 + 0.303849i
\(445\) 0 0
\(446\) −533.767 533.767i −1.19679 1.19679i
\(447\) 796.010 158.336i 1.78078 0.354220i
\(448\) −24.9124 + 16.6459i −0.0556079 + 0.0371560i
\(449\) −702.019 139.640i −1.56352 0.311003i −0.663947 0.747780i \(-0.731120\pi\)
−0.899570 + 0.436777i \(0.856120\pi\)
\(450\) 0 0
\(451\) 9.58196 + 23.1329i 0.0212460 + 0.0512925i
\(452\) 31.0093 155.894i 0.0686046 0.344898i
\(453\) −435.599 651.920i −0.961588 1.43912i
\(454\) 70.4050 + 353.950i 0.155077 + 0.779625i
\(455\) 0 0
\(456\) −409.839 + 613.368i −0.898770 + 1.34510i
\(457\) 434.264 + 179.878i 0.950250 + 0.393606i 0.803325 0.595541i \(-0.203062\pi\)
0.146925 + 0.989148i \(0.453062\pi\)
\(458\) 703.049i 1.53504i
\(459\) −181.004 + 572.345i −0.394345 + 1.24694i
\(460\) 0 0
\(461\) −152.470 + 368.096i −0.330739 + 0.798474i 0.667795 + 0.744345i \(0.267238\pi\)
−0.998534 + 0.0541287i \(0.982762\pi\)
\(462\) −3.45255 2.30692i −0.00747306 0.00499334i
\(463\) 96.2811 + 96.2811i 0.207950 + 0.207950i 0.803396 0.595445i \(-0.203024\pi\)
−0.595445 + 0.803396i \(0.703024\pi\)
\(464\) −827.347 + 164.570i −1.78307 + 0.354676i
\(465\) 0 0
\(466\) −234.837 46.7119i −0.503941 0.100240i
\(467\) 398.906 165.232i 0.854188 0.353816i 0.0877563 0.996142i \(-0.472030\pi\)
0.766432 + 0.642326i \(0.222030\pi\)
\(468\) −51.5765 124.517i −0.110206 0.266061i
\(469\) −7.61989 + 38.3078i −0.0162471 + 0.0816797i
\(470\) 0 0
\(471\) 122.762 + 617.168i 0.260642 + 1.31034i
\(472\) 284.179 284.179i 0.602073 0.602073i
\(473\) −1.11784 + 1.67297i −0.00236331 + 0.00353694i
\(474\) −853.973 353.727i −1.80163 0.746260i
\(475\) 0 0
\(476\) 10.4666 + 20.1487i 0.0219887 + 0.0423293i
\(477\) −260.247 −0.545592
\(478\) −343.920 + 830.295i −0.719497 + 1.73702i
\(479\) 352.426 + 235.484i 0.735755 + 0.491616i 0.866111 0.499852i \(-0.166612\pi\)
−0.130356 + 0.991467i \(0.541612\pi\)
\(480\) 0 0
\(481\) −131.813 + 26.2193i −0.274040 + 0.0545099i
\(482\) 652.686 436.111i 1.35412 0.904794i
\(483\) 126.071 + 25.0771i 0.261017 + 0.0519194i
\(484\) −150.742 + 62.4395i −0.311451 + 0.129007i
\(485\) 0 0
\(486\) 70.5478 354.668i 0.145160 0.729769i
\(487\) 266.338 + 398.602i 0.546895 + 0.818486i 0.997230 0.0743736i \(-0.0236957\pi\)
−0.450336 + 0.892859i \(0.648696\pi\)
\(488\) −14.8664 74.7387i −0.0304640 0.153153i
\(489\) 376.201 376.201i 0.769327 0.769327i
\(490\) 0 0
\(491\) −2.48118 1.02774i −0.00505332 0.00209315i 0.380155 0.924923i \(-0.375871\pi\)
−0.385209 + 0.922830i \(0.625871\pi\)
\(492\) 466.718i 0.948614i
\(493\) −63.2102 729.768i −0.128215 1.48026i
\(494\) 345.845 0.700091
\(495\) 0 0
\(496\) −274.475 183.399i −0.553378 0.369755i
\(497\) 55.0850 + 55.0850i 0.110835 + 0.110835i
\(498\) −975.439 + 194.027i −1.95871 + 0.389612i
\(499\) 300.741 200.949i 0.602688 0.402703i −0.216455 0.976293i \(-0.569449\pi\)
0.819143 + 0.573589i \(0.194449\pi\)
\(500\) 0 0
\(501\) −692.178 + 286.709i −1.38159 + 0.572274i
\(502\) −109.213 263.663i −0.217556 0.525226i
\(503\) −28.0936 + 141.236i −0.0558521 + 0.280787i −0.998611 0.0526876i \(-0.983221\pi\)
0.942759 + 0.333475i \(0.108221\pi\)
\(504\) −54.0924 80.9551i −0.107326 0.160625i
\(505\) 0 0
\(506\) −15.3886 + 15.3886i −0.0304122 + 0.0304122i
\(507\) −362.420 + 542.401i −0.714833 + 1.06982i
\(508\) −149.598 61.9657i −0.294485 0.121980i
\(509\) 281.872i 0.553776i 0.960902 + 0.276888i \(0.0893031\pi\)
−0.960902 + 0.276888i \(0.910697\pi\)
\(510\) 0 0
\(511\) −0.351042 −0.000686972
\(512\) 28.1295 67.9107i 0.0549405 0.132638i
\(513\) −705.916 471.678i −1.37605 0.919450i
\(514\) −126.192 126.192i −0.245509 0.245509i
\(515\) 0 0
\(516\) 31.1837 20.8363i 0.0604336 0.0403804i
\(517\) −30.6554 6.09774i −0.0592948 0.0117945i
\(518\) 45.6912 18.9259i 0.0882069 0.0365365i
\(519\) 52.2044 + 126.032i 0.100586 + 0.242837i
\(520\) 0 0
\(521\) −403.558 603.967i −0.774583 1.15925i −0.983428 0.181297i \(-0.941971\pi\)
0.208846 0.977949i \(-0.433029\pi\)
\(522\) −312.151 1569.29i −0.597990 3.00630i
\(523\) −658.045 + 658.045i −1.25821 + 1.25821i −0.306266 + 0.951946i \(0.599080\pi\)
−0.951946 + 0.306266i \(0.900920\pi\)
\(524\) 161.265 241.351i 0.307758 0.460593i
\(525\) 0 0
\(526\) 173.923i 0.330652i
\(527\) 184.445 219.427i 0.349990 0.416370i
\(528\) 35.5228 0.0672780
\(529\) 55.3710 133.677i 0.104671 0.252698i
\(530\) 0 0
\(531\) 744.311 + 744.311i 1.40172 + 1.40172i
\(532\) −31.4954 + 6.26483i −0.0592019 + 0.0117760i
\(533\) 357.159 238.646i 0.670091 0.447741i
\(534\) −1942.10 386.309i −3.63690 0.723425i
\(535\) 0 0
\(536\) −92.6014 223.560i −0.172764 0.417089i
\(537\) 52.4032 263.449i 0.0975851 0.490593i
\(538\) 232.317 + 347.686i 0.431815 + 0.646257i
\(539\) −3.39608 17.0732i −0.00630070 0.0316757i
\(540\) 0 0
\(541\) −190.737 + 285.458i −0.352563 + 0.527648i −0.964786 0.263037i \(-0.915276\pi\)
0.612222 + 0.790686i \(0.290276\pi\)
\(542\) −515.918 213.700i −0.951878 0.394281i
\(543\) 583.318i 1.07425i
\(544\) −309.324 170.049i −0.568611 0.312591i
\(545\) 0 0
\(546\) −27.2605 + 65.8126i −0.0499276 + 0.120536i
\(547\) 510.386 + 341.029i 0.933064 + 0.623453i 0.926407 0.376525i \(-0.122881\pi\)
0.00665718 + 0.999978i \(0.497881\pi\)
\(548\) −79.0898 79.0898i −0.144324 0.144324i
\(549\) 195.753 38.9377i 0.356563 0.0709248i
\(550\) 0 0
\(551\) 1016.09 + 202.112i 1.84408 + 0.366810i
\(552\) −735.736 + 304.752i −1.33285 + 0.552086i
\(553\) 30.2288 + 72.9787i 0.0546633 + 0.131969i
\(554\) 139.637 702.001i 0.252052 1.26715i
\(555\) 0 0
\(556\) −43.6078 219.231i −0.0784313 0.394301i
\(557\) −41.7424 + 41.7424i −0.0749415 + 0.0749415i −0.743584 0.668643i \(-0.766876\pi\)
0.668643 + 0.743584i \(0.266876\pi\)
\(558\) 347.865 520.617i 0.623414 0.933005i
\(559\) 31.8902 + 13.2094i 0.0570487 + 0.0236303i
\(560\) 0 0
\(561\) −3.38465 + 30.6599i −0.00603325 + 0.0546522i
\(562\) −52.6957 −0.0937646
\(563\) 196.631 474.709i 0.349255 0.843177i −0.647453 0.762106i \(-0.724166\pi\)
0.996708 0.0810717i \(-0.0258343\pi\)
\(564\) 484.417 + 323.677i 0.858895 + 0.573895i
\(565\) 0 0
\(566\) 235.444 46.8328i 0.415979 0.0827434i
\(567\) 26.5354 17.7304i 0.0467997 0.0312705i
\(568\) −473.355 94.1562i −0.833372 0.165768i
\(569\) −327.271 + 135.560i −0.575169 + 0.238243i −0.651256 0.758859i \(-0.725757\pi\)
0.0760868 + 0.997101i \(0.475757\pi\)
\(570\) 0 0
\(571\) −160.319 + 805.978i −0.280769 + 1.41152i 0.540676 + 0.841231i \(0.318169\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(572\) −1.69069 2.53030i −0.00295576 0.00442360i
\(573\) −74.6085 375.082i −0.130207 0.654594i
\(574\) −111.772 + 111.772i −0.194724 + 0.194724i
\(575\) 0 0
\(576\) 449.171 + 186.053i 0.779811 + 0.323008i
\(577\) 337.479i 0.584886i 0.956283 + 0.292443i \(0.0944682\pi\)
−0.956283 + 0.292443i \(0.905532\pi\)
\(578\) 384.356 546.901i 0.664976 0.946195i
\(579\) 1085.13 1.87415
\(580\) 0 0
\(581\) 70.6683 + 47.2190i 0.121632 + 0.0812720i
\(582\) 723.989 + 723.989i 1.24397 + 1.24397i
\(583\) −5.76333 + 1.14640i −0.00988564 + 0.00196638i
\(584\) 1.80830 1.20827i 0.00309641 0.00206895i
\(585\) 0 0
\(586\) 60.9699 25.2546i 0.104044 0.0430965i
\(587\) −67.4493 162.837i −0.114905 0.277405i 0.855956 0.517049i \(-0.172969\pi\)
−0.970861 + 0.239644i \(0.922969\pi\)
\(588\) −63.3020 + 318.240i −0.107656 + 0.541225i
\(589\) 225.237 + 337.091i 0.382406 + 0.572311i
\(590\) 0 0
\(591\) −881.991 + 881.991i −1.49237 + 1.49237i
\(592\) −235.055 + 351.784i −0.397052 + 0.594231i
\(593\) −235.725 97.6406i −0.397513 0.164655i 0.174966 0.984574i \(-0.444018\pi\)
−0.572479 + 0.819919i \(0.694018\pi\)
\(594\) 29.6068i 0.0498430i
\(595\) 0 0
\(596\) −218.881 −0.367250
\(597\) −515.137 + 1243.65i −0.862876 + 2.08317i
\(598\) 310.427 + 207.421i 0.519109 + 0.346858i
\(599\) 47.8438 + 47.8438i 0.0798728 + 0.0798728i 0.745914 0.666042i \(-0.232013\pi\)
−0.666042 + 0.745914i \(0.732013\pi\)
\(600\) 0 0
\(601\) 380.371 254.155i 0.632896 0.422888i −0.197312 0.980341i \(-0.563221\pi\)
0.830208 + 0.557453i \(0.188221\pi\)
\(602\) −12.4580 2.47805i −0.0206943 0.00411636i
\(603\) 585.540 242.539i 0.971044 0.402220i
\(604\) 80.9192 + 195.356i 0.133972 + 0.323438i
\(605\) 0 0
\(606\) 443.589 + 663.877i 0.731994 + 1.09551i
\(607\) −51.5172 258.994i −0.0848718 0.426679i −0.999737 0.0229205i \(-0.992704\pi\)
0.914866 0.403759i \(-0.132296\pi\)
\(608\) 353.013 353.013i 0.580614 0.580614i
\(609\) −118.552 + 177.426i −0.194667 + 0.291339i
\(610\) 0 0
\(611\) 536.208i 0.877591i
\(612\) 177.489 322.857i 0.290014 0.527544i
\(613\) −320.858 −0.523422 −0.261711 0.965146i \(-0.584287\pi\)
−0.261711 + 0.965146i \(0.584287\pi\)
\(614\) −158.074 + 381.625i −0.257450 + 0.621539i
\(615\) 0 0
\(616\) −1.55452 1.55452i −0.00252357 0.00252357i
\(617\) −549.727 + 109.348i −0.890968 + 0.177225i −0.619289 0.785163i \(-0.712579\pi\)
−0.271679 + 0.962388i \(0.587579\pi\)
\(618\) −1383.50 + 924.428i −2.23868 + 1.49584i
\(619\) 102.300 + 20.3487i 0.165266 + 0.0328735i 0.277030 0.960861i \(-0.410650\pi\)
−0.111764 + 0.993735i \(0.535650\pi\)
\(620\) 0 0
\(621\) −350.734 846.747i −0.564789 1.36352i
\(622\) −42.2160 + 212.234i −0.0678715 + 0.341213i
\(623\) 94.0134 + 140.701i 0.150904 + 0.225844i
\(624\) −118.889 597.697i −0.190528 0.957848i
\(625\) 0 0
\(626\) −323.123 + 483.587i −0.516171 + 0.772504i
\(627\) −40.3057 16.6952i −0.0642834 0.0266270i
\(628\) 169.704i 0.270230i
\(629\) −281.231 236.396i −0.447108 0.375828i
\(630\) 0 0
\(631\) −141.756 + 342.229i −0.224652 + 0.542359i −0.995511 0.0946475i \(-0.969828\pi\)
0.770858 + 0.637007i \(0.219828\pi\)
\(632\) −406.904 271.885i −0.643836 0.430197i
\(633\) 720.339 + 720.339i 1.13798 + 1.13798i
\(634\) 1200.28 238.751i 1.89319 0.376579i
\(635\) 0 0
\(636\) 107.427 + 21.3685i 0.168910 + 0.0335983i
\(637\) −275.903 + 114.283i −0.433129 + 0.179408i
\(638\) −13.8255 33.3778i −0.0216701 0.0523162i
\(639\) 246.611 1239.80i 0.385932 1.94021i
\(640\) 0 0
\(641\) −58.4526 293.861i −0.0911897 0.458442i −0.999218 0.0395334i \(-0.987413\pi\)
0.908029 0.418908i \(-0.137587\pi\)
\(642\) −1571.68 + 1571.68i −2.44811 + 2.44811i
\(643\) 147.083 220.125i 0.228745 0.342341i −0.699287 0.714841i \(-0.746499\pi\)
0.928032 + 0.372500i \(0.121499\pi\)
\(644\) −32.0273 13.2662i −0.0497319 0.0205996i
\(645\) 0 0
\(646\) 591.117 + 737.824i 0.915042 + 1.14214i
\(647\) 501.378 0.774927 0.387464 0.921885i \(-0.373351\pi\)
0.387464 + 0.921885i \(0.373351\pi\)
\(648\) −75.6631 + 182.667i −0.116764 + 0.281893i
\(649\) 19.7619 + 13.2045i 0.0304498 + 0.0203459i
\(650\) 0 0
\(651\) −81.9006 + 16.2910i −0.125807 + 0.0250246i
\(652\) −119.301 + 79.7146i −0.182978 + 0.122262i
\(653\) −1025.79 204.042i −1.57088 0.312468i −0.668603 0.743620i \(-0.733107\pi\)
−0.902279 + 0.431152i \(0.858107\pi\)
\(654\) −1062.69 + 440.179i −1.62490 + 0.673056i
\(655\) 0 0
\(656\) 263.813 1326.28i 0.402154 2.02176i
\(657\) 3.16466 + 4.73624i 0.00481683 + 0.00720890i
\(658\) −38.4947 193.526i −0.0585026 0.294112i
\(659\) −874.251 + 874.251i −1.32663 + 1.32663i −0.418344 + 0.908289i \(0.637389\pi\)
−0.908289 + 0.418344i \(0.862611\pi\)
\(660\) 0 0
\(661\) −1061.36 439.631i −1.60569 0.665099i −0.613486 0.789706i \(-0.710233\pi\)
−0.992206 + 0.124607i \(0.960233\pi\)
\(662\) 900.444i 1.36019i
\(663\) 527.203 45.6647i 0.795178 0.0688759i
\(664\) −526.554 −0.793003
\(665\) 0 0
\(666\) −667.255 445.845i −1.00188 0.669437i
\(667\) 790.814 + 790.814i 1.18563 + 1.18563i
\(668\) 198.171 39.4187i 0.296663 0.0590100i
\(669\) 1358.26 907.558i 2.03028 1.35659i
\(670\) 0 0
\(671\) 4.16354 1.72460i 0.00620498 0.00257019i
\(672\) 39.3512 + 95.0022i 0.0585583 + 0.141372i
\(673\) −216.439 + 1088.11i −0.321603 + 1.61681i 0.394555 + 0.918872i \(0.370899\pi\)
−0.716159 + 0.697938i \(0.754101\pi\)
\(674\) 696.815 + 1042.86i 1.03385 + 1.54727i
\(675\) 0 0
\(676\) 124.401 124.401i 0.184025 0.184025i
\(677\) 360.086 538.907i 0.531885 0.796023i −0.464077 0.885795i \(-0.653614\pi\)
0.995962 + 0.0897723i \(0.0286139\pi\)
\(678\) 1259.45 + 521.681i 1.85759 + 0.769441i
\(679\) 87.4982i 0.128863i
\(680\) 0 0
\(681\) −780.974 −1.14681
\(682\) 5.41034 13.0617i 0.00793306 0.0191521i
\(683\) 273.705 + 182.884i 0.400739 + 0.267766i 0.739567 0.673083i \(-0.235030\pi\)
−0.338828 + 0.940849i \(0.610030\pi\)
\(684\) 368.457 + 368.457i 0.538679 + 0.538679i
\(685\) 0 0
\(686\) 184.610 123.352i 0.269110 0.179814i
\(687\) 1492.21 + 296.818i 2.17206 + 0.432050i
\(688\) 100.393 41.5841i 0.145920 0.0604420i
\(689\) 38.5779 + 93.1354i 0.0559912 + 0.135175i
\(690\) 0 0
\(691\) −137.814 206.253i −0.199441 0.298485i 0.718245 0.695790i \(-0.244946\pi\)
−0.917687 + 0.397305i \(0.869946\pi\)
\(692\) −7.17739 36.0832i −0.0103720 0.0521433i
\(693\) 4.07154 4.07154i 0.00587524 0.00587524i
\(694\) 80.9279 121.117i 0.116611 0.174520i
\(695\) 0 0
\(696\) 1322.01i 1.89944i
\(697\) 1119.58 + 354.068i 1.60628 + 0.507988i
\(698\) −995.704 −1.42651
\(699\) 198.290 478.714i 0.283677 0.684856i
\(700\) 0 0
\(701\) 479.136 + 479.136i 0.683504 + 0.683504i 0.960788 0.277284i \(-0.0894342\pi\)
−0.277284 + 0.960788i \(0.589434\pi\)
\(702\) 498.155 99.0893i 0.709623 0.141153i
\(703\) 432.037 288.678i 0.614561 0.410637i
\(704\) 10.7667 + 2.14163i 0.0152936 + 0.00304209i
\(705\) 0 0
\(706\) 34.4636 + 83.2024i 0.0488152 + 0.117850i
\(707\) 13.3116 66.9218i 0.0188282 0.0946560i
\(708\) −246.128 368.357i −0.347639 0.520278i
\(709\) −237.118 1192.07i −0.334440 1.68134i −0.672403 0.740185i \(-0.734738\pi\)
0.337963 0.941160i \(-0.390262\pi\)
\(710\) 0 0
\(711\) 712.112 1065.75i 1.00156 1.49895i
\(712\) −968.570 401.195i −1.36035 0.563476i
\(713\) 437.656i 0.613823i
\(714\) −186.998 + 54.3294i −0.261902 + 0.0760916i
\(715\) 0 0
\(716\) −27.7221 + 66.9270i −0.0387180 + 0.0934734i
\(717\) −1617.09 1080.50i −2.25535 1.50698i
\(718\) −975.795 975.795i −1.35905 1.35905i
\(719\) 494.558 98.3738i 0.687842 0.136820i 0.161218 0.986919i \(-0.448458\pi\)
0.526624 + 0.850099i \(0.323458\pi\)
\(720\) 0 0
\(721\) 139.463 + 27.7410i 0.193430 + 0.0384757i
\(722\) −463.909 + 192.158i −0.642534 + 0.266146i
\(723\) 650.080 + 1569.43i 0.899142 + 2.17072i
\(724\) 30.6906 154.292i 0.0423903 0.213110i
\(725\) 0 0
\(726\) −273.002 1372.47i −0.376035 1.89046i
\(727\) −972.990 + 972.990i −1.33836 + 1.33836i −0.440718 + 0.897646i \(0.645276\pi\)
−0.897646 + 0.440718i \(0.854724\pi\)
\(728\) −20.9532 + 31.3586i −0.0287818 + 0.0430751i
\(729\) 991.196 + 410.567i 1.35967 + 0.563192i
\(730\) 0 0
\(731\) 26.3259 + 90.6118i 0.0360135 + 0.123956i
\(732\) −84.0016 −0.114756
\(733\) 550.353 1328.67i 0.750823 1.81265i 0.196159 0.980572i \(-0.437153\pi\)
0.554664 0.832074i \(-0.312847\pi\)
\(734\) 210.906 + 140.923i 0.287339 + 0.191993i
\(735\) 0 0
\(736\) 528.581 105.141i 0.718181 0.142855i
\(737\) 11.8987 7.95048i 0.0161448 0.0107876i
\(738\) 2515.64 + 500.393i 3.40873 + 0.678039i
\(739\) −347.484 + 143.933i −0.470209 + 0.194767i −0.605190 0.796081i \(-0.706903\pi\)
0.134981 + 0.990848i \(0.456903\pi\)
\(740\) 0 0
\(741\) −146.011 + 734.049i −0.197046 + 0.990619i
\(742\) −20.6096 30.8445i −0.0277758 0.0415694i
\(743\) 172.160 + 865.508i 0.231710 + 1.16488i 0.904969 + 0.425477i \(0.139893\pi\)
−0.673260 + 0.739406i \(0.735107\pi\)
\(744\) 365.816 365.816i 0.491689 0.491689i
\(745\) 0 0
\(746\) 401.121 + 166.150i 0.537696 + 0.222721i
\(747\) 1379.13i 1.84623i
\(748\) 2.50840 7.93169i 0.00335348 0.0106039i
\(749\) 189.947 0.253601
\(750\) 0 0
\(751\) −5.26712 3.51938i −0.00701347 0.00468625i 0.552059 0.833805i \(-0.313842\pi\)
−0.559072 + 0.829119i \(0.688842\pi\)
\(752\) 1193.61 + 1193.61i 1.58725 + 1.58725i
\(753\) 605.728 120.487i 0.804420 0.160009i
\(754\) −515.333 + 344.335i −0.683466 + 0.456677i
\(755\) 0 0
\(756\) −43.5710 + 18.0477i −0.0576337 + 0.0238726i
\(757\) −406.600 981.619i −0.537120 1.29672i −0.926725 0.375741i \(-0.877388\pi\)
0.389605 0.920982i \(-0.372612\pi\)
\(758\) −15.4109 + 77.4758i −0.0203310 + 0.102211i
\(759\) −26.1651 39.1588i −0.0344731 0.0515926i
\(760\) 0 0
\(761\) 172.386 172.386i 0.226526 0.226526i −0.584714 0.811240i \(-0.698793\pi\)
0.811240 + 0.584714i \(0.198793\pi\)
\(762\) 771.543 1154.70i 1.01252 1.51535i
\(763\) 90.8149 + 37.6168i 0.119023 + 0.0493011i
\(764\) 103.137i 0.134997i
\(765\) 0 0
\(766\) 1576.44 2.05801
\(767\) 156.035 376.702i 0.203436 0.491137i
\(768\) −969.657 647.904i −1.26257 0.843625i
\(769\) 682.514 + 682.514i 0.887535 + 0.887535i 0.994286 0.106751i \(-0.0340449\pi\)
−0.106751 + 0.994286i \(0.534045\pi\)
\(770\) 0 0
\(771\) 321.115 214.562i 0.416492 0.278291i
\(772\) −287.025 57.0928i −0.371794 0.0739544i
\(773\) 697.360 288.856i 0.902147 0.373682i 0.117102 0.993120i \(-0.462640\pi\)
0.785045 + 0.619438i \(0.212640\pi\)
\(774\) 78.8755 + 190.422i 0.101906 + 0.246024i
\(775\) 0 0
\(776\) 301.164 + 450.724i 0.388098 + 0.580830i
\(777\) 20.8796 + 104.969i 0.0268721 + 0.135095i
\(778\) −19.1615 + 19.1615i −0.0246292 + 0.0246292i
\(779\) −922.663 + 1380.86i −1.18442 + 1.77261i
\(780\) 0 0
\(781\) 28.5423i 0.0365459i
\(782\) 88.0709 + 1016.79i 0.112623 + 1.30024i
\(783\) 1521.48 1.94314
\(784\) −359.771 + 868.565i −0.458892 + 1.10786i
\(785\) 0 0
\(786\) 1760.34 + 1760.34i 2.23962 + 2.23962i
\(787\) −635.538 + 126.416i −0.807545 + 0.160631i −0.581564 0.813501i \(-0.697559\pi\)
−0.225981 + 0.974132i \(0.572559\pi\)
\(788\) 279.698 186.888i 0.354947 0.237168i
\(789\) 369.148 + 73.4281i 0.467868 + 0.0930648i
\(790\) 0 0
\(791\) −44.5817 107.630i −0.0563612 0.136068i
\(792\) −6.95945 + 34.9875i −0.00878718 + 0.0441761i
\(793\) −42.9523 64.2827i −0.0541644 0.0810627i
\(794\) −9.68407 48.6851i −0.0121966 0.0613163i
\(795\) 0 0
\(796\) 201.691 301.851i 0.253380 0.379210i
\(797\) 1234.15 + 511.203i 1.54850 + 0.641409i 0.983044 0.183371i \(-0.0587009\pi\)
0.565454 + 0.824780i \(0.308701\pi\)
\(798\) 275.412i 0.345128i
\(799\) −1143.94 + 916.485i −1.43172 + 1.14704i
\(800\) 0 0
\(801\) 1050.80 2536.85i 1.31186 3.16710i
\(802\) 67.9483 + 45.4016i 0.0847235 + 0.0566104i
\(803\) 0.0909465 + 0.0909465i 0.000113258 + 0.000113258i
\(804\) −261.618 + 52.0391i −0.325396 + 0.0647253i
\(805\) 0 0
\(806\) −237.881 47.3174i −0.295137 0.0587065i
\(807\) −836.037 + 346.298i −1.03598 + 0.429118i
\(808\) 161.770 + 390.547i 0.200210 + 0.483351i
\(809\) −12.7373 + 64.0346i −0.0157445 + 0.0791528i −0.987859 0.155355i \(-0.950348\pi\)
0.972114 + 0.234508i \(0.0753478\pi\)
\(810\) 0 0
\(811\) −60.0421 301.852i −0.0740347 0.372197i 0.925950 0.377645i \(-0.123266\pi\)
−0.999985 + 0.00544749i \(0.998266\pi\)
\(812\) 40.6929 40.6929i 0.0501144 0.0501144i
\(813\) 671.388 1004.80i 0.825815 1.23592i
\(814\) −16.7407 6.93423i −0.0205660 0.00851871i
\(815\) 0 0
\(816\) 1071.92 1275.22i 1.31362 1.56277i
\(817\) −133.454 −0.163346
\(818\) 247.942 598.585i 0.303108 0.731767i
\(819\) −82.1335 54.8799i −0.100285 0.0670084i
\(820\) 0 0
\(821\) 691.877 137.623i 0.842725 0.167628i 0.245194 0.969474i \(-0.421148\pi\)
0.597531 + 0.801846i \(0.296148\pi\)
\(822\) 797.612 532.947i 0.970330 0.648354i
\(823\) 586.402 + 116.643i 0.712517 + 0.141729i 0.538024 0.842930i \(-0.319171\pi\)
0.174494 + 0.984658i \(0.444171\pi\)
\(824\) −813.892 + 337.125i −0.987732 + 0.409132i
\(825\) 0 0
\(826\) −29.2719 + 147.160i −0.0354381 + 0.178159i
\(827\) −282.981 423.511i −0.342178 0.512106i 0.619973 0.784623i \(-0.287144\pi\)
−0.962151 + 0.272518i \(0.912144\pi\)
\(828\) 109.741 + 551.706i 0.132538 + 0.666311i
\(829\) 804.169 804.169i 0.970046 0.970046i −0.0295178 0.999564i \(-0.509397\pi\)
0.999564 + 0.0295178i \(0.00939718\pi\)
\(830\) 0 0
\(831\) 1431.03 + 592.751i 1.72206 + 0.713299i
\(832\) 188.326i 0.226353i
\(833\) −715.384 393.279i −0.858804 0.472123i
\(834\) 1917.07 2.29865
\(835\) 0 0
\(836\) 9.78275 + 6.53663i 0.0117019 + 0.00781893i
\(837\) 421.013 + 421.013i 0.503002 + 0.503002i
\(838\) −311.781 + 62.0171i −0.372053 + 0.0740060i
\(839\) 799.310 534.082i 0.952694 0.636570i 0.0209867 0.999780i \(-0.493319\pi\)
0.931707 + 0.363210i \(0.118319\pi\)
\(840\) 0 0
\(841\) −938.290 + 388.652i −1.11568 + 0.462131i
\(842\) −229.448 553.936i −0.272503 0.657881i
\(843\) 22.2475 111.845i 0.0263908 0.132676i
\(844\) −152.635 228.435i −0.180847 0.270657i
\(845\) 0 0
\(846\) −2264.01 + 2264.01i −2.67613 + 2.67613i
\(847\) −66.4386 + 99.4324i −0.0784399 + 0.117394i
\(848\) 293.197 + 121.446i 0.345752 + 0.143215i
\(849\) 519.497i 0.611893i
\(850\) 0 0
\(851\) 560.927 0.659138
\(852\) −203.596 + 491.524i −0.238962 + 0.576906i
\(853\) −1050.97 702.238i −1.23209 0.823257i −0.242923 0.970046i \(-0.578106\pi\)
−0.989168 + 0.146789i \(0.953106\pi\)
\(854\) 20.1171 + 20.1171i 0.0235563 + 0.0235563i
\(855\) 0 0
\(856\) −978.461 + 653.787i −1.14306 + 0.763770i
\(857\) −983.753 195.681i −1.14790 0.228332i −0.415754 0.909477i \(-0.636482\pi\)
−0.732149 + 0.681145i \(0.761482\pi\)
\(858\) 24.1130 9.98792i 0.0281037 0.0116409i
\(859\) −412.502 995.868i −0.480212 1.15933i −0.959508 0.281681i \(-0.909108\pi\)
0.479296 0.877653i \(-0.340892\pi\)
\(860\) 0 0
\(861\) −190.044 284.422i −0.220725 0.330339i
\(862\) −227.609 1144.27i −0.264047 1.32745i
\(863\) −245.882 + 245.882i −0.284915 + 0.284915i −0.835066 0.550151i \(-0.814570\pi\)
0.550151 + 0.835066i \(0.314570\pi\)
\(864\) 407.337 609.623i 0.471455 0.705582i
\(865\) 0 0
\(866\) 1914.87i 2.21116i
\(867\) 998.515 + 1046.68i 1.15169 + 1.20725i
\(868\) 22.5205 0.0259452
\(869\) 11.0755 26.7385i 0.0127451 0.0307693i
\(870\) 0 0
\(871\) −173.596 173.596i −0.199306 0.199306i
\(872\) −597.283 + 118.807i −0.684958 + 0.136247i
\(873\) −1180.52 + 788.799i −1.35226 + 0.903550i
\(874\) −1415.72 281.604i −1.61981 0.322201i
\(875\) 0 0
\(876\) −0.917446 2.21491i −0.00104731 0.00252844i
\(877\) −29.5063 + 148.338i −0.0336446 + 0.169143i −0.993955 0.109792i \(-0.964981\pi\)
0.960310 + 0.278935i \(0.0899814\pi\)
\(878\) −86.2083 129.020i −0.0981871 0.146947i
\(879\) 27.8615 + 140.069i 0.0316969 + 0.159351i
\(880\) 0 0
\(881\) 459.227 687.281i 0.521256 0.780115i −0.473672 0.880701i \(-0.657072\pi\)
0.994928 + 0.100586i \(0.0320719\pi\)
\(882\) −1647.47 682.404i −1.86788 0.773701i
\(883\) 362.947i 0.411038i −0.978653 0.205519i \(-0.934112\pi\)
0.978653 0.205519i \(-0.0658883\pi\)
\(884\) −141.852 15.6595i −0.160466 0.0177144i
\(885\) 0 0
\(886\) −533.643 + 1288.33i −0.602306 + 1.45410i
\(887\) −805.857 538.457i −0.908520 0.607054i 0.0110675 0.999939i \(-0.496477\pi\)
−0.919588 + 0.392885i \(0.871477\pi\)
\(888\) −468.853 468.853i −0.527987 0.527987i
\(889\) −116.398 + 23.1531i −0.130932 + 0.0260440i
\(890\) 0 0
\(891\) −11.4682 2.28116i −0.0128711 0.00256023i
\(892\) −407.019 + 168.593i −0.456300 + 0.189005i
\(893\) −793.345 1915.30i −0.888404 2.14480i
\(894\) 366.230 1841.16i 0.409653 2.05946i
\(895\) 0 0
\(896\) 29.5514 + 148.565i 0.0329815 + 0.165809i
\(897\) −571.305 + 571.305i −0.636906 + 0.636906i
\(898\) −919.787 + 1376.56i −1.02426 + 1.53292i
\(899\) −671.238 278.036i −0.746649 0.309272i
\(900\) 0 0
\(901\) −132.757 + 241.489i −0.147344 + 0.268023i
\(902\) 57.9146 0.0642069
\(903\) 10.5192 25.3956i 0.0116492 0.0281236i
\(904\) 600.107 + 400.979i 0.663835 + 0.443560i
\(905\) 0 0
\(906\) −1778.67 + 353.800i −1.96321 + 0.390507i
\(907\) −30.2417 + 20.2068i −0.0333425 + 0.0222788i −0.572130 0.820163i \(-0.693883\pi\)
0.538787 + 0.842442i \(0.318883\pi\)
\(908\) 206.573 + 41.0900i 0.227504 + 0.0452533i
\(909\) −1022.91 + 423.703i −1.12531 + 0.466120i
\(910\) 0 0
\(911\) −294.154 + 1478.81i −0.322891 + 1.62328i 0.389171 + 0.921166i \(0.372762\pi\)
−0.712062 + 0.702117i \(0.752238\pi\)
\(912\) 1308.99 + 1959.04i 1.43529 + 2.14807i
\(913\) −6.07512 30.5417i −0.00665402 0.0334520i
\(914\) 768.771 768.771i 0.841106 0.841106i
\(915\) 0 0
\(916\) −379.083 157.021i −0.413846 0.171421i
\(917\) 212.747i 0.232003i
\(918\) 1062.84 + 893.398i 1.15778 + 0.973201i
\(919\) −682.108 −0.742229 −0.371114 0.928587i \(-0.621024\pi\)
−0.371114 + 0.928587i \(0.621024\pi\)
\(920\) 0 0
\(921\) −743.254 496.626i −0.807008 0.539225i
\(922\) 651.635 + 651.635i 0.706763 + 0.706763i
\(923\) −480.246 + 95.5268i −0.520310 + 0.103496i
\(924\) −2.01499 + 1.34637i −0.00218073 + 0.00145712i
\(925\) 0 0
\(926\) 290.968 120.523i 0.314220 0.130154i
\(927\) −882.986 2131.72i −0.952520 2.29959i
\(928\) −174.543 + 877.486i −0.188085 + 0.945566i
\(929\) 403.390 + 603.716i 0.434219 + 0.649855i 0.982462 0.186464i \(-0.0597028\pi\)
−0.548242 + 0.836320i \(0.684703\pi\)
\(930\) 0 0
\(931\) 816.424 816.424i 0.876932 0.876932i
\(932\) −77.6362 + 116.191i −0.0833006 + 0.124668i
\(933\) −432.640 179.205i −0.463708 0.192074i
\(934\) 998.685i 1.06926i
\(935\) 0 0
\(936\) 611.983 0.653827
\(937\) 332.936 803.778i 0.355321 0.857820i −0.640624 0.767855i \(-0.721324\pi\)
0.995945 0.0899657i \(-0.0286758\pi\)
\(938\) 75.1161 + 50.1910i 0.0800811 + 0.0535085i
\(939\) −889.985 889.985i −0.947801 0.947801i
\(940\) 0 0
\(941\) −831.285 + 555.447i −0.883406 + 0.590273i −0.912397 0.409306i \(-0.865771\pi\)
0.0289906 + 0.999580i \(0.490771\pi\)
\(942\) 1427.50 + 283.948i 1.51539 + 0.301431i
\(943\) −1656.35 + 686.081i −1.75647 + 0.727552i
\(944\) −491.211 1185.89i −0.520350 1.25624i
\(945\) 0 0
\(946\) 2.58556 + 3.86956i 0.00273315 + 0.00409045i
\(947\) 346.100 + 1739.96i 0.365470 + 1.83734i 0.526224 + 0.850346i \(0.323607\pi\)
−0.160754 + 0.986994i \(0.551393\pi\)
\(948\) −381.458 + 381.458i −0.402382 + 0.402382i
\(949\) 1.22586 1.83463i 0.00129174 0.00193322i
\(950\) 0 0
\(951\) 2648.37i 2.78483i
\(952\) −102.713 + 8.89671i −0.107892 + 0.00934529i
\(953\) −1184.60 −1.24302 −0.621512 0.783405i \(-0.713481\pi\)
−0.621512 + 0.783405i \(0.713481\pi\)
\(954\) −230.356 + 556.128i −0.241463 + 0.582944i
\(955\) 0 0
\(956\) 370.882 + 370.882i 0.387952 + 0.387952i
\(957\) 76.6805 15.2527i 0.0801259 0.0159380i
\(958\) 815.158 544.671i 0.850896 0.568551i
\(959\) −80.4028 15.9931i −0.0838402 0.0166769i
\(960\) 0 0
\(961\) 258.955 + 625.173i 0.269464 + 0.650544i
\(962\) −60.6449 + 304.882i −0.0630404 + 0.316926i
\(963\) −1712.38 2562.75i −1.77817 2.66122i
\(964\) −89.3772 449.329i −0.0927149 0.466109i
\(965\) 0 0
\(966\) 165.179 247.207i 0.170992 0.255908i
\(967\) 693.690 + 287.336i 0.717363 + 0.297141i 0.711348 0.702840i \(-0.248085\pi\)
0.00601538 + 0.999982i \(0.498085\pi\)
\(968\) 740.878i 0.765370i
\(969\) −1815.58 + 943.134i −1.87366 + 0.973306i
\(970\) 0 0
\(971\) −267.835 + 646.610i −0.275834 + 0.665922i −0.999712 0.0240064i \(-0.992358\pi\)
0.723878 + 0.689928i \(0.242358\pi\)
\(972\) −175.480 117.252i −0.180535 0.120630i
\(973\) −115.844 115.844i −0.119059 0.119059i
\(974\) 1087.53 216.323i 1.11656 0.222098i
\(975\) 0 0
\(976\) −238.708 47.4820i −0.244578 0.0486496i
\(977\) 198.351 82.1596i 0.203020 0.0840938i −0.278856 0.960333i \(-0.589955\pi\)
0.481877 + 0.876239i \(0.339955\pi\)
\(978\) −470.921 1136.90i −0.481514 1.16248i
\(979\) 12.0956 60.8087i 0.0123551 0.0621131i
\(980\) 0 0
\(981\) −311.176 1564.38i −0.317202 1.59468i
\(982\) −4.39240 + 4.39240i −0.00447291 + 0.00447291i
\(983\) −840.427 + 1257.79i −0.854962 + 1.27954i 0.103590 + 0.994620i \(0.466967\pi\)
−0.958551 + 0.284920i \(0.908033\pi\)
\(984\) 1957.93 + 811.000i 1.98976 + 0.824187i
\(985\) 0 0
\(986\) −1615.41 510.873i −1.63834 0.518127i
\(987\) 427.007 0.432631
\(988\) 77.2422 186.479i 0.0781803 0.188744i
\(989\) −119.787 80.0391i −0.121119 0.0809293i
\(990\) 0 0
\(991\) 1575.69 313.425i 1.59000 0.316272i 0.680751 0.732515i \(-0.261653\pi\)
0.909253 + 0.416243i \(0.136653\pi\)
\(992\) −291.109 + 194.513i −0.293457 + 0.196082i
\(993\) 1911.17 + 380.156i 1.92465 + 0.382836i
\(994\) 166.470 68.9543i 0.167475 0.0693705i
\(995\) 0 0
\(996\) −113.239 + 569.290i −0.113693 + 0.571576i
\(997\) −640.926 959.213i −0.642854 0.962099i −0.999611 0.0279018i \(-0.991117\pi\)
0.356757 0.934197i \(-0.383883\pi\)
\(998\) −163.213 820.529i −0.163541 0.822174i
\(999\) 539.595 539.595i 0.540136 0.540136i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.d.401.9 yes 96
5.2 odd 4 425.3.t.f.299.9 96
5.3 odd 4 425.3.t.g.299.4 96
5.4 even 2 425.3.u.c.401.4 yes 96
17.12 odd 16 inner 425.3.u.d.301.9 yes 96
85.12 even 16 425.3.t.g.199.4 96
85.29 odd 16 425.3.u.c.301.4 96
85.63 even 16 425.3.t.f.199.9 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.3.t.f.199.9 96 85.63 even 16
425.3.t.f.299.9 96 5.2 odd 4
425.3.t.g.199.4 96 85.12 even 16
425.3.t.g.299.4 96 5.3 odd 4
425.3.u.c.301.4 96 85.29 odd 16
425.3.u.c.401.4 yes 96 5.4 even 2
425.3.u.d.301.9 yes 96 17.12 odd 16 inner
425.3.u.d.401.9 yes 96 1.1 even 1 trivial