Properties

Label 425.3.t.f.24.5
Level $425$
Weight $3$
Character 425.24
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 24.5
Character \(\chi\) \(=\) 425.24
Dual form 425.3.t.f.124.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.808326 - 0.334820i) q^{2} +(2.20904 + 1.47604i) q^{3} +(-2.28714 - 2.28714i) q^{4} +(-1.29142 - 1.93275i) q^{6} +(11.7391 + 2.33505i) q^{7} +(2.42226 + 5.84784i) q^{8} +(-0.742961 - 1.79367i) q^{9} +(7.28271 - 4.86615i) q^{11} +(-1.67649 - 8.42829i) q^{12} +(-17.5907 - 17.5907i) q^{13} +(-8.70718 - 5.81795i) q^{14} +7.40003i q^{16} +(15.4018 + 7.19617i) q^{17} +1.69863i q^{18} +(-5.64227 + 13.6217i) q^{19} +(22.4855 + 22.4855i) q^{21} +(-7.51609 + 1.49504i) q^{22} +(4.10923 - 2.74570i) q^{23} +(-3.28075 + 16.4935i) q^{24} +(8.32930 + 20.1087i) q^{26} +(5.67111 - 28.5106i) q^{27} +(-21.5083 - 32.1895i) q^{28} +(21.8020 - 4.33668i) q^{29} +(17.4150 + 11.6363i) q^{31} +(12.1667 - 29.3730i) q^{32} +23.2704 q^{33} +(-10.0403 - 10.9737i) q^{34} +(-2.40311 + 5.80162i) q^{36} +(11.9671 + 7.99619i) q^{37} +(9.12160 - 9.12160i) q^{38} +(-12.8941 - 64.8230i) q^{39} +(11.6758 - 58.6981i) q^{41} +(-10.6470 - 25.7042i) q^{42} +(62.8891 - 26.0495i) q^{43} +(-27.7861 - 5.52701i) q^{44} +(-4.24091 + 0.843569i) q^{46} +(-56.8070 - 56.8070i) q^{47} +(-10.9227 + 16.3470i) q^{48} +(87.0832 + 36.0710i) q^{49} +(23.4014 + 38.6302i) q^{51} +80.4646i q^{52} +(61.3341 + 25.4054i) q^{53} +(-14.1300 + 21.1471i) q^{54} +(14.7800 + 74.3043i) q^{56} +(-32.5701 + 21.7626i) q^{57} +(-19.0751 - 3.79427i) q^{58} +(-86.4081 + 35.7914i) q^{59} +(64.7697 + 12.8835i) q^{61} +(-10.1809 - 15.2368i) q^{62} +(-4.53338 - 22.7908i) q^{63} +(1.26113 - 1.26113i) q^{64} +(-18.8101 - 7.79140i) q^{66} +40.8378 q^{67} +(-18.7674 - 51.6847i) q^{68} +13.1302 q^{69} +(-24.8785 + 37.2333i) q^{71} +(8.68944 - 8.68944i) q^{72} +(-44.6004 + 8.87157i) q^{73} +(-6.99607 - 10.4704i) q^{74} +(44.0593 - 18.2500i) q^{76} +(96.8549 - 40.1186i) q^{77} +(-11.2814 + 56.7153i) q^{78} +(-35.0256 + 23.4033i) q^{79} +(42.2551 - 42.2551i) q^{81} +(-29.0911 + 43.5380i) q^{82} +(8.72588 - 21.0661i) q^{83} -102.855i q^{84} -59.5569 q^{86} +(54.5625 + 22.6005i) q^{87} +(46.0970 + 30.8011i) q^{88} +(-36.9839 - 36.9839i) q^{89} +(-165.423 - 247.573i) q^{91} +(-15.6782 - 3.11858i) q^{92} +(21.2948 + 51.4102i) q^{93} +(26.8985 + 64.9388i) q^{94} +(70.2323 - 46.9277i) q^{96} +(2.53031 + 12.7207i) q^{97} +(-58.3143 - 58.3143i) q^{98} +(-14.1390 - 9.44739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 24 q^{13} - 32 q^{14} + 64 q^{17} + 24 q^{19} + 48 q^{22} + 72 q^{23} + 336 q^{24} - 224 q^{26} - 64 q^{31} + 400 q^{32} - 256 q^{33} - 64 q^{34} + 192 q^{36} + 72 q^{37} + 496 q^{38} - 16 q^{39}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.808326 0.334820i −0.404163 0.167410i 0.171335 0.985213i \(-0.445192\pi\)
−0.575498 + 0.817803i \(0.695192\pi\)
\(3\) 2.20904 + 1.47604i 0.736348 + 0.492012i 0.866310 0.499507i \(-0.166486\pi\)
−0.129962 + 0.991519i \(0.541486\pi\)
\(4\) −2.28714 2.28714i −0.571785 0.571785i
\(5\) 0 0
\(6\) −1.29142 1.93275i −0.215237 0.322125i
\(7\) 11.7391 + 2.33505i 1.67701 + 0.333578i 0.939706 0.341983i \(-0.111099\pi\)
0.737304 + 0.675561i \(0.236099\pi\)
\(8\) 2.42226 + 5.84784i 0.302782 + 0.730980i
\(9\) −0.742961 1.79367i −0.0825513 0.199296i
\(10\) 0 0
\(11\) 7.28271 4.86615i 0.662064 0.442377i −0.178609 0.983920i \(-0.557160\pi\)
0.840673 + 0.541543i \(0.182160\pi\)
\(12\) −1.67649 8.42829i −0.139708 0.702357i
\(13\) −17.5907 17.5907i −1.35313 1.35313i −0.882139 0.470989i \(-0.843897\pi\)
−0.470989 0.882139i \(-0.656103\pi\)
\(14\) −8.70718 5.81795i −0.621941 0.415568i
\(15\) 0 0
\(16\) 7.40003i 0.462502i
\(17\) 15.4018 + 7.19617i 0.905988 + 0.423304i
\(18\) 1.69863i 0.0943682i
\(19\) −5.64227 + 13.6217i −0.296962 + 0.716929i 0.703022 + 0.711168i \(0.251834\pi\)
−0.999983 + 0.00576061i \(0.998166\pi\)
\(20\) 0 0
\(21\) 22.4855 + 22.4855i 1.07074 + 1.07074i
\(22\) −7.51609 + 1.49504i −0.341640 + 0.0679565i
\(23\) 4.10923 2.74570i 0.178662 0.119378i −0.463024 0.886346i \(-0.653235\pi\)
0.641685 + 0.766968i \(0.278235\pi\)
\(24\) −3.28075 + 16.4935i −0.136698 + 0.687228i
\(25\) 0 0
\(26\) 8.32930 + 20.1087i 0.320358 + 0.773412i
\(27\) 5.67111 28.5106i 0.210041 1.05595i
\(28\) −21.5083 32.1895i −0.768154 1.14962i
\(29\) 21.8020 4.33668i 0.751792 0.149541i 0.195702 0.980663i \(-0.437301\pi\)
0.556089 + 0.831123i \(0.312301\pi\)
\(30\) 0 0
\(31\) 17.4150 + 11.6363i 0.561773 + 0.375365i 0.803795 0.594906i \(-0.202811\pi\)
−0.242022 + 0.970271i \(0.577811\pi\)
\(32\) 12.1667 29.3730i 0.380209 0.917906i
\(33\) 23.2704 0.705164
\(34\) −10.0403 10.9737i −0.295302 0.322755i
\(35\) 0 0
\(36\) −2.40311 + 5.80162i −0.0667531 + 0.161156i
\(37\) 11.9671 + 7.99619i 0.323436 + 0.216113i 0.706679 0.707535i \(-0.250193\pi\)
−0.383243 + 0.923648i \(0.625193\pi\)
\(38\) 9.12160 9.12160i 0.240042 0.240042i
\(39\) −12.8941 64.8230i −0.330618 1.66213i
\(40\) 0 0
\(41\) 11.6758 58.6981i 0.284775 1.43166i −0.528079 0.849195i \(-0.677088\pi\)
0.812854 0.582467i \(-0.197912\pi\)
\(42\) −10.6470 25.7042i −0.253501 0.612005i
\(43\) 62.8891 26.0495i 1.46254 0.605803i 0.497395 0.867524i \(-0.334290\pi\)
0.965144 + 0.261721i \(0.0842901\pi\)
\(44\) −27.7861 5.52701i −0.631503 0.125614i
\(45\) 0 0
\(46\) −4.24091 + 0.843569i −0.0921937 + 0.0183385i
\(47\) −56.8070 56.8070i −1.20866 1.20866i −0.971461 0.237199i \(-0.923771\pi\)
−0.237199 0.971461i \(-0.576229\pi\)
\(48\) −10.9227 + 16.3470i −0.227556 + 0.340562i
\(49\) 87.0832 + 36.0710i 1.77721 + 0.736144i
\(50\) 0 0
\(51\) 23.4014 + 38.6302i 0.458851 + 0.757455i
\(52\) 80.4646i 1.54740i
\(53\) 61.3341 + 25.4054i 1.15725 + 0.479347i 0.876957 0.480568i \(-0.159570\pi\)
0.280289 + 0.959916i \(0.409570\pi\)
\(54\) −14.1300 + 21.1471i −0.261667 + 0.391613i
\(55\) 0 0
\(56\) 14.7800 + 74.3043i 0.263929 + 1.32686i
\(57\) −32.5701 + 21.7626i −0.571404 + 0.381800i
\(58\) −19.0751 3.79427i −0.328881 0.0654185i
\(59\) −86.4081 + 35.7914i −1.46454 + 0.606634i −0.965607 0.260005i \(-0.916276\pi\)
−0.498936 + 0.866639i \(0.666276\pi\)
\(60\) 0 0
\(61\) 64.7697 + 12.8835i 1.06180 + 0.211205i 0.694937 0.719071i \(-0.255432\pi\)
0.366861 + 0.930276i \(0.380432\pi\)
\(62\) −10.1809 15.2368i −0.164208 0.245755i
\(63\) −4.53338 22.7908i −0.0719584 0.361759i
\(64\) 1.26113 1.26113i 0.0197051 0.0197051i
\(65\) 0 0
\(66\) −18.8101 7.79140i −0.285001 0.118051i
\(67\) 40.8378 0.609520 0.304760 0.952429i \(-0.401424\pi\)
0.304760 + 0.952429i \(0.401424\pi\)
\(68\) −18.7674 51.6847i −0.275991 0.760069i
\(69\) 13.1302 0.190293
\(70\) 0 0
\(71\) −24.8785 + 37.2333i −0.350402 + 0.524413i −0.964244 0.265015i \(-0.914623\pi\)
0.613842 + 0.789429i \(0.289623\pi\)
\(72\) 8.68944 8.68944i 0.120687 0.120687i
\(73\) −44.6004 + 8.87157i −0.610964 + 0.121528i −0.490868 0.871234i \(-0.663320\pi\)
−0.120096 + 0.992762i \(0.538320\pi\)
\(74\) −6.99607 10.4704i −0.0945415 0.141491i
\(75\) 0 0
\(76\) 44.0593 18.2500i 0.579727 0.240131i
\(77\) 96.8549 40.1186i 1.25786 0.521021i
\(78\) −11.2814 + 56.7153i −0.144633 + 0.727120i
\(79\) −35.0256 + 23.4033i −0.443361 + 0.296245i −0.757141 0.653251i \(-0.773405\pi\)
0.313780 + 0.949496i \(0.398405\pi\)
\(80\) 0 0
\(81\) 42.2551 42.2551i 0.521668 0.521668i
\(82\) −29.0911 + 43.5380i −0.354770 + 0.530951i
\(83\) 8.72588 21.0661i 0.105131 0.253809i −0.862557 0.505960i \(-0.831138\pi\)
0.967688 + 0.252152i \(0.0811382\pi\)
\(84\) 102.855i 1.22446i
\(85\) 0 0
\(86\) −59.5569 −0.692522
\(87\) 54.5625 + 22.6005i 0.627156 + 0.259776i
\(88\) 46.0970 + 30.8011i 0.523830 + 0.350012i
\(89\) −36.9839 36.9839i −0.415550 0.415550i 0.468117 0.883667i \(-0.344933\pi\)
−0.883667 + 0.468117i \(0.844933\pi\)
\(90\) 0 0
\(91\) −165.423 247.573i −1.81784 2.72058i
\(92\) −15.6782 3.11858i −0.170415 0.0338976i
\(93\) 21.2948 + 51.4102i 0.228976 + 0.552798i
\(94\) 26.8985 + 64.9388i 0.286154 + 0.690838i
\(95\) 0 0
\(96\) 70.2323 46.9277i 0.731587 0.488831i
\(97\) 2.53031 + 12.7207i 0.0260857 + 0.131142i 0.991634 0.129083i \(-0.0412034\pi\)
−0.965548 + 0.260225i \(0.916203\pi\)
\(98\) −58.3143 58.3143i −0.595044 0.595044i
\(99\) −14.1390 9.44739i −0.142818 0.0954282i
\(100\) 0 0
\(101\) 72.9595i 0.722371i 0.932494 + 0.361186i \(0.117628\pi\)
−0.932494 + 0.361186i \(0.882372\pi\)
\(102\) −5.98182 39.0611i −0.0586453 0.382952i
\(103\) 69.3005i 0.672820i 0.941716 + 0.336410i \(0.109213\pi\)
−0.941716 + 0.336410i \(0.890787\pi\)
\(104\) 60.2583 145.477i 0.579407 1.39881i
\(105\) 0 0
\(106\) −41.0717 41.0717i −0.387469 0.387469i
\(107\) −27.9584 + 5.56128i −0.261294 + 0.0519745i −0.323999 0.946058i \(-0.605027\pi\)
0.0627049 + 0.998032i \(0.480027\pi\)
\(108\) −78.1784 + 52.2371i −0.723874 + 0.483677i
\(109\) −14.0628 + 70.6985i −0.129017 + 0.648610i 0.861108 + 0.508422i \(0.169771\pi\)
−0.990125 + 0.140188i \(0.955229\pi\)
\(110\) 0 0
\(111\) 14.6333 + 35.3278i 0.131831 + 0.318269i
\(112\) −17.2794 + 86.8695i −0.154280 + 0.775620i
\(113\) 15.5255 + 23.2356i 0.137394 + 0.205625i 0.893786 0.448494i \(-0.148040\pi\)
−0.756392 + 0.654119i \(0.773040\pi\)
\(114\) 33.6138 6.68620i 0.294858 0.0586509i
\(115\) 0 0
\(116\) −59.7827 39.9455i −0.515368 0.344358i
\(117\) −18.4826 + 44.6210i −0.157971 + 0.381376i
\(118\) 81.8296 0.693471
\(119\) 163.999 + 120.440i 1.37815 + 1.01210i
\(120\) 0 0
\(121\) −16.9463 + 40.9119i −0.140052 + 0.338115i
\(122\) −48.0414 32.1002i −0.393782 0.263117i
\(123\) 112.433 112.433i 0.914088 0.914088i
\(124\) −13.2166 66.4443i −0.106585 0.535841i
\(125\) 0 0
\(126\) −3.96637 + 19.9403i −0.0314791 + 0.158256i
\(127\) −22.0759 53.2959i −0.173826 0.419652i 0.812824 0.582509i \(-0.197929\pi\)
−0.986650 + 0.162857i \(0.947929\pi\)
\(128\) −118.934 + 49.2639i −0.929169 + 0.384875i
\(129\) 177.375 + 35.2820i 1.37500 + 0.273504i
\(130\) 0 0
\(131\) −228.910 + 45.5330i −1.74740 + 0.347580i −0.962343 0.271837i \(-0.912369\pi\)
−0.785061 + 0.619418i \(0.787369\pi\)
\(132\) −53.2227 53.2227i −0.403202 0.403202i
\(133\) −98.0422 + 146.731i −0.737159 + 1.10324i
\(134\) −33.0103 13.6733i −0.246345 0.102040i
\(135\) 0 0
\(136\) −4.77498 + 107.498i −0.0351102 + 0.790428i
\(137\) 133.676i 0.975739i 0.872916 + 0.487870i \(0.162226\pi\)
−0.872916 + 0.487870i \(0.837774\pi\)
\(138\) −10.6135 4.39625i −0.0769093 0.0318569i
\(139\) −0.828008 + 1.23920i −0.00595689 + 0.00891512i −0.834436 0.551105i \(-0.814206\pi\)
0.828479 + 0.560020i \(0.189206\pi\)
\(140\) 0 0
\(141\) −41.6400 209.338i −0.295319 1.48467i
\(142\) 32.5764 21.7669i 0.229411 0.153288i
\(143\) −213.706 42.5089i −1.49445 0.297265i
\(144\) 13.2732 5.49794i 0.0921750 0.0381801i
\(145\) 0 0
\(146\) 39.0220 + 7.76197i 0.267274 + 0.0531642i
\(147\) 139.128 + 208.220i 0.946451 + 1.41646i
\(148\) −9.08212 45.6589i −0.0613657 0.308506i
\(149\) −44.2723 + 44.2723i −0.297129 + 0.297129i −0.839888 0.542759i \(-0.817380\pi\)
0.542759 + 0.839888i \(0.317380\pi\)
\(150\) 0 0
\(151\) −96.5922 40.0098i −0.639683 0.264965i 0.0391778 0.999232i \(-0.487526\pi\)
−0.678861 + 0.734267i \(0.737526\pi\)
\(152\) −93.3243 −0.613975
\(153\) 1.46460 32.9722i 0.00957253 0.215504i
\(154\) −91.7229 −0.595603
\(155\) 0 0
\(156\) −118.769 + 177.750i −0.761337 + 1.13942i
\(157\) 100.230 100.230i 0.638406 0.638406i −0.311756 0.950162i \(-0.600917\pi\)
0.950162 + 0.311756i \(0.100917\pi\)
\(158\) 36.1480 7.19028i 0.228785 0.0455081i
\(159\) 97.9903 + 146.653i 0.616291 + 0.922345i
\(160\) 0 0
\(161\) 54.6498 22.6367i 0.339440 0.140601i
\(162\) −48.3037 + 20.0081i −0.298171 + 0.123507i
\(163\) 4.49551 22.6005i 0.0275798 0.138653i −0.964542 0.263929i \(-0.914982\pi\)
0.992122 + 0.125276i \(0.0399816\pi\)
\(164\) −160.955 + 107.547i −0.981433 + 0.655773i
\(165\) 0 0
\(166\) −14.1067 + 14.1067i −0.0849802 + 0.0849802i
\(167\) −104.568 + 156.497i −0.626156 + 0.937108i 0.373798 + 0.927510i \(0.378055\pi\)
−0.999954 + 0.00959805i \(0.996945\pi\)
\(168\) −77.0260 + 185.957i −0.458488 + 1.10689i
\(169\) 449.863i 2.66191i
\(170\) 0 0
\(171\) 28.6247 0.167396
\(172\) −203.415 84.2573i −1.18265 0.489868i
\(173\) −183.149 122.377i −1.05867 0.707379i −0.100892 0.994897i \(-0.532170\pi\)
−0.957775 + 0.287519i \(0.907170\pi\)
\(174\) −36.5372 36.5372i −0.209984 0.209984i
\(175\) 0 0
\(176\) 36.0097 + 53.8923i 0.204600 + 0.306206i
\(177\) −243.708 48.4766i −1.37688 0.273879i
\(178\) 17.5121 + 42.2781i 0.0983828 + 0.237517i
\(179\) −65.5165 158.171i −0.366014 0.883636i −0.994395 0.105730i \(-0.966282\pi\)
0.628381 0.777906i \(-0.283718\pi\)
\(180\) 0 0
\(181\) −5.80388 + 3.87803i −0.0320656 + 0.0214256i −0.571500 0.820602i \(-0.693638\pi\)
0.539434 + 0.842028i \(0.318638\pi\)
\(182\) 50.8235 + 255.507i 0.279250 + 1.40388i
\(183\) 124.063 + 124.063i 0.677937 + 0.677937i
\(184\) 26.0100 + 17.3793i 0.141359 + 0.0944528i
\(185\) 0 0
\(186\) 48.6862i 0.261754i
\(187\) 147.184 22.5398i 0.787082 0.120534i
\(188\) 259.851i 1.38219i
\(189\) 133.147 321.446i 0.704482 1.70077i
\(190\) 0 0
\(191\) 82.3988 + 82.3988i 0.431407 + 0.431407i 0.889107 0.457700i \(-0.151326\pi\)
−0.457700 + 0.889107i \(0.651326\pi\)
\(192\) 4.64735 0.924416i 0.0242050 0.00481467i
\(193\) 138.082 92.2635i 0.715451 0.478049i −0.143798 0.989607i \(-0.545931\pi\)
0.859249 + 0.511558i \(0.170931\pi\)
\(194\) 2.21384 11.1297i 0.0114115 0.0573696i
\(195\) 0 0
\(196\) −116.672 281.671i −0.595265 1.43710i
\(197\) 26.2969 132.204i 0.133487 0.671084i −0.854859 0.518860i \(-0.826356\pi\)
0.988346 0.152224i \(-0.0486435\pi\)
\(198\) 8.26577 + 12.3706i 0.0417463 + 0.0624778i
\(199\) −103.420 + 20.5715i −0.519697 + 0.103374i −0.447967 0.894050i \(-0.647852\pi\)
−0.0717299 + 0.997424i \(0.522852\pi\)
\(200\) 0 0
\(201\) 90.2125 + 60.2780i 0.448818 + 0.299891i
\(202\) 24.4283 58.9751i 0.120932 0.291956i
\(203\) 266.061 1.31065
\(204\) 34.8304 141.875i 0.170737 0.695466i
\(205\) 0 0
\(206\) 23.2032 56.0174i 0.112637 0.271929i
\(207\) −7.97786 5.33064i −0.0385404 0.0257519i
\(208\) 130.172 130.172i 0.625825 0.625825i
\(209\) 25.1940 + 126.659i 0.120545 + 0.606022i
\(210\) 0 0
\(211\) −35.8907 + 180.435i −0.170098 + 0.855141i 0.797631 + 0.603146i \(0.206087\pi\)
−0.967729 + 0.251995i \(0.918913\pi\)
\(212\) −82.1739 198.385i −0.387613 0.935780i
\(213\) −109.915 + 45.5285i −0.516035 + 0.213749i
\(214\) 24.4616 + 4.86571i 0.114306 + 0.0227369i
\(215\) 0 0
\(216\) 180.462 35.8962i 0.835474 0.166186i
\(217\) 177.264 + 177.264i 0.816886 + 0.816886i
\(218\) 35.0386 52.4390i 0.160727 0.240546i
\(219\) −111.619 46.2341i −0.509675 0.211114i
\(220\) 0 0
\(221\) −144.342 397.513i −0.653133 1.79870i
\(222\) 33.4559i 0.150702i
\(223\) 70.2118 + 29.0827i 0.314851 + 0.130416i 0.534512 0.845161i \(-0.320495\pi\)
−0.219661 + 0.975576i \(0.570495\pi\)
\(224\) 211.413 316.402i 0.943808 1.41251i
\(225\) 0 0
\(226\) −4.76996 23.9802i −0.0211060 0.106107i
\(227\) 104.541 69.8522i 0.460534 0.307719i −0.303574 0.952808i \(-0.598180\pi\)
0.764107 + 0.645089i \(0.223180\pi\)
\(228\) 124.266 + 24.7181i 0.545028 + 0.108413i
\(229\) −304.241 + 126.021i −1.32856 + 0.550309i −0.930245 0.366938i \(-0.880406\pi\)
−0.398318 + 0.917247i \(0.630406\pi\)
\(230\) 0 0
\(231\) 273.173 + 54.3375i 1.18257 + 0.235227i
\(232\) 78.1701 + 116.990i 0.336940 + 0.504267i
\(233\) −42.8588 215.466i −0.183943 0.924746i −0.956929 0.290322i \(-0.906238\pi\)
0.772986 0.634424i \(-0.218762\pi\)
\(234\) 29.8800 29.8800i 0.127692 0.127692i
\(235\) 0 0
\(236\) 279.487 + 115.767i 1.18427 + 0.490540i
\(237\) −111.917 −0.472224
\(238\) −92.2392 152.265i −0.387560 0.639770i
\(239\) 100.337 0.419822 0.209911 0.977721i \(-0.432683\pi\)
0.209911 + 0.977721i \(0.432683\pi\)
\(240\) 0 0
\(241\) −38.3073 + 57.3310i −0.158952 + 0.237888i −0.902394 0.430912i \(-0.858192\pi\)
0.743442 + 0.668800i \(0.233192\pi\)
\(242\) 27.3963 27.3963i 0.113208 0.113208i
\(243\) −100.882 + 20.0667i −0.415153 + 0.0825792i
\(244\) −118.671 177.604i −0.486357 0.727884i
\(245\) 0 0
\(246\) −128.527 + 53.2377i −0.522468 + 0.216413i
\(247\) 338.865 140.363i 1.37192 0.568270i
\(248\) −25.8638 + 130.026i −0.104289 + 0.524299i
\(249\) 50.3702 33.6563i 0.202290 0.135166i
\(250\) 0 0
\(251\) −265.197 + 265.197i −1.05656 + 1.05656i −0.0582606 + 0.998301i \(0.518555\pi\)
−0.998301 + 0.0582606i \(0.981445\pi\)
\(252\) −41.7573 + 62.4943i −0.165704 + 0.247993i
\(253\) 16.5653 39.9922i 0.0654755 0.158072i
\(254\) 50.4719i 0.198708i
\(255\) 0 0
\(256\) 105.498 0.412101
\(257\) −281.727 116.695i −1.09621 0.454066i −0.240044 0.970762i \(-0.577162\pi\)
−0.856169 + 0.516696i \(0.827162\pi\)
\(258\) −131.564 87.9080i −0.509937 0.340729i
\(259\) 121.812 + 121.812i 0.470315 + 0.470315i
\(260\) 0 0
\(261\) −23.9766 35.8835i −0.0918643 0.137485i
\(262\) 200.279 + 39.8380i 0.764425 + 0.152054i
\(263\) 127.534 + 307.894i 0.484919 + 1.17070i 0.957246 + 0.289275i \(0.0934141\pi\)
−0.472327 + 0.881423i \(0.656586\pi\)
\(264\) 56.3669 + 136.082i 0.213511 + 0.515461i
\(265\) 0 0
\(266\) 128.378 85.7797i 0.482626 0.322480i
\(267\) −27.1095 136.289i −0.101534 0.510445i
\(268\) −93.4018 93.4018i −0.348514 0.348514i
\(269\) −249.325 166.594i −0.926859 0.619308i −0.00215658 0.999998i \(-0.500686\pi\)
−0.924703 + 0.380690i \(0.875686\pi\)
\(270\) 0 0
\(271\) 139.013i 0.512963i 0.966549 + 0.256481i \(0.0825633\pi\)
−0.966549 + 0.256481i \(0.917437\pi\)
\(272\) −53.2519 + 113.974i −0.195779 + 0.419021i
\(273\) 791.070i 2.89769i
\(274\) 44.7575 108.054i 0.163348 0.394358i
\(275\) 0 0
\(276\) −30.0306 30.0306i −0.108807 0.108807i
\(277\) 96.8761 19.2699i 0.349733 0.0695662i −0.0170979 0.999854i \(-0.505443\pi\)
0.366831 + 0.930288i \(0.380443\pi\)
\(278\) 1.08421 0.724446i 0.00390003 0.00260592i
\(279\) 7.93302 39.8820i 0.0284338 0.142946i
\(280\) 0 0
\(281\) −0.465552 1.12394i −0.00165677 0.00399979i 0.923049 0.384682i \(-0.125689\pi\)
−0.924706 + 0.380683i \(0.875689\pi\)
\(282\) −36.4319 + 183.156i −0.129191 + 0.649488i
\(283\) 85.5380 + 128.017i 0.302254 + 0.452355i 0.951243 0.308443i \(-0.0998078\pi\)
−0.648989 + 0.760798i \(0.724808\pi\)
\(284\) 142.059 28.2572i 0.500206 0.0994972i
\(285\) 0 0
\(286\) 158.512 + 105.914i 0.554237 + 0.370329i
\(287\) 274.126 661.798i 0.955142 2.30592i
\(288\) −61.7248 −0.214322
\(289\) 185.430 + 221.668i 0.641627 + 0.767016i
\(290\) 0 0
\(291\) −13.1867 + 31.8355i −0.0453151 + 0.109400i
\(292\) 122.298 + 81.7168i 0.418828 + 0.279852i
\(293\) 132.488 132.488i 0.452176 0.452176i −0.443900 0.896076i \(-0.646406\pi\)
0.896076 + 0.443900i \(0.146406\pi\)
\(294\) −42.7449 214.893i −0.145391 0.730928i
\(295\) 0 0
\(296\) −17.7730 + 89.3507i −0.0600438 + 0.301861i
\(297\) −97.4358 235.231i −0.328067 0.792023i
\(298\) 50.6097 20.9632i 0.169831 0.0703463i
\(299\) −120.583 23.9854i −0.403286 0.0802187i
\(300\) 0 0
\(301\) 799.087 158.948i 2.65477 0.528067i
\(302\) 64.6819 + 64.6819i 0.214179 + 0.214179i
\(303\) −107.691 + 161.171i −0.355415 + 0.531916i
\(304\) −100.801 41.7530i −0.331581 0.137345i
\(305\) 0 0
\(306\) −12.2236 + 26.1619i −0.0399464 + 0.0854964i
\(307\) 502.910i 1.63814i −0.573691 0.819072i \(-0.694489\pi\)
0.573691 0.819072i \(-0.305511\pi\)
\(308\) −313.277 129.764i −1.01713 0.421311i
\(309\) −102.290 + 153.088i −0.331035 + 0.495429i
\(310\) 0 0
\(311\) −18.4534 92.7716i −0.0593358 0.298301i 0.939710 0.341972i \(-0.111095\pi\)
−0.999046 + 0.0436707i \(0.986095\pi\)
\(312\) 347.842 232.420i 1.11488 0.744937i
\(313\) 416.068 + 82.7611i 1.32929 + 0.264413i 0.808109 0.589033i \(-0.200491\pi\)
0.521182 + 0.853445i \(0.325491\pi\)
\(314\) −114.577 + 47.4595i −0.364896 + 0.151145i
\(315\) 0 0
\(316\) 133.635 + 26.5817i 0.422896 + 0.0841192i
\(317\) 117.464 + 175.798i 0.370550 + 0.554567i 0.969147 0.246483i \(-0.0792749\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(318\) −30.1059 151.352i −0.0946726 0.475951i
\(319\) 137.674 137.674i 0.431581 0.431581i
\(320\) 0 0
\(321\) −69.9700 28.9825i −0.217975 0.0902882i
\(322\) −51.7541 −0.160727
\(323\) −184.925 + 169.195i −0.572523 + 0.523824i
\(324\) −193.287 −0.596563
\(325\) 0 0
\(326\) −11.2009 + 16.7634i −0.0343587 + 0.0514214i
\(327\) −135.419 + 135.419i −0.414125 + 0.414125i
\(328\) 371.539 73.9037i 1.13274 0.225316i
\(329\) −534.215 799.509i −1.62375 2.43012i
\(330\) 0 0
\(331\) 212.770 88.1322i 0.642810 0.266260i −0.0373750 0.999301i \(-0.511900\pi\)
0.680185 + 0.733041i \(0.261900\pi\)
\(332\) −68.1385 + 28.2239i −0.205236 + 0.0850117i
\(333\) 5.45138 27.4059i 0.0163705 0.0823001i
\(334\) 136.923 91.4893i 0.409950 0.273920i
\(335\) 0 0
\(336\) −166.393 + 166.393i −0.495218 + 0.495218i
\(337\) −343.412 + 513.952i −1.01903 + 1.52508i −0.178039 + 0.984023i \(0.556975\pi\)
−0.840987 + 0.541056i \(0.818025\pi\)
\(338\) 150.623 363.636i 0.445630 1.07585i
\(339\) 74.2446i 0.219011i
\(340\) 0 0
\(341\) 183.452 0.537983
\(342\) −23.1381 9.58412i −0.0676553 0.0280237i
\(343\) 450.405 + 300.951i 1.31313 + 0.877408i
\(344\) 304.667 + 304.667i 0.885660 + 0.885660i
\(345\) 0 0
\(346\) 107.070 + 160.242i 0.309452 + 0.463128i
\(347\) −598.438 119.037i −1.72460 0.343045i −0.769349 0.638829i \(-0.779419\pi\)
−0.955255 + 0.295783i \(0.904419\pi\)
\(348\) −73.1016 176.483i −0.210062 0.507134i
\(349\) 68.1756 + 164.590i 0.195345 + 0.471606i 0.990953 0.134206i \(-0.0428484\pi\)
−0.795608 + 0.605812i \(0.792848\pi\)
\(350\) 0 0
\(351\) −601.279 + 401.762i −1.71305 + 1.14462i
\(352\) −54.3269 273.120i −0.154338 0.775909i
\(353\) 246.404 + 246.404i 0.698030 + 0.698030i 0.963985 0.265956i \(-0.0856874\pi\)
−0.265956 + 0.963985i \(0.585687\pi\)
\(354\) 180.765 + 120.783i 0.510636 + 0.341196i
\(355\) 0 0
\(356\) 169.175i 0.475210i
\(357\) 184.507 + 508.126i 0.516828 + 1.42332i
\(358\) 149.790i 0.418408i
\(359\) −87.7860 + 211.934i −0.244529 + 0.590346i −0.997722 0.0674536i \(-0.978513\pi\)
0.753193 + 0.657799i \(0.228513\pi\)
\(360\) 0 0
\(361\) 101.551 + 101.551i 0.281306 + 0.281306i
\(362\) 5.98987 1.19146i 0.0165466 0.00329132i
\(363\) −97.8225 + 65.3629i −0.269484 + 0.180063i
\(364\) −187.889 + 944.580i −0.516177 + 2.59500i
\(365\) 0 0
\(366\) −58.7444 141.822i −0.160504 0.387491i
\(367\) −125.957 + 633.227i −0.343206 + 1.72541i 0.294956 + 0.955511i \(0.404695\pi\)
−0.638162 + 0.769902i \(0.720305\pi\)
\(368\) 20.3182 + 30.4084i 0.0552126 + 0.0826315i
\(369\) −113.960 + 22.6680i −0.308834 + 0.0614308i
\(370\) 0 0
\(371\) 660.682 + 441.454i 1.78081 + 1.18990i
\(372\) 68.8781 166.287i 0.185156 0.447007i
\(373\) 17.3537 0.0465246 0.0232623 0.999729i \(-0.492595\pi\)
0.0232623 + 0.999729i \(0.492595\pi\)
\(374\) −126.520 31.0607i −0.338288 0.0830500i
\(375\) 0 0
\(376\) 194.597 469.800i 0.517546 1.24947i
\(377\) −459.796 307.226i −1.21962 0.814923i
\(378\) −215.253 + 215.253i −0.569452 + 0.569452i
\(379\) −28.2844 142.195i −0.0746289 0.375185i 0.925363 0.379081i \(-0.123760\pi\)
−0.999992 + 0.00389606i \(0.998760\pi\)
\(380\) 0 0
\(381\) 29.9000 150.318i 0.0784778 0.394534i
\(382\) −39.0164 94.1939i −0.102137 0.246581i
\(383\) 12.5601 5.20255i 0.0327939 0.0135837i −0.366226 0.930526i \(-0.619350\pi\)
0.399020 + 0.916942i \(0.369350\pi\)
\(384\) −335.445 66.7241i −0.873554 0.173761i
\(385\) 0 0
\(386\) −142.507 + 28.3464i −0.369189 + 0.0734363i
\(387\) −93.4484 93.4484i −0.241469 0.241469i
\(388\) 23.3069 34.8813i 0.0600694 0.0899002i
\(389\) 527.645 + 218.558i 1.35641 + 0.561845i 0.938070 0.346445i \(-0.112611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(390\) 0 0
\(391\) 83.0479 12.7180i 0.212399 0.0325268i
\(392\) 596.622i 1.52199i
\(393\) −572.880 237.295i −1.45771 0.603804i
\(394\) −65.5209 + 98.0590i −0.166297 + 0.248881i
\(395\) 0 0
\(396\) 10.7304 + 53.9454i 0.0270970 + 0.136226i
\(397\) 616.794 412.128i 1.55364 1.03811i 0.578723 0.815524i \(-0.303551\pi\)
0.974914 0.222583i \(-0.0714489\pi\)
\(398\) 90.4847 + 17.9985i 0.227348 + 0.0452224i
\(399\) −433.159 + 179.420i −1.08561 + 0.449675i
\(400\) 0 0
\(401\) −272.971 54.2973i −0.680726 0.135405i −0.157397 0.987535i \(-0.550310\pi\)
−0.523329 + 0.852131i \(0.675310\pi\)
\(402\) −52.7388 78.9293i −0.131191 0.196341i
\(403\) −101.650 511.031i −0.252234 1.26807i
\(404\) 166.869 166.869i 0.413041 0.413041i
\(405\) 0 0
\(406\) −215.064 89.0825i −0.529715 0.219415i
\(407\) 126.064 0.309739
\(408\) −169.219 + 230.420i −0.414753 + 0.564755i
\(409\) 417.503 1.02079 0.510395 0.859940i \(-0.329499\pi\)
0.510395 + 0.859940i \(0.329499\pi\)
\(410\) 0 0
\(411\) −197.311 + 295.297i −0.480075 + 0.718483i
\(412\) 158.500 158.500i 0.384708 0.384708i
\(413\) −1097.92 + 218.391i −2.65841 + 0.528791i
\(414\) 4.66391 + 6.98004i 0.0112655 + 0.0168600i
\(415\) 0 0
\(416\) −730.711 + 302.670i −1.75652 + 0.727573i
\(417\) −3.65821 + 1.51528i −0.00877268 + 0.00363376i
\(418\) 22.0429 110.817i 0.0527341 0.265112i
\(419\) 453.352 302.920i 1.08199 0.722960i 0.119104 0.992882i \(-0.461998\pi\)
0.962882 + 0.269921i \(0.0869977\pi\)
\(420\) 0 0
\(421\) −362.826 + 362.826i −0.861820 + 0.861820i −0.991549 0.129730i \(-0.958589\pi\)
0.129730 + 0.991549i \(0.458589\pi\)
\(422\) 89.4245 133.833i 0.211906 0.317140i
\(423\) −59.6875 + 144.098i −0.141105 + 0.340658i
\(424\) 420.210i 0.991062i
\(425\) 0 0
\(426\) 104.091 0.244346
\(427\) 730.252 + 302.480i 1.71019 + 0.708385i
\(428\) 76.6642 + 51.2254i 0.179122 + 0.119686i
\(429\) −409.342 409.342i −0.954178 0.954178i
\(430\) 0 0
\(431\) −157.395 235.558i −0.365185 0.546538i 0.602688 0.797977i \(-0.294096\pi\)
−0.967873 + 0.251439i \(0.919096\pi\)
\(432\) 210.979 + 41.9664i 0.488378 + 0.0971445i
\(433\) 119.672 + 288.914i 0.276379 + 0.667238i 0.999730 0.0232429i \(-0.00739910\pi\)
−0.723351 + 0.690481i \(0.757399\pi\)
\(434\) −83.9358 202.639i −0.193400 0.466910i
\(435\) 0 0
\(436\) 193.861 129.534i 0.444635 0.297096i
\(437\) 14.2156 + 71.4664i 0.0325299 + 0.163539i
\(438\) 74.7444 + 74.7444i 0.170649 + 0.170649i
\(439\) −63.4957 42.4264i −0.144637 0.0966434i 0.481146 0.876640i \(-0.340221\pi\)
−0.625783 + 0.779997i \(0.715221\pi\)
\(440\) 0 0
\(441\) 182.998i 0.414961i
\(442\) −16.4195 + 369.649i −0.0371482 + 0.836310i
\(443\) 167.822i 0.378830i 0.981897 + 0.189415i \(0.0606591\pi\)
−0.981897 + 0.189415i \(0.939341\pi\)
\(444\) 47.3314 114.268i 0.106602 0.257360i
\(445\) 0 0
\(446\) −47.0166 47.0166i −0.105418 0.105418i
\(447\) −163.147 + 32.4519i −0.364981 + 0.0725993i
\(448\) 17.7492 11.8597i 0.0396189 0.0264725i
\(449\) −7.23934 + 36.3946i −0.0161233 + 0.0810571i −0.988009 0.154395i \(-0.950657\pi\)
0.971886 + 0.235452i \(0.0756571\pi\)
\(450\) 0 0
\(451\) −200.603 484.297i −0.444795 1.07383i
\(452\) 17.6340 88.6521i 0.0390133 0.196133i
\(453\) −154.320 230.957i −0.340663 0.509838i
\(454\) −107.891 + 21.4609i −0.237646 + 0.0472707i
\(455\) 0 0
\(456\) −206.157 137.750i −0.452099 0.302083i
\(457\) −126.150 + 304.553i −0.276039 + 0.666418i −0.999719 0.0237185i \(-0.992449\pi\)
0.723679 + 0.690136i \(0.242449\pi\)
\(458\) 288.120 0.629084
\(459\) 292.512 398.304i 0.637282 0.867765i
\(460\) 0 0
\(461\) 199.727 482.184i 0.433248 1.04595i −0.544986 0.838445i \(-0.683465\pi\)
0.978233 0.207507i \(-0.0665351\pi\)
\(462\) −202.620 135.386i −0.438571 0.293044i
\(463\) −195.559 + 195.559i −0.422373 + 0.422373i −0.886020 0.463647i \(-0.846541\pi\)
0.463647 + 0.886020i \(0.346541\pi\)
\(464\) 32.0916 + 161.335i 0.0691629 + 0.347705i
\(465\) 0 0
\(466\) −37.4983 + 188.517i −0.0804684 + 0.404542i
\(467\) −181.889 439.119i −0.389484 0.940298i −0.990049 0.140722i \(-0.955058\pi\)
0.600565 0.799576i \(-0.294942\pi\)
\(468\) 144.327 59.7821i 0.308391 0.127740i
\(469\) 479.398 + 95.3582i 1.02217 + 0.203322i
\(470\) 0 0
\(471\) 369.355 73.4692i 0.784192 0.155986i
\(472\) −418.605 418.605i −0.886874 0.886874i
\(473\) 331.242 495.739i 0.700301 1.04807i
\(474\) 90.4655 + 37.4720i 0.190856 + 0.0790550i
\(475\) 0 0
\(476\) −99.6257 650.553i −0.209298 1.36671i
\(477\) 128.888i 0.270206i
\(478\) −81.1053 33.5949i −0.169676 0.0702823i
\(479\) 220.245 329.620i 0.459802 0.688142i −0.527038 0.849842i \(-0.676697\pi\)
0.986840 + 0.161699i \(0.0516975\pi\)
\(480\) 0 0
\(481\) −69.8517 351.168i −0.145222 0.730079i
\(482\) 50.1604 33.5161i 0.104067 0.0695354i
\(483\) 154.136 + 30.6596i 0.319123 + 0.0634775i
\(484\) 132.330 54.8128i 0.273409 0.113250i
\(485\) 0 0
\(486\) 88.2646 + 17.5569i 0.181614 + 0.0361253i
\(487\) 152.409 + 228.096i 0.312954 + 0.468369i 0.954286 0.298895i \(-0.0966179\pi\)
−0.641332 + 0.767263i \(0.721618\pi\)
\(488\) 81.5481 + 409.970i 0.167107 + 0.840102i
\(489\) 43.2898 43.2898i 0.0885273 0.0885273i
\(490\) 0 0
\(491\) −439.630 182.101i −0.895378 0.370878i −0.112937 0.993602i \(-0.536026\pi\)
−0.782441 + 0.622725i \(0.786026\pi\)
\(492\) −514.299 −1.04532
\(493\) 366.997 + 90.0979i 0.744415 + 0.182754i
\(494\) −320.910 −0.649615
\(495\) 0 0
\(496\) −86.1091 + 128.871i −0.173607 + 0.259821i
\(497\) −378.992 + 378.992i −0.762560 + 0.762560i
\(498\) −51.9844 + 10.3403i −0.104386 + 0.0207637i
\(499\) 266.019 + 398.126i 0.533104 + 0.797847i 0.996074 0.0885272i \(-0.0282160\pi\)
−0.462969 + 0.886374i \(0.653216\pi\)
\(500\) 0 0
\(501\) −461.990 + 191.363i −0.922136 + 0.381961i
\(502\) 303.159 125.573i 0.603902 0.250145i
\(503\) 1.08456 5.45243i 0.00215617 0.0108398i −0.979692 0.200507i \(-0.935741\pi\)
0.981848 + 0.189667i \(0.0607410\pi\)
\(504\) 122.296 81.7157i 0.242651 0.162134i
\(505\) 0 0
\(506\) −26.7804 + 26.7804i −0.0529256 + 0.0529256i
\(507\) −664.014 + 993.767i −1.30969 + 1.96009i
\(508\) −71.4045 + 172.386i −0.140560 + 0.339342i
\(509\) 460.670i 0.905049i −0.891752 0.452524i \(-0.850524\pi\)
0.891752 0.452524i \(-0.149476\pi\)
\(510\) 0 0
\(511\) −544.282 −1.06513
\(512\) 390.458 + 161.733i 0.762613 + 0.315885i
\(513\) 356.364 + 238.115i 0.694666 + 0.464161i
\(514\) 188.655 + 188.655i 0.367034 + 0.367034i
\(515\) 0 0
\(516\) −324.986 486.376i −0.629818 0.942589i
\(517\) −690.141 137.277i −1.33489 0.265527i
\(518\) −57.6786 139.248i −0.111349 0.268819i
\(519\) −223.953 540.670i −0.431508 1.04175i
\(520\) 0 0
\(521\) 814.191 544.025i 1.56275 1.04419i 0.591445 0.806346i \(-0.298558\pi\)
0.971302 0.237849i \(-0.0764422\pi\)
\(522\) 7.36640 + 37.0334i 0.0141119 + 0.0709452i
\(523\) −25.9709 25.9709i −0.0496575 0.0496575i 0.681842 0.731499i \(-0.261179\pi\)
−0.731499 + 0.681842i \(0.761179\pi\)
\(524\) 627.690 + 419.409i 1.19788 + 0.800398i
\(525\) 0 0
\(526\) 291.579i 0.554333i
\(527\) 184.485 + 304.541i 0.350066 + 0.577877i
\(528\) 172.202i 0.326140i
\(529\) −193.093 + 466.167i −0.365014 + 0.881223i
\(530\) 0 0
\(531\) 128.396 + 128.396i 0.241800 + 0.241800i
\(532\) 559.829 111.357i 1.05231 0.209318i
\(533\) −1237.92 + 827.155i −2.32256 + 1.55188i
\(534\) −23.7188 + 119.243i −0.0444173 + 0.223301i
\(535\) 0 0
\(536\) 98.9196 + 238.813i 0.184551 + 0.445547i
\(537\) 88.7370 446.111i 0.165246 0.830746i
\(538\) 145.757 + 218.141i 0.270924 + 0.405467i
\(539\) 809.728 161.065i 1.50228 0.298822i
\(540\) 0 0
\(541\) −423.296 282.838i −0.782433 0.522805i 0.0990149 0.995086i \(-0.468431\pi\)
−0.881448 + 0.472281i \(0.843431\pi\)
\(542\) 46.5443 112.368i 0.0858751 0.207321i
\(543\) −18.5451 −0.0341531
\(544\) 398.762 364.843i 0.733018 0.670668i
\(545\) 0 0
\(546\) −264.866 + 639.442i −0.485102 + 1.17114i
\(547\) 435.093 + 290.720i 0.795417 + 0.531481i 0.885602 0.464444i \(-0.153746\pi\)
−0.0901850 + 0.995925i \(0.528746\pi\)
\(548\) 305.736 305.736i 0.557913 0.557913i
\(549\) −25.0127 125.747i −0.0455604 0.229048i
\(550\) 0 0
\(551\) −63.9399 + 321.447i −0.116043 + 0.583389i
\(552\) 31.8047 + 76.7833i 0.0576172 + 0.139100i
\(553\) −465.815 + 192.947i −0.842342 + 0.348910i
\(554\) −84.7594 16.8597i −0.152995 0.0304327i
\(555\) 0 0
\(556\) 4.72800 0.940457i 0.00850359 0.00169147i
\(557\) 150.954 + 150.954i 0.271012 + 0.271012i 0.829507 0.558496i \(-0.188621\pi\)
−0.558496 + 0.829507i \(0.688621\pi\)
\(558\) −19.7657 + 29.5815i −0.0354225 + 0.0530135i
\(559\) −1564.49 648.033i −2.79873 1.15927i
\(560\) 0 0
\(561\) 358.406 + 167.458i 0.638870 + 0.298499i
\(562\) 1.06439i 0.00189393i
\(563\) 409.360 + 169.562i 0.727104 + 0.301176i 0.715361 0.698755i \(-0.246262\pi\)
0.0117427 + 0.999931i \(0.496262\pi\)
\(564\) −383.550 + 574.023i −0.680052 + 1.01777i
\(565\) 0 0
\(566\) −26.2801 132.119i −0.0464313 0.233426i
\(567\) 594.703 397.368i 1.04886 0.700825i
\(568\) −277.997 55.2970i −0.489431 0.0973539i
\(569\) −795.099 + 329.341i −1.39736 + 0.578806i −0.949065 0.315079i \(-0.897969\pi\)
−0.448296 + 0.893885i \(0.647969\pi\)
\(570\) 0 0
\(571\) −751.766 149.535i −1.31658 0.261883i −0.513670 0.857988i \(-0.671714\pi\)
−0.802907 + 0.596104i \(0.796714\pi\)
\(572\) 391.553 + 586.000i 0.684533 + 1.02448i
\(573\) 60.3989 + 303.646i 0.105408 + 0.529923i
\(574\) −443.166 + 443.166i −0.772066 + 0.772066i
\(575\) 0 0
\(576\) −3.19901 1.32507i −0.00555384 0.00230048i
\(577\) −970.916 −1.68270 −0.841349 0.540493i \(-0.818238\pi\)
−0.841349 + 0.540493i \(0.818238\pi\)
\(578\) −75.6695 241.266i −0.130916 0.417415i
\(579\) 441.213 0.762026
\(580\) 0 0
\(581\) 151.624 226.922i 0.260971 0.390571i
\(582\) 21.3183 21.3183i 0.0366294 0.0366294i
\(583\) 570.304 113.441i 0.978224 0.194581i
\(584\) −159.913 239.327i −0.273824 0.409806i
\(585\) 0 0
\(586\) −151.453 + 62.7337i −0.258452 + 0.107054i
\(587\) 92.8282 38.4507i 0.158140 0.0655038i −0.302209 0.953242i \(-0.597724\pi\)
0.460349 + 0.887738i \(0.347724\pi\)
\(588\) 158.023 794.435i 0.268746 1.35108i
\(589\) −256.766 + 171.565i −0.435935 + 0.291283i
\(590\) 0 0
\(591\) 253.228 253.228i 0.428474 0.428474i
\(592\) −59.1720 + 88.5572i −0.0999528 + 0.149590i
\(593\) 71.1679 171.814i 0.120013 0.289738i −0.852444 0.522818i \(-0.824881\pi\)
0.972457 + 0.233081i \(0.0748806\pi\)
\(594\) 222.767i 0.375028i
\(595\) 0 0
\(596\) 202.514 0.339788
\(597\) −258.823 107.208i −0.433539 0.179578i
\(598\) 89.4394 + 59.7615i 0.149564 + 0.0999356i
\(599\) 210.427 + 210.427i 0.351297 + 0.351297i 0.860592 0.509295i \(-0.170094\pi\)
−0.509295 + 0.860592i \(0.670094\pi\)
\(600\) 0 0
\(601\) −285.040 426.592i −0.474276 0.709804i 0.514784 0.857320i \(-0.327872\pi\)
−0.989060 + 0.147516i \(0.952872\pi\)
\(602\) −699.142 139.068i −1.16137 0.231010i
\(603\) −30.3409 73.2495i −0.0503166 0.121475i
\(604\) 129.412 + 312.428i 0.214258 + 0.517264i
\(605\) 0 0
\(606\) 141.012 94.2215i 0.232694 0.155481i
\(607\) 187.578 + 943.017i 0.309024 + 1.55357i 0.753298 + 0.657679i \(0.228462\pi\)
−0.444274 + 0.895891i \(0.646538\pi\)
\(608\) 331.461 + 331.461i 0.545166 + 0.545166i
\(609\) 587.740 + 392.715i 0.965090 + 0.644853i
\(610\) 0 0
\(611\) 1998.55i 3.27095i
\(612\) −78.7617 + 72.0622i −0.128696 + 0.117749i
\(613\) 757.810i 1.23623i 0.786087 + 0.618116i \(0.212104\pi\)
−0.786087 + 0.618116i \(0.787896\pi\)
\(614\) −168.384 + 406.516i −0.274242 + 0.662078i
\(615\) 0 0
\(616\) 469.214 + 469.214i 0.761712 + 0.761712i
\(617\) −220.220 + 43.8045i −0.356921 + 0.0709959i −0.370294 0.928915i \(-0.620743\pi\)
0.0133733 + 0.999911i \(0.495743\pi\)
\(618\) 133.940 89.4961i 0.216732 0.144816i
\(619\) 231.722 1164.94i 0.374348 1.88198i −0.0893776 0.995998i \(-0.528488\pi\)
0.463726 0.885979i \(-0.346512\pi\)
\(620\) 0 0
\(621\) −54.9776 132.728i −0.0885308 0.213732i
\(622\) −16.1454 + 81.1684i −0.0259572 + 0.130496i
\(623\) −347.798 520.516i −0.558263 0.835499i
\(624\) 479.692 95.4167i 0.768737 0.152911i
\(625\) 0 0
\(626\) −308.609 206.206i −0.492986 0.329402i
\(627\) −131.298 + 316.981i −0.209407 + 0.505553i
\(628\) −458.479 −0.730062
\(629\) 126.773 + 209.273i 0.201548 + 0.332708i
\(630\) 0 0
\(631\) −184.417 + 445.222i −0.292262 + 0.705582i −1.00000 0.000892895i \(-0.999716\pi\)
0.707738 + 0.706475i \(0.249716\pi\)
\(632\) −221.700 148.135i −0.350791 0.234391i
\(633\) −345.612 + 345.612i −0.545991 + 0.545991i
\(634\) −36.0890 181.431i −0.0569227 0.286170i
\(635\) 0 0
\(636\) 111.298 559.533i 0.174997 0.879769i
\(637\) −897.338 2166.36i −1.40869 3.40089i
\(638\) −157.382 + 65.1897i −0.246680 + 0.102178i
\(639\) 85.2680 + 16.9609i 0.133440 + 0.0265428i
\(640\) 0 0
\(641\) −89.5481 + 17.8122i −0.139701 + 0.0277882i −0.264445 0.964401i \(-0.585189\pi\)
0.124745 + 0.992189i \(0.460189\pi\)
\(642\) 46.8547 + 46.8547i 0.0729823 + 0.0729823i
\(643\) 113.209 169.429i 0.176064 0.263498i −0.732933 0.680300i \(-0.761849\pi\)
0.908997 + 0.416803i \(0.136849\pi\)
\(644\) −176.765 73.2185i −0.274480 0.113693i
\(645\) 0 0
\(646\) 206.129 74.8484i 0.319086 0.115864i
\(647\) 1013.82i 1.56696i 0.621420 + 0.783478i \(0.286556\pi\)
−0.621420 + 0.783478i \(0.713444\pi\)
\(648\) 349.454 + 144.748i 0.539280 + 0.223377i
\(649\) −455.118 + 681.133i −0.701261 + 1.04951i
\(650\) 0 0
\(651\) 129.936 + 653.232i 0.199594 + 1.00343i
\(652\) −61.9723 + 41.4085i −0.0950495 + 0.0635100i
\(653\) −302.592 60.1893i −0.463387 0.0921735i −0.0421251 0.999112i \(-0.513413\pi\)
−0.421262 + 0.906939i \(0.638413\pi\)
\(654\) 154.803 64.1217i 0.236703 0.0980454i
\(655\) 0 0
\(656\) 434.368 + 86.4012i 0.662147 + 0.131709i
\(657\) 49.0490 + 73.4070i 0.0746560 + 0.111731i
\(658\) 164.128 + 825.130i 0.249435 + 1.25400i
\(659\) −554.044 + 554.044i −0.840734 + 0.840734i −0.988954 0.148220i \(-0.952646\pi\)
0.148220 + 0.988954i \(0.452646\pi\)
\(660\) 0 0
\(661\) −396.870 164.389i −0.600409 0.248697i 0.0617128 0.998094i \(-0.480344\pi\)
−0.662121 + 0.749397i \(0.730344\pi\)
\(662\) −201.496 −0.304375
\(663\) 267.885 1091.18i 0.404050 1.64582i
\(664\) 144.328 0.217361
\(665\) 0 0
\(666\) −13.5825 + 20.3277i −0.0203942 + 0.0305221i
\(667\) 77.6819 77.6819i 0.116465 0.116465i
\(668\) 597.092 118.769i 0.893851 0.177798i
\(669\) 112.174 + 167.880i 0.167674 + 0.250941i
\(670\) 0 0
\(671\) 534.392 221.352i 0.796411 0.329884i
\(672\) 934.041 386.892i 1.38994 0.575733i
\(673\) 203.655 1023.84i 0.302607 1.52131i −0.467845 0.883811i \(-0.654969\pi\)
0.770452 0.637498i \(-0.220031\pi\)
\(674\) 449.670 300.460i 0.667166 0.445786i
\(675\) 0 0
\(676\) 1028.90 1028.90i 1.52204 1.52204i
\(677\) 657.690 984.303i 0.971477 1.45392i 0.0821649 0.996619i \(-0.473817\pi\)
0.889313 0.457300i \(-0.151183\pi\)
\(678\) 24.8586 60.0139i 0.0366646 0.0885161i
\(679\) 155.238i 0.228627i
\(680\) 0 0
\(681\) 334.040 0.490514
\(682\) −148.289 61.4234i −0.217433 0.0900636i
\(683\) −327.661 218.936i −0.479738 0.320551i 0.292080 0.956394i \(-0.405653\pi\)
−0.771818 + 0.635843i \(0.780653\pi\)
\(684\) −65.4687 65.4687i −0.0957145 0.0957145i
\(685\) 0 0
\(686\) −263.310 394.071i −0.383833 0.574447i
\(687\) −858.092 170.685i −1.24904 0.248450i
\(688\) 192.767 + 465.382i 0.280185 + 0.676427i
\(689\) −632.009 1525.80i −0.917285 2.21452i
\(690\) 0 0
\(691\) −44.0092 + 29.4060i −0.0636892 + 0.0425558i −0.587007 0.809582i \(-0.699694\pi\)
0.523318 + 0.852137i \(0.324694\pi\)
\(692\) 138.996 + 698.780i 0.200861 + 1.00980i
\(693\) −143.919 143.919i −0.207675 0.207675i
\(694\) 443.877 + 296.589i 0.639592 + 0.427362i
\(695\) 0 0
\(696\) 373.817i 0.537094i
\(697\) 602.230 820.036i 0.864031 1.17652i
\(698\) 155.869i 0.223308i
\(699\) 223.358 539.234i 0.319539 0.771437i
\(700\) 0 0
\(701\) 581.552 + 581.552i 0.829603 + 0.829603i 0.987462 0.157859i \(-0.0504590\pi\)
−0.157859 + 0.987462i \(0.550459\pi\)
\(702\) 620.548 123.435i 0.883971 0.175833i
\(703\) −176.443 + 117.896i −0.250986 + 0.167703i
\(704\) 3.04759 15.3213i 0.00432896 0.0217631i
\(705\) 0 0
\(706\) −116.674 281.676i −0.165261 0.398975i
\(707\) −170.364 + 856.476i −0.240967 + 1.21142i
\(708\) 446.522 + 668.268i 0.630681 + 0.943881i
\(709\) 222.555 44.2689i 0.313900 0.0624385i −0.0356263 0.999365i \(-0.511343\pi\)
0.349526 + 0.936927i \(0.386343\pi\)
\(710\) 0 0
\(711\) 68.0004 + 45.4364i 0.0956405 + 0.0639050i
\(712\) 126.692 305.861i 0.177938 0.429580i
\(713\) 103.512 0.145178
\(714\) 20.9885 472.509i 0.0293956 0.661777i
\(715\) 0 0
\(716\) −211.913 + 511.604i −0.295968 + 0.714531i
\(717\) 221.650 + 148.101i 0.309135 + 0.206557i
\(718\) 141.919 141.919i 0.197659 0.197659i
\(719\) 158.183 + 795.241i 0.220005 + 1.10604i 0.920008 + 0.391899i \(0.128182\pi\)
−0.700004 + 0.714139i \(0.746818\pi\)
\(720\) 0 0
\(721\) −161.820 + 813.523i −0.224438 + 1.12833i
\(722\) −48.0853 116.088i −0.0666001 0.160787i
\(723\) −169.245 + 70.1036i −0.234087 + 0.0969621i
\(724\) 22.1439 + 4.40469i 0.0305855 + 0.00608383i
\(725\) 0 0
\(726\) 100.957 20.0817i 0.139060 0.0276607i
\(727\) −230.482 230.482i −0.317032 0.317032i 0.530594 0.847626i \(-0.321969\pi\)
−0.847626 + 0.530594i \(0.821969\pi\)
\(728\) 1047.07 1567.05i 1.43828 2.15254i
\(729\) −749.353 310.392i −1.02792 0.425778i
\(730\) 0 0
\(731\) 1156.06 + 51.3514i 1.58148 + 0.0702481i
\(732\) 567.497i 0.775269i
\(733\) −240.782 99.7350i −0.328488 0.136064i 0.212344 0.977195i \(-0.431890\pi\)
−0.540832 + 0.841131i \(0.681890\pi\)
\(734\) 313.831 469.681i 0.427562 0.639892i
\(735\) 0 0
\(736\) −30.6537 154.106i −0.0416490 0.209384i
\(737\) 297.410 198.723i 0.403541 0.269638i
\(738\) 99.7062 + 19.8328i 0.135103 + 0.0268737i
\(739\) −152.235 + 63.0577i −0.206001 + 0.0853285i −0.483298 0.875456i \(-0.660561\pi\)
0.277297 + 0.960784i \(0.410561\pi\)
\(740\) 0 0
\(741\) 955.748 + 190.110i 1.28981 + 0.256559i
\(742\) −386.239 578.048i −0.520538 0.779040i
\(743\) −57.0690 286.905i −0.0768089 0.386145i −0.999998 0.00179939i \(-0.999427\pi\)
0.923189 0.384345i \(-0.125573\pi\)
\(744\) −249.057 + 249.057i −0.334754 + 0.334754i
\(745\) 0 0
\(746\) −14.0274 5.81035i −0.0188035 0.00778868i
\(747\) −44.2686 −0.0592619
\(748\) −388.183 285.079i −0.518961 0.381122i
\(749\) −341.192 −0.455530
\(750\) 0 0
\(751\) −300.658 + 449.967i −0.400344 + 0.599157i −0.975797 0.218677i \(-0.929826\pi\)
0.575453 + 0.817835i \(0.304826\pi\)
\(752\) 420.374 420.374i 0.559008 0.559008i
\(753\) −977.272 + 194.391i −1.29784 + 0.258156i
\(754\) 268.800 + 402.288i 0.356499 + 0.533538i
\(755\) 0 0
\(756\) −1039.72 + 430.665i −1.37529 + 0.569663i
\(757\) −239.065 + 99.0239i −0.315805 + 0.130811i −0.534955 0.844880i \(-0.679672\pi\)
0.219150 + 0.975691i \(0.429672\pi\)
\(758\) −24.7467 + 124.410i −0.0326474 + 0.164130i
\(759\) 95.6234 63.8935i 0.125986 0.0841812i
\(760\) 0 0
\(761\) 176.582 176.582i 0.232039 0.232039i −0.581504 0.813543i \(-0.697536\pi\)
0.813543 + 0.581504i \(0.197536\pi\)
\(762\) −74.4983 + 111.495i −0.0977668 + 0.146318i
\(763\) −330.168 + 797.097i −0.432724 + 1.04469i
\(764\) 376.915i 0.493344i
\(765\) 0 0
\(766\) −11.8945 −0.0155281
\(767\) 2149.57 + 890.381i 2.80257 + 1.16086i
\(768\) 233.049 + 155.718i 0.303449 + 0.202758i
\(769\) −644.591 644.591i −0.838220 0.838220i 0.150405 0.988624i \(-0.451942\pi\)
−0.988624 + 0.150405i \(0.951942\pi\)
\(770\) 0 0
\(771\) −450.100 673.623i −0.583788 0.873700i
\(772\) −526.832 104.793i −0.682425 0.135743i
\(773\) −420.952 1016.27i −0.544569 1.31471i −0.921469 0.388451i \(-0.873010\pi\)
0.376900 0.926254i \(-0.376990\pi\)
\(774\) 44.2484 + 106.825i 0.0571685 + 0.138017i
\(775\) 0 0
\(776\) −68.2598 + 45.6097i −0.0879636 + 0.0587754i
\(777\) 89.2888 + 448.885i 0.114915 + 0.577716i
\(778\) −353.332 353.332i −0.454154 0.454154i
\(779\) 733.688 + 490.234i 0.941833 + 0.629312i
\(780\) 0 0
\(781\) 392.222i 0.502205i
\(782\) −71.3881 17.5258i −0.0912891 0.0224115i
\(783\) 646.181i 0.825263i
\(784\) −266.927 + 644.418i −0.340468 + 0.821962i
\(785\) 0 0
\(786\) 383.623 + 383.623i 0.488070 + 0.488070i
\(787\) 1316.68 261.903i 1.67303 0.332787i 0.734665 0.678430i \(-0.237339\pi\)
0.938366 + 0.345643i \(0.112339\pi\)
\(788\) −362.513 + 242.223i −0.460042 + 0.307390i
\(789\) −172.734 + 868.394i −0.218928 + 1.10063i
\(790\) 0 0
\(791\) 127.999 + 309.017i 0.161819 + 0.390666i
\(792\) 20.9985 105.567i 0.0265133 0.133291i
\(793\) −912.713 1365.97i −1.15096 1.72254i
\(794\) −636.560 + 126.620i −0.801712 + 0.159470i
\(795\) 0 0
\(796\) 283.585 + 189.486i 0.356263 + 0.238047i
\(797\) 275.578 665.304i 0.345769 0.834761i −0.651340 0.758786i \(-0.725793\pi\)
0.997110 0.0759753i \(-0.0242070\pi\)
\(798\) 410.207 0.514044
\(799\) −466.137 1283.72i −0.583401 1.60666i
\(800\) 0 0
\(801\) −38.8592 + 93.8145i −0.0485134 + 0.117122i
\(802\) 202.470 + 135.286i 0.252456 + 0.168686i
\(803\) −281.641 + 281.641i −0.350736 + 0.350736i
\(804\) −68.4642 344.193i −0.0851545 0.428101i
\(805\) 0 0
\(806\) −88.9367 + 447.115i −0.110343 + 0.554733i
\(807\) −304.872 736.025i −0.377784 0.912051i
\(808\) −426.655 + 176.726i −0.528039 + 0.218721i
\(809\) 1547.67 + 307.850i 1.91306 + 0.380532i 0.999649 0.0265023i \(-0.00843694\pi\)
0.913413 + 0.407034i \(0.133437\pi\)
\(810\) 0 0
\(811\) 152.516 30.3374i 0.188059 0.0374073i −0.100162 0.994971i \(-0.531936\pi\)
0.288221 + 0.957564i \(0.406936\pi\)
\(812\) −608.519 608.519i −0.749407 0.749407i
\(813\) −205.188 + 307.086i −0.252384 + 0.377719i
\(814\) −101.901 42.2087i −0.125185 0.0518534i
\(815\) 0 0
\(816\) −285.865 + 173.171i −0.350325 + 0.212220i
\(817\) 1003.63i 1.22844i
\(818\) −337.479 139.788i −0.412566 0.170890i
\(819\) −321.161 + 480.651i −0.392138 + 0.586876i
\(820\) 0 0
\(821\) −219.728 1104.65i −0.267634 1.34549i −0.847508 0.530783i \(-0.821898\pi\)
0.579874 0.814707i \(-0.303102\pi\)
\(822\) 258.363 172.632i 0.314310 0.210015i
\(823\) 1260.71 + 250.771i 1.53185 + 0.304703i 0.887780 0.460268i \(-0.152247\pi\)
0.644065 + 0.764971i \(0.277247\pi\)
\(824\) −405.258 + 167.863i −0.491818 + 0.203718i
\(825\) 0 0
\(826\) 960.603 + 191.076i 1.16296 + 0.231327i
\(827\) −187.964 281.307i −0.227284 0.340154i 0.700247 0.713900i \(-0.253073\pi\)
−0.927531 + 0.373746i \(0.878073\pi\)
\(828\) 6.05457 + 30.4384i 0.00731229 + 0.0367613i
\(829\) −52.6400 + 52.6400i −0.0634982 + 0.0634982i −0.738143 0.674645i \(-0.764297\pi\)
0.674645 + 0.738143i \(0.264297\pi\)
\(830\) 0 0
\(831\) 242.446 + 100.425i 0.291753 + 0.120848i
\(832\) −44.3681 −0.0533271
\(833\) 1081.66 + 1182.22i 1.29852 + 1.41924i
\(834\) 3.46437 0.00415392
\(835\) 0 0
\(836\) 232.064 347.308i 0.277588 0.415440i
\(837\) 430.521 430.521i 0.514362 0.514362i
\(838\) −467.881 + 93.0672i −0.558330 + 0.111059i
\(839\) −676.864 1013.00i −0.806751 1.20739i −0.975123 0.221664i \(-0.928851\pi\)
0.168372 0.985723i \(-0.446149\pi\)
\(840\) 0 0
\(841\) −320.464 + 132.741i −0.381051 + 0.157837i
\(842\) 414.763 171.801i 0.492593 0.204039i
\(843\) 0.630553 3.17000i 0.000747987 0.00376039i
\(844\) 494.767 330.592i 0.586216 0.391697i
\(845\) 0 0
\(846\) 96.4940 96.4940i 0.114059 0.114059i
\(847\) −294.465 + 440.698i −0.347656 + 0.520304i
\(848\) −188.001 + 453.874i −0.221699 + 0.535229i
\(849\) 409.051i 0.481803i
\(850\) 0 0
\(851\) 71.1308 0.0835849
\(852\) 355.522 + 147.262i 0.417279 + 0.172843i
\(853\) 820.639 + 548.333i 0.962062 + 0.642829i 0.934187 0.356782i \(-0.116126\pi\)
0.0278741 + 0.999611i \(0.491126\pi\)
\(854\) −489.006 489.006i −0.572606 0.572606i
\(855\) 0 0
\(856\) −100.244 150.026i −0.117107 0.175264i
\(857\) 852.570 + 169.587i 0.994831 + 0.197884i 0.665555 0.746349i \(-0.268195\pi\)
0.329277 + 0.944233i \(0.393195\pi\)
\(858\) 193.826 + 467.938i 0.225905 + 0.545382i
\(859\) −194.793 470.272i −0.226767 0.547465i 0.769013 0.639233i \(-0.220748\pi\)
−0.995780 + 0.0917683i \(0.970748\pi\)
\(860\) 0 0
\(861\) 1582.39 1057.32i 1.83785 1.22801i
\(862\) 48.3569 + 243.106i 0.0560984 + 0.282026i
\(863\) −164.373 164.373i −0.190467 0.190467i 0.605431 0.795898i \(-0.293001\pi\)
−0.795898 + 0.605431i \(0.793001\pi\)
\(864\) −768.444 513.458i −0.889402 0.594280i
\(865\) 0 0
\(866\) 273.605i 0.315941i
\(867\) 82.4341 + 763.375i 0.0950797 + 0.880479i
\(868\) 810.856i 0.934166i
\(869\) −141.197 + 340.879i −0.162482 + 0.392266i
\(870\) 0 0
\(871\) −718.364 718.364i −0.824758 0.824758i
\(872\) −447.497 + 89.0127i −0.513185 + 0.102079i
\(873\) 20.9368 13.9895i 0.0239826 0.0160247i
\(874\) 12.4376 62.5278i 0.0142306 0.0715421i
\(875\) 0 0
\(876\) 149.544 + 361.032i 0.170713 + 0.412137i
\(877\) −192.726 + 968.898i −0.219756 + 1.10479i 0.700555 + 0.713598i \(0.252936\pi\)
−0.920311 + 0.391188i \(0.872064\pi\)
\(878\) 37.1200 + 55.5540i 0.0422779 + 0.0632734i
\(879\) 488.227 97.1144i 0.555435 0.110483i
\(880\) 0 0
\(881\) 440.820 + 294.546i 0.500363 + 0.334332i 0.780006 0.625772i \(-0.215216\pi\)
−0.279643 + 0.960104i \(0.590216\pi\)
\(882\) −61.2712 + 147.922i −0.0694685 + 0.167712i
\(883\) 744.697 0.843371 0.421686 0.906742i \(-0.361439\pi\)
0.421686 + 0.906742i \(0.361439\pi\)
\(884\) −579.037 + 1239.30i −0.655019 + 1.40192i
\(885\) 0 0
\(886\) 56.1900 135.655i 0.0634198 0.153109i
\(887\) −1108.63 740.766i −1.24987 0.835136i −0.258472 0.966019i \(-0.583219\pi\)
−0.991398 + 0.130883i \(0.958219\pi\)
\(888\) −171.146 + 171.146i −0.192732 + 0.192732i
\(889\) −134.702 677.192i −0.151521 0.761746i
\(890\) 0 0
\(891\) 102.112 513.351i 0.114604 0.576151i
\(892\) −94.0680 227.100i −0.105457 0.254597i
\(893\) 1094.33 453.285i 1.22545 0.507598i
\(894\) 142.741 + 28.3930i 0.159666 + 0.0317595i
\(895\) 0 0
\(896\) −1511.20 + 300.597i −1.68661 + 0.335488i
\(897\) −230.969 230.969i −0.257490 0.257490i
\(898\) 18.0374 26.9949i 0.0200862 0.0300611i
\(899\) 430.143 + 178.171i 0.478469 + 0.198188i
\(900\) 0 0
\(901\) 761.833 + 832.659i 0.845541 + 0.924150i
\(902\) 458.636i 0.508466i
\(903\) 1999.83 + 828.357i 2.21465 + 0.917339i
\(904\) −98.2713 + 147.073i −0.108707 + 0.162692i
\(905\) 0 0
\(906\) 47.4123 + 238.358i 0.0523315 + 0.263088i
\(907\) 370.786 247.751i 0.408804 0.273154i −0.334119 0.942531i \(-0.608439\pi\)
0.742923 + 0.669377i \(0.233439\pi\)
\(908\) −398.862 79.3386i −0.439275 0.0873773i
\(909\) 130.865 54.2061i 0.143966 0.0596327i
\(910\) 0 0
\(911\) −700.509 139.340i −0.768945 0.152953i −0.204996 0.978763i \(-0.565718\pi\)
−0.563948 + 0.825810i \(0.690718\pi\)
\(912\) −161.044 241.019i −0.176583 0.264276i
\(913\) −38.9629 195.880i −0.0426757 0.214545i
\(914\) 203.941 203.941i 0.223130 0.223130i
\(915\) 0 0
\(916\) 984.069 + 407.615i 1.07431 + 0.444994i
\(917\) −2793.51 −3.04636
\(918\) −369.806 + 224.021i −0.402838 + 0.244031i
\(919\) 866.411 0.942776 0.471388 0.881926i \(-0.343753\pi\)
0.471388 + 0.881926i \(0.343753\pi\)
\(920\) 0 0
\(921\) 742.313 1110.95i 0.805986 1.20624i
\(922\) −322.890 + 322.890i −0.350206 + 0.350206i
\(923\) 1092.59 217.330i 1.18374 0.235460i
\(924\) −500.507 749.062i −0.541675 0.810673i
\(925\) 0 0
\(926\) 223.552 92.5984i 0.241417 0.0999983i
\(927\) 124.302 51.4876i 0.134091 0.0555421i
\(928\) 137.877 693.152i 0.148574 0.746931i
\(929\) −215.616 + 144.070i −0.232094 + 0.155081i −0.666180 0.745791i \(-0.732072\pi\)
0.434085 + 0.900872i \(0.357072\pi\)
\(930\) 0 0
\(931\) −982.694 + 982.694i −1.05553 + 1.05553i
\(932\) −394.776 + 590.824i −0.423580 + 0.633932i
\(933\) 96.1698 232.174i 0.103076 0.248847i
\(934\) 415.851i 0.445237i
\(935\) 0 0
\(936\) −305.706 −0.326609
\(937\) −757.189 313.638i −0.808099 0.334726i −0.0599037 0.998204i \(-0.519079\pi\)
−0.748195 + 0.663479i \(0.769079\pi\)
\(938\) −355.582 237.592i −0.379085 0.253297i
\(939\) 796.954 + 796.954i 0.848727 + 0.848727i
\(940\) 0 0
\(941\) 366.641 + 548.717i 0.389629 + 0.583121i 0.973489 0.228733i \(-0.0734583\pi\)
−0.583860 + 0.811854i \(0.698458\pi\)
\(942\) −323.158 64.2801i −0.343055 0.0682379i
\(943\) −113.189 273.262i −0.120031 0.289779i
\(944\) −264.857 639.423i −0.280569 0.677354i
\(945\) 0 0
\(946\) −433.735 + 289.813i −0.458494 + 0.306356i
\(947\) −295.518 1485.67i −0.312057 1.56882i −0.744792 0.667296i \(-0.767452\pi\)
0.432735 0.901521i \(-0.357548\pi\)
\(948\) 255.970 + 255.970i 0.270011 + 0.270011i
\(949\) 940.607 + 628.494i 0.991156 + 0.662269i
\(950\) 0 0
\(951\) 561.727i 0.590669i
\(952\) −307.067 + 1250.78i −0.322549 + 1.31384i
\(953\) 341.348i 0.358182i 0.983832 + 0.179091i \(0.0573157\pi\)
−0.983832 + 0.179091i \(0.942684\pi\)
\(954\) −43.1543 + 104.184i −0.0452351 + 0.109207i
\(955\) 0 0
\(956\) −229.486 229.486i −0.240048 0.240048i
\(957\) 507.341 100.916i 0.530136 0.105451i
\(958\) −288.393 + 192.698i −0.301037 + 0.201146i
\(959\) −312.140 + 1569.24i −0.325485 + 1.63632i
\(960\) 0 0
\(961\) −199.881 482.556i −0.207993 0.502140i
\(962\) −61.1151 + 307.246i −0.0635292 + 0.319383i
\(963\) 30.7471 + 46.0163i 0.0319285 + 0.0477843i
\(964\) 218.738 43.5097i 0.226907 0.0451346i
\(965\) 0 0
\(966\) −114.327 76.3909i −0.118351 0.0790796i
\(967\) −392.886 + 948.511i −0.406294 + 0.980880i 0.579810 + 0.814752i \(0.303127\pi\)
−0.986104 + 0.166129i \(0.946873\pi\)
\(968\) −280.295 −0.289561
\(969\) −658.245 + 100.804i −0.679303 + 0.104029i
\(970\) 0 0
\(971\) 617.925 1491.80i 0.636380 1.53636i −0.195089 0.980786i \(-0.562500\pi\)
0.831469 0.555571i \(-0.187500\pi\)
\(972\) 276.627 + 184.836i 0.284596 + 0.190161i
\(973\) −12.6136 + 12.6136i −0.0129636 + 0.0129636i
\(974\) −46.8250 235.405i −0.0480749 0.241689i
\(975\) 0 0
\(976\) −95.3383 + 479.298i −0.0976827 + 0.491084i
\(977\) −20.4799 49.4428i −0.0209620 0.0506067i 0.913052 0.407843i \(-0.133719\pi\)
−0.934014 + 0.357237i \(0.883719\pi\)
\(978\) −49.4866 + 20.4980i −0.0505998 + 0.0209591i
\(979\) −449.313 89.3738i −0.458951 0.0912909i
\(980\) 0 0
\(981\) 137.258 27.3023i 0.139916 0.0278310i
\(982\) 294.394 + 294.394i 0.299790 + 0.299790i
\(983\) −701.045 + 1049.19i −0.713169 + 1.06733i 0.281022 + 0.959701i \(0.409327\pi\)
−0.994191 + 0.107632i \(0.965673\pi\)
\(984\) 929.830 + 385.148i 0.944949 + 0.391411i
\(985\) 0 0
\(986\) −266.487 195.706i −0.270270 0.198485i
\(987\) 2554.67i 2.58832i
\(988\) −1096.06 454.003i −1.10937 0.459518i
\(989\) 186.902 279.718i 0.188980 0.282829i
\(990\) 0 0
\(991\) 48.3001 + 242.821i 0.0487387 + 0.245026i 0.997473 0.0710492i \(-0.0226347\pi\)
−0.948734 + 0.316075i \(0.897635\pi\)
\(992\) 553.676 369.955i 0.558141 0.372938i
\(993\) 600.104 + 119.368i 0.604334 + 0.120210i
\(994\) 433.244 179.455i 0.435859 0.180539i
\(995\) 0 0
\(996\) −192.180 38.2270i −0.192952 0.0383806i
\(997\) 295.683 + 442.522i 0.296573 + 0.443853i 0.949592 0.313489i \(-0.101498\pi\)
−0.653019 + 0.757342i \(0.726498\pi\)
\(998\) −81.7299 410.884i −0.0818937 0.411707i
\(999\) 295.843 295.843i 0.296139 0.296139i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.f.24.5 96
5.2 odd 4 425.3.u.c.126.8 96
5.3 odd 4 425.3.u.d.126.5 yes 96
5.4 even 2 425.3.t.g.24.8 96
17.5 odd 16 425.3.t.g.124.8 96
85.22 even 16 425.3.u.c.226.8 yes 96
85.39 odd 16 inner 425.3.t.f.124.5 96
85.73 even 16 425.3.u.d.226.5 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.3.t.f.24.5 96 1.1 even 1 trivial
425.3.t.f.124.5 96 85.39 odd 16 inner
425.3.t.g.24.8 96 5.4 even 2
425.3.t.g.124.8 96 17.5 odd 16
425.3.u.c.126.8 96 5.2 odd 4
425.3.u.c.226.8 yes 96 85.22 even 16
425.3.u.d.126.5 yes 96 5.3 odd 4
425.3.u.d.226.5 yes 96 85.73 even 16