Properties

Label 425.3.u.c.226.8
Level $425$
Weight $3$
Character 425.226
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 226.8
Character \(\chi\) \(=\) 425.226
Dual form 425.3.u.c.126.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.334820 + 0.808326i) q^{2} +(1.47604 + 2.20904i) q^{3} +(2.28714 - 2.28714i) q^{4} +(-1.29142 + 1.93275i) q^{6} +(-2.33505 - 11.7391i) q^{7} +(5.84784 + 2.42226i) q^{8} +(0.742961 - 1.79367i) q^{9} +(7.28271 + 4.86615i) q^{11} +(8.42829 + 1.67649i) q^{12} +(-17.5907 - 17.5907i) q^{13} +(8.70718 - 5.81795i) q^{14} -7.40003i q^{16} +(-7.19617 - 15.4018i) q^{17} +1.69863 q^{18} +(5.64227 + 13.6217i) q^{19} +(22.4855 - 22.4855i) q^{21} +(-1.49504 + 7.51609i) q^{22} +(-2.74570 + 4.10923i) q^{23} +(3.28075 + 16.4935i) q^{24} +(8.32930 - 20.1087i) q^{26} +(28.5106 - 5.67111i) q^{27} +(-32.1895 - 21.5083i) q^{28} +(-21.8020 - 4.33668i) q^{29} +(17.4150 - 11.6363i) q^{31} +(29.3730 - 12.1667i) q^{32} +23.2704i q^{33} +(10.0403 - 10.9737i) q^{34} +(-2.40311 - 5.80162i) q^{36} +(-7.99619 - 11.9671i) q^{37} +(-9.12160 + 9.12160i) q^{38} +(12.8941 - 64.8230i) q^{39} +(11.6758 + 58.6981i) q^{41} +(25.7042 + 10.6470i) q^{42} +(-26.0495 + 62.8891i) q^{43} +(27.7861 - 5.52701i) q^{44} +(-4.24091 - 0.843569i) q^{46} +(56.8070 + 56.8070i) q^{47} +(16.3470 - 10.9227i) q^{48} +(-87.0832 + 36.0710i) q^{49} +(23.4014 - 38.6302i) q^{51} -80.4646 q^{52} +(25.4054 + 61.3341i) q^{53} +(14.1300 + 21.1471i) q^{54} +(14.7800 - 74.3043i) q^{56} +(-21.7626 + 32.5701i) q^{57} +(-3.79427 - 19.0751i) q^{58} +(86.4081 + 35.7914i) q^{59} +(64.7697 - 12.8835i) q^{61} +(15.2368 + 10.1809i) q^{62} +(-22.7908 - 4.53338i) q^{63} +(-1.26113 - 1.26113i) q^{64} +(-18.8101 + 7.79140i) q^{66} -40.8378i q^{67} +(-51.6847 - 18.7674i) q^{68} -13.1302 q^{69} +(-24.8785 - 37.2333i) q^{71} +(8.68944 - 8.68944i) q^{72} +(8.87157 - 44.6004i) q^{73} +(6.99607 - 10.4704i) q^{74} +(44.0593 + 18.2500i) q^{76} +(40.1186 - 96.8549i) q^{77} +(56.7153 - 11.2814i) q^{78} +(35.0256 + 23.4033i) q^{79} +(42.2551 + 42.2551i) q^{81} +(-43.5380 + 29.0911i) q^{82} +(-21.0661 + 8.72588i) q^{83} -102.855i q^{84} -59.5569 q^{86} +(-22.6005 - 54.5625i) q^{87} +(30.8011 + 46.0970i) q^{88} +(36.9839 - 36.9839i) q^{89} +(-165.423 + 247.573i) q^{91} +(3.11858 + 15.6782i) q^{92} +(51.4102 + 21.2948i) q^{93} +(-26.8985 + 64.9388i) q^{94} +(70.2323 + 46.9277i) q^{96} +(-12.7207 - 2.53031i) q^{97} +(-58.3143 - 58.3143i) q^{98} +(14.1390 - 9.44739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 96 q^{12} - 24 q^{13} + 32 q^{14} + 8 q^{17} + 64 q^{18} - 24 q^{19} + 96 q^{22} + 56 q^{23} - 336 q^{24} - 224 q^{26} - 144 q^{27} + 480 q^{28} - 64 q^{31} - 40 q^{32} + 64 q^{34} + 192 q^{36} + 128 q^{37}+ \cdots - 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.334820 + 0.808326i 0.167410 + 0.404163i 0.985213 0.171335i \(-0.0548081\pi\)
−0.817803 + 0.575498i \(0.804808\pi\)
\(3\) 1.47604 + 2.20904i 0.492012 + 0.736348i 0.991519 0.129962i \(-0.0414856\pi\)
−0.499507 + 0.866310i \(0.666486\pi\)
\(4\) 2.28714 2.28714i 0.571785 0.571785i
\(5\) 0 0
\(6\) −1.29142 + 1.93275i −0.215237 + 0.322125i
\(7\) −2.33505 11.7391i −0.333578 1.67701i −0.675561 0.737304i \(-0.736099\pi\)
0.341983 0.939706i \(-0.388901\pi\)
\(8\) 5.84784 + 2.42226i 0.730980 + 0.302782i
\(9\) 0.742961 1.79367i 0.0825513 0.199296i
\(10\) 0 0
\(11\) 7.28271 + 4.86615i 0.662064 + 0.442377i 0.840673 0.541543i \(-0.182160\pi\)
−0.178609 + 0.983920i \(0.557160\pi\)
\(12\) 8.42829 + 1.67649i 0.702357 + 0.139708i
\(13\) −17.5907 17.5907i −1.35313 1.35313i −0.882139 0.470989i \(-0.843897\pi\)
−0.470989 0.882139i \(-0.656103\pi\)
\(14\) 8.70718 5.81795i 0.621941 0.415568i
\(15\) 0 0
\(16\) 7.40003i 0.462502i
\(17\) −7.19617 15.4018i −0.423304 0.905988i
\(18\) 1.69863 0.0943682
\(19\) 5.64227 + 13.6217i 0.296962 + 0.716929i 0.999983 + 0.00576061i \(0.00183367\pi\)
−0.703022 + 0.711168i \(0.748166\pi\)
\(20\) 0 0
\(21\) 22.4855 22.4855i 1.07074 1.07074i
\(22\) −1.49504 + 7.51609i −0.0679565 + 0.341640i
\(23\) −2.74570 + 4.10923i −0.119378 + 0.178662i −0.886346 0.463024i \(-0.846765\pi\)
0.766968 + 0.641685i \(0.221765\pi\)
\(24\) 3.28075 + 16.4935i 0.136698 + 0.687228i
\(25\) 0 0
\(26\) 8.32930 20.1087i 0.320358 0.773412i
\(27\) 28.5106 5.67111i 1.05595 0.210041i
\(28\) −32.1895 21.5083i −1.14962 0.768154i
\(29\) −21.8020 4.33668i −0.751792 0.149541i −0.195702 0.980663i \(-0.562699\pi\)
−0.556089 + 0.831123i \(0.687699\pi\)
\(30\) 0 0
\(31\) 17.4150 11.6363i 0.561773 0.375365i −0.242022 0.970271i \(-0.577811\pi\)
0.803795 + 0.594906i \(0.202811\pi\)
\(32\) 29.3730 12.1667i 0.917906 0.380209i
\(33\) 23.2704i 0.705164i
\(34\) 10.0403 10.9737i 0.295302 0.322755i
\(35\) 0 0
\(36\) −2.40311 5.80162i −0.0667531 0.161156i
\(37\) −7.99619 11.9671i −0.216113 0.323436i 0.707535 0.706679i \(-0.249807\pi\)
−0.923648 + 0.383243i \(0.874807\pi\)
\(38\) −9.12160 + 9.12160i −0.240042 + 0.240042i
\(39\) 12.8941 64.8230i 0.330618 1.66213i
\(40\) 0 0
\(41\) 11.6758 + 58.6981i 0.284775 + 1.43166i 0.812854 + 0.582467i \(0.197912\pi\)
−0.528079 + 0.849195i \(0.677088\pi\)
\(42\) 25.7042 + 10.6470i 0.612005 + 0.253501i
\(43\) −26.0495 + 62.8891i −0.605803 + 1.46254i 0.261721 + 0.965144i \(0.415710\pi\)
−0.867524 + 0.497395i \(0.834290\pi\)
\(44\) 27.7861 5.52701i 0.631503 0.125614i
\(45\) 0 0
\(46\) −4.24091 0.843569i −0.0921937 0.0183385i
\(47\) 56.8070 + 56.8070i 1.20866 + 1.20866i 0.971461 + 0.237199i \(0.0762295\pi\)
0.237199 + 0.971461i \(0.423771\pi\)
\(48\) 16.3470 10.9227i 0.340562 0.227556i
\(49\) −87.0832 + 36.0710i −1.77721 + 0.736144i
\(50\) 0 0
\(51\) 23.4014 38.6302i 0.458851 0.757455i
\(52\) −80.4646 −1.54740
\(53\) 25.4054 + 61.3341i 0.479347 + 1.15725i 0.959916 + 0.280289i \(0.0904304\pi\)
−0.480568 + 0.876957i \(0.659570\pi\)
\(54\) 14.1300 + 21.1471i 0.261667 + 0.391613i
\(55\) 0 0
\(56\) 14.7800 74.3043i 0.263929 1.32686i
\(57\) −21.7626 + 32.5701i −0.381800 + 0.571404i
\(58\) −3.79427 19.0751i −0.0654185 0.328881i
\(59\) 86.4081 + 35.7914i 1.46454 + 0.606634i 0.965607 0.260005i \(-0.0837242\pi\)
0.498936 + 0.866639i \(0.333724\pi\)
\(60\) 0 0
\(61\) 64.7697 12.8835i 1.06180 0.211205i 0.366861 0.930276i \(-0.380432\pi\)
0.694937 + 0.719071i \(0.255432\pi\)
\(62\) 15.2368 + 10.1809i 0.245755 + 0.164208i
\(63\) −22.7908 4.53338i −0.361759 0.0719584i
\(64\) −1.26113 1.26113i −0.0197051 0.0197051i
\(65\) 0 0
\(66\) −18.8101 + 7.79140i −0.285001 + 0.118051i
\(67\) 40.8378i 0.609520i −0.952429 0.304760i \(-0.901424\pi\)
0.952429 0.304760i \(-0.0985762\pi\)
\(68\) −51.6847 18.7674i −0.760069 0.275991i
\(69\) −13.1302 −0.190293
\(70\) 0 0
\(71\) −24.8785 37.2333i −0.350402 0.524413i 0.613842 0.789429i \(-0.289623\pi\)
−0.964244 + 0.265015i \(0.914623\pi\)
\(72\) 8.68944 8.68944i 0.120687 0.120687i
\(73\) 8.87157 44.6004i 0.121528 0.610964i −0.871234 0.490868i \(-0.836680\pi\)
0.992762 0.120096i \(-0.0383203\pi\)
\(74\) 6.99607 10.4704i 0.0945415 0.141491i
\(75\) 0 0
\(76\) 44.0593 + 18.2500i 0.579727 + 0.240131i
\(77\) 40.1186 96.8549i 0.521021 1.25786i
\(78\) 56.7153 11.2814i 0.727120 0.144633i
\(79\) 35.0256 + 23.4033i 0.443361 + 0.296245i 0.757141 0.653251i \(-0.226595\pi\)
−0.313780 + 0.949496i \(0.601595\pi\)
\(80\) 0 0
\(81\) 42.2551 + 42.2551i 0.521668 + 0.521668i
\(82\) −43.5380 + 29.0911i −0.530951 + 0.354770i
\(83\) −21.0661 + 8.72588i −0.253809 + 0.105131i −0.505960 0.862557i \(-0.668862\pi\)
0.252152 + 0.967688i \(0.418862\pi\)
\(84\) 102.855i 1.22446i
\(85\) 0 0
\(86\) −59.5569 −0.692522
\(87\) −22.6005 54.5625i −0.259776 0.627156i
\(88\) 30.8011 + 46.0970i 0.350012 + 0.523830i
\(89\) 36.9839 36.9839i 0.415550 0.415550i −0.468117 0.883667i \(-0.655067\pi\)
0.883667 + 0.468117i \(0.155067\pi\)
\(90\) 0 0
\(91\) −165.423 + 247.573i −1.81784 + 2.72058i
\(92\) 3.11858 + 15.6782i 0.0338976 + 0.170415i
\(93\) 51.4102 + 21.2948i 0.552798 + 0.228976i
\(94\) −26.8985 + 64.9388i −0.286154 + 0.690838i
\(95\) 0 0
\(96\) 70.2323 + 46.9277i 0.731587 + 0.488831i
\(97\) −12.7207 2.53031i −0.131142 0.0260857i 0.129083 0.991634i \(-0.458797\pi\)
−0.260225 + 0.965548i \(0.583797\pi\)
\(98\) −58.3143 58.3143i −0.595044 0.595044i
\(99\) 14.1390 9.44739i 0.142818 0.0954282i
\(100\) 0 0
\(101\) 72.9595i 0.722371i −0.932494 0.361186i \(-0.882372\pi\)
0.932494 0.361186i \(-0.117628\pi\)
\(102\) 39.0611 + 5.98182i 0.382952 + 0.0586453i
\(103\) 69.3005 0.672820 0.336410 0.941716i \(-0.390787\pi\)
0.336410 + 0.941716i \(0.390787\pi\)
\(104\) −60.2583 145.477i −0.579407 1.39881i
\(105\) 0 0
\(106\) −41.0717 + 41.0717i −0.387469 + 0.387469i
\(107\) −5.56128 + 27.9584i −0.0519745 + 0.261294i −0.998032 0.0627049i \(-0.980027\pi\)
0.946058 + 0.323999i \(0.105027\pi\)
\(108\) 52.2371 78.1784i 0.483677 0.723874i
\(109\) 14.0628 + 70.6985i 0.129017 + 0.648610i 0.990125 + 0.140188i \(0.0447708\pi\)
−0.861108 + 0.508422i \(0.830229\pi\)
\(110\) 0 0
\(111\) 14.6333 35.3278i 0.131831 0.318269i
\(112\) −86.8695 + 17.2794i −0.775620 + 0.154280i
\(113\) 23.2356 + 15.5255i 0.205625 + 0.137394i 0.654119 0.756392i \(-0.273040\pi\)
−0.448494 + 0.893786i \(0.648040\pi\)
\(114\) −33.6138 6.68620i −0.294858 0.0586509i
\(115\) 0 0
\(116\) −59.7827 + 39.9455i −0.515368 + 0.344358i
\(117\) −44.6210 + 18.4826i −0.381376 + 0.157971i
\(118\) 81.8296i 0.693471i
\(119\) −163.999 + 120.440i −1.37815 + 1.01210i
\(120\) 0 0
\(121\) −16.9463 40.9119i −0.140052 0.338115i
\(122\) 32.1002 + 48.0414i 0.263117 + 0.393782i
\(123\) −112.433 + 112.433i −0.914088 + 0.914088i
\(124\) 13.2166 66.4443i 0.106585 0.535841i
\(125\) 0 0
\(126\) −3.96637 19.9403i −0.0314791 0.158256i
\(127\) 53.2959 + 22.0759i 0.419652 + 0.173826i 0.582509 0.812824i \(-0.302071\pi\)
−0.162857 + 0.986650i \(0.552071\pi\)
\(128\) 49.2639 118.934i 0.384875 0.929169i
\(129\) −177.375 + 35.2820i −1.37500 + 0.273504i
\(130\) 0 0
\(131\) −228.910 45.5330i −1.74740 0.347580i −0.785061 0.619418i \(-0.787369\pi\)
−0.962343 + 0.271837i \(0.912369\pi\)
\(132\) 53.2227 + 53.2227i 0.403202 + 0.403202i
\(133\) 146.731 98.0422i 1.10324 0.737159i
\(134\) 33.0103 13.6733i 0.246345 0.102040i
\(135\) 0 0
\(136\) −4.77498 107.498i −0.0351102 0.790428i
\(137\) −133.676 −0.975739 −0.487870 0.872916i \(-0.662226\pi\)
−0.487870 + 0.872916i \(0.662226\pi\)
\(138\) −4.39625 10.6135i −0.0318569 0.0769093i
\(139\) 0.828008 + 1.23920i 0.00595689 + 0.00891512i 0.834436 0.551105i \(-0.185794\pi\)
−0.828479 + 0.560020i \(0.810794\pi\)
\(140\) 0 0
\(141\) −41.6400 + 209.338i −0.295319 + 1.48467i
\(142\) 21.7669 32.5764i 0.153288 0.229411i
\(143\) −42.5089 213.706i −0.297265 1.49445i
\(144\) −13.2732 5.49794i −0.0921750 0.0381801i
\(145\) 0 0
\(146\) 39.0220 7.76197i 0.267274 0.0531642i
\(147\) −208.220 139.128i −1.41646 0.946451i
\(148\) −45.6589 9.08212i −0.308506 0.0613657i
\(149\) 44.2723 + 44.2723i 0.297129 + 0.297129i 0.839888 0.542759i \(-0.182620\pi\)
−0.542759 + 0.839888i \(0.682620\pi\)
\(150\) 0 0
\(151\) −96.5922 + 40.0098i −0.639683 + 0.264965i −0.678861 0.734267i \(-0.737526\pi\)
0.0391778 + 0.999232i \(0.487526\pi\)
\(152\) 93.3243i 0.613975i
\(153\) −32.9722 + 1.46460i −0.215504 + 0.00957253i
\(154\) 91.7229 0.595603
\(155\) 0 0
\(156\) −118.769 177.750i −0.761337 1.13942i
\(157\) 100.230 100.230i 0.638406 0.638406i −0.311756 0.950162i \(-0.600917\pi\)
0.950162 + 0.311756i \(0.100917\pi\)
\(158\) −7.19028 + 36.1480i −0.0455081 + 0.228785i
\(159\) −97.9903 + 146.653i −0.616291 + 0.922345i
\(160\) 0 0
\(161\) 54.6498 + 22.6367i 0.339440 + 0.140601i
\(162\) −20.0081 + 48.3037i −0.123507 + 0.298171i
\(163\) −22.6005 + 4.49551i −0.138653 + 0.0275798i −0.263929 0.964542i \(-0.585018\pi\)
0.125276 + 0.992122i \(0.460018\pi\)
\(164\) 160.955 + 107.547i 0.981433 + 0.655773i
\(165\) 0 0
\(166\) −14.1067 14.1067i −0.0849802 0.0849802i
\(167\) −156.497 + 104.568i −0.937108 + 0.626156i −0.927510 0.373798i \(-0.878055\pi\)
−0.00959805 + 0.999954i \(0.503055\pi\)
\(168\) 185.957 77.0260i 1.10689 0.458488i
\(169\) 449.863i 2.66191i
\(170\) 0 0
\(171\) 28.6247 0.167396
\(172\) 84.2573 + 203.415i 0.489868 + 1.18265i
\(173\) −122.377 183.149i −0.707379 1.05867i −0.994897 0.100892i \(-0.967830\pi\)
0.287519 0.957775i \(-0.407170\pi\)
\(174\) 36.5372 36.5372i 0.209984 0.209984i
\(175\) 0 0
\(176\) 36.0097 53.8923i 0.204600 0.306206i
\(177\) 48.4766 + 243.708i 0.273879 + 1.37688i
\(178\) 42.2781 + 17.5121i 0.237517 + 0.0983828i
\(179\) 65.5165 158.171i 0.366014 0.883636i −0.628381 0.777906i \(-0.716282\pi\)
0.994395 0.105730i \(-0.0337180\pi\)
\(180\) 0 0
\(181\) −5.80388 3.87803i −0.0320656 0.0214256i 0.539434 0.842028i \(-0.318638\pi\)
−0.571500 + 0.820602i \(0.693638\pi\)
\(182\) −255.507 50.8235i −1.40388 0.279250i
\(183\) 124.063 + 124.063i 0.677937 + 0.677937i
\(184\) −26.0100 + 17.3793i −0.141359 + 0.0944528i
\(185\) 0 0
\(186\) 48.6862i 0.261754i
\(187\) 22.5398 147.184i 0.120534 0.787082i
\(188\) 259.851 1.38219
\(189\) −133.147 321.446i −0.704482 1.70077i
\(190\) 0 0
\(191\) 82.3988 82.3988i 0.431407 0.431407i −0.457700 0.889107i \(-0.651326\pi\)
0.889107 + 0.457700i \(0.151326\pi\)
\(192\) 0.924416 4.64735i 0.00481467 0.0242050i
\(193\) −92.2635 + 138.082i −0.478049 + 0.715451i −0.989607 0.143798i \(-0.954069\pi\)
0.511558 + 0.859249i \(0.329069\pi\)
\(194\) −2.21384 11.1297i −0.0114115 0.0573696i
\(195\) 0 0
\(196\) −116.672 + 281.671i −0.595265 + 1.43710i
\(197\) 132.204 26.2969i 0.671084 0.133487i 0.152224 0.988346i \(-0.451356\pi\)
0.518860 + 0.854859i \(0.326356\pi\)
\(198\) 12.3706 + 8.26577i 0.0624778 + 0.0417463i
\(199\) 103.420 + 20.5715i 0.519697 + 0.103374i 0.447967 0.894050i \(-0.352148\pi\)
0.0717299 + 0.997424i \(0.477148\pi\)
\(200\) 0 0
\(201\) 90.2125 60.2780i 0.448818 0.299891i
\(202\) 58.9751 24.4283i 0.291956 0.120932i
\(203\) 266.061i 1.31065i
\(204\) −34.8304 141.875i −0.170737 0.695466i
\(205\) 0 0
\(206\) 23.2032 + 56.0174i 0.112637 + 0.271929i
\(207\) 5.33064 + 7.97786i 0.0257519 + 0.0385404i
\(208\) −130.172 + 130.172i −0.625825 + 0.625825i
\(209\) −25.1940 + 126.659i −0.120545 + 0.606022i
\(210\) 0 0
\(211\) −35.8907 180.435i −0.170098 0.855141i −0.967729 0.251995i \(-0.918913\pi\)
0.797631 0.603146i \(-0.206087\pi\)
\(212\) 198.385 + 82.1739i 0.935780 + 0.387613i
\(213\) 45.5285 109.915i 0.213749 0.516035i
\(214\) −24.4616 + 4.86571i −0.114306 + 0.0227369i
\(215\) 0 0
\(216\) 180.462 + 35.8962i 0.835474 + 0.166186i
\(217\) −177.264 177.264i −0.816886 0.816886i
\(218\) −52.4390 + 35.0386i −0.240546 + 0.160727i
\(219\) 111.619 46.2341i 0.509675 0.211114i
\(220\) 0 0
\(221\) −144.342 + 397.513i −0.653133 + 1.79870i
\(222\) 33.4559 0.150702
\(223\) 29.0827 + 70.2118i 0.130416 + 0.314851i 0.975576 0.219661i \(-0.0704953\pi\)
−0.845161 + 0.534512i \(0.820495\pi\)
\(224\) −211.413 316.402i −0.943808 1.41251i
\(225\) 0 0
\(226\) −4.76996 + 23.9802i −0.0211060 + 0.106107i
\(227\) 69.8522 104.541i 0.307719 0.460534i −0.645089 0.764107i \(-0.723180\pi\)
0.952808 + 0.303574i \(0.0981798\pi\)
\(228\) 24.7181 + 124.266i 0.108413 + 0.545028i
\(229\) 304.241 + 126.021i 1.32856 + 0.550309i 0.930245 0.366938i \(-0.119594\pi\)
0.398318 + 0.917247i \(0.369594\pi\)
\(230\) 0 0
\(231\) 273.173 54.3375i 1.18257 0.235227i
\(232\) −116.990 78.1701i −0.504267 0.336940i
\(233\) −215.466 42.8588i −0.924746 0.183943i −0.290322 0.956929i \(-0.593762\pi\)
−0.634424 + 0.772986i \(0.718762\pi\)
\(234\) −29.8800 29.8800i −0.127692 0.127692i
\(235\) 0 0
\(236\) 279.487 115.767i 1.18427 0.490540i
\(237\) 111.917i 0.472224i
\(238\) −152.265 92.2392i −0.639770 0.387560i
\(239\) −100.337 −0.419822 −0.209911 0.977721i \(-0.567317\pi\)
−0.209911 + 0.977721i \(0.567317\pi\)
\(240\) 0 0
\(241\) −38.3073 57.3310i −0.158952 0.237888i 0.743442 0.668800i \(-0.233192\pi\)
−0.902394 + 0.430912i \(0.858192\pi\)
\(242\) 27.3963 27.3963i 0.113208 0.113208i
\(243\) 20.0667 100.882i 0.0825792 0.415153i
\(244\) 118.671 177.604i 0.486357 0.727884i
\(245\) 0 0
\(246\) −128.527 53.2377i −0.522468 0.216413i
\(247\) 140.363 338.865i 0.568270 1.37192i
\(248\) 130.026 25.8638i 0.524299 0.104289i
\(249\) −50.3702 33.6563i −0.202290 0.135166i
\(250\) 0 0
\(251\) −265.197 265.197i −1.05656 1.05656i −0.998301 0.0582606i \(-0.981445\pi\)
−0.0582606 0.998301i \(-0.518555\pi\)
\(252\) −62.4943 + 41.7573i −0.247993 + 0.165704i
\(253\) −39.9922 + 16.5653i −0.158072 + 0.0654755i
\(254\) 50.4719i 0.198708i
\(255\) 0 0
\(256\) 105.498 0.412101
\(257\) 116.695 + 281.727i 0.454066 + 1.09621i 0.970762 + 0.240044i \(0.0771619\pi\)
−0.516696 + 0.856169i \(0.672838\pi\)
\(258\) −87.9080 131.564i −0.340729 0.509937i
\(259\) −121.812 + 121.812i −0.470315 + 0.470315i
\(260\) 0 0
\(261\) −23.9766 + 35.8835i −0.0918643 + 0.137485i
\(262\) −39.8380 200.279i −0.152054 0.764425i
\(263\) 307.894 + 127.534i 1.17070 + 0.484919i 0.881423 0.472327i \(-0.156586\pi\)
0.289275 + 0.957246i \(0.406586\pi\)
\(264\) −56.3669 + 136.082i −0.213511 + 0.515461i
\(265\) 0 0
\(266\) 128.378 + 85.7797i 0.482626 + 0.322480i
\(267\) 136.289 + 27.1095i 0.510445 + 0.101534i
\(268\) −93.4018 93.4018i −0.348514 0.348514i
\(269\) 249.325 166.594i 0.926859 0.619308i 0.00215658 0.999998i \(-0.499314\pi\)
0.924703 + 0.380690i \(0.124314\pi\)
\(270\) 0 0
\(271\) 139.013i 0.512963i −0.966549 0.256481i \(-0.917437\pi\)
0.966549 0.256481i \(-0.0825633\pi\)
\(272\) −113.974 + 53.2519i −0.419021 + 0.195779i
\(273\) −791.070 −2.89769
\(274\) −44.7575 108.054i −0.163348 0.394358i
\(275\) 0 0
\(276\) −30.0306 + 30.0306i −0.108807 + 0.108807i
\(277\) 19.2699 96.8761i 0.0695662 0.349733i −0.930288 0.366831i \(-0.880443\pi\)
0.999854 + 0.0170979i \(0.00544271\pi\)
\(278\) −0.724446 + 1.08421i −0.00260592 + 0.00390003i
\(279\) −7.93302 39.8820i −0.0284338 0.142946i
\(280\) 0 0
\(281\) −0.465552 + 1.12394i −0.00165677 + 0.00399979i −0.924706 0.380683i \(-0.875689\pi\)
0.923049 + 0.384682i \(0.125689\pi\)
\(282\) −183.156 + 36.4319i −0.649488 + 0.129191i
\(283\) 128.017 + 85.5380i 0.452355 + 0.302254i 0.760798 0.648989i \(-0.224808\pi\)
−0.308443 + 0.951243i \(0.599808\pi\)
\(284\) −142.059 28.2572i −0.500206 0.0994972i
\(285\) 0 0
\(286\) 158.512 105.914i 0.554237 0.370329i
\(287\) 661.798 274.126i 2.30592 0.955142i
\(288\) 61.7248i 0.214322i
\(289\) −185.430 + 221.668i −0.641627 + 0.767016i
\(290\) 0 0
\(291\) −13.1867 31.8355i −0.0453151 0.109400i
\(292\) −81.7168 122.298i −0.279852 0.418828i
\(293\) −132.488 + 132.488i −0.452176 + 0.452176i −0.896076 0.443900i \(-0.853594\pi\)
0.443900 + 0.896076i \(0.353594\pi\)
\(294\) 42.7449 214.893i 0.145391 0.730928i
\(295\) 0 0
\(296\) −17.7730 89.3507i −0.0600438 0.301861i
\(297\) 235.231 + 97.4358i 0.792023 + 0.328067i
\(298\) −20.9632 + 50.6097i −0.0703463 + 0.169831i
\(299\) 120.583 23.9854i 0.403286 0.0802187i
\(300\) 0 0
\(301\) 799.087 + 158.948i 2.65477 + 0.528067i
\(302\) −64.6819 64.6819i −0.214179 0.214179i
\(303\) 161.171 107.691i 0.531916 0.355415i
\(304\) 100.801 41.7530i 0.331581 0.137345i
\(305\) 0 0
\(306\) −12.2236 26.1619i −0.0399464 0.0854964i
\(307\) 502.910 1.63814 0.819072 0.573691i \(-0.194489\pi\)
0.819072 + 0.573691i \(0.194489\pi\)
\(308\) −129.764 313.277i −0.421311 1.01713i
\(309\) 102.290 + 153.088i 0.331035 + 0.495429i
\(310\) 0 0
\(311\) −18.4534 + 92.7716i −0.0593358 + 0.298301i −0.999046 0.0436707i \(-0.986095\pi\)
0.939710 + 0.341972i \(0.111095\pi\)
\(312\) 232.420 347.842i 0.744937 1.11488i
\(313\) 82.7611 + 416.068i 0.264413 + 1.32929i 0.853445 + 0.521182i \(0.174509\pi\)
−0.589033 + 0.808109i \(0.700491\pi\)
\(314\) 114.577 + 47.4595i 0.364896 + 0.151145i
\(315\) 0 0
\(316\) 133.635 26.5817i 0.422896 0.0841192i
\(317\) −175.798 117.464i −0.554567 0.370550i 0.246483 0.969147i \(-0.420725\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(318\) −151.352 30.1059i −0.475951 0.0946726i
\(319\) −137.674 137.674i −0.431581 0.431581i
\(320\) 0 0
\(321\) −69.9700 + 28.9825i −0.217975 + 0.0902882i
\(322\) 51.7541i 0.160727i
\(323\) 169.195 184.925i 0.523824 0.572523i
\(324\) 193.287 0.596563
\(325\) 0 0
\(326\) −11.2009 16.7634i −0.0343587 0.0514214i
\(327\) −135.419 + 135.419i −0.414125 + 0.414125i
\(328\) −73.9037 + 371.539i −0.225316 + 1.13274i
\(329\) 534.215 799.509i 1.62375 2.43012i
\(330\) 0 0
\(331\) 212.770 + 88.1322i 0.642810 + 0.266260i 0.680185 0.733041i \(-0.261900\pi\)
−0.0373750 + 0.999301i \(0.511900\pi\)
\(332\) −28.2239 + 68.1385i −0.0850117 + 0.205236i
\(333\) −27.4059 + 5.45138i −0.0823001 + 0.0163705i
\(334\) −136.923 91.4893i −0.409950 0.273920i
\(335\) 0 0
\(336\) −166.393 166.393i −0.495218 0.495218i
\(337\) −513.952 + 343.412i −1.52508 + 1.01903i −0.541056 + 0.840987i \(0.681975\pi\)
−0.984023 + 0.178039i \(0.943025\pi\)
\(338\) −363.636 + 150.623i −1.07585 + 0.445630i
\(339\) 74.2446i 0.219011i
\(340\) 0 0
\(341\) 183.452 0.537983
\(342\) 9.58412 + 23.1381i 0.0280237 + 0.0676553i
\(343\) 300.951 + 450.405i 0.877408 + 1.31313i
\(344\) −304.667 + 304.667i −0.885660 + 0.885660i
\(345\) 0 0
\(346\) 107.070 160.242i 0.309452 0.463128i
\(347\) 119.037 + 598.438i 0.343045 + 1.72460i 0.638829 + 0.769349i \(0.279419\pi\)
−0.295783 + 0.955255i \(0.595581\pi\)
\(348\) −176.483 73.1016i −0.507134 0.210062i
\(349\) −68.1756 + 164.590i −0.195345 + 0.471606i −0.990953 0.134206i \(-0.957152\pi\)
0.795608 + 0.605812i \(0.207152\pi\)
\(350\) 0 0
\(351\) −601.279 401.762i −1.71305 1.14462i
\(352\) 273.120 + 54.3269i 0.775909 + 0.154338i
\(353\) 246.404 + 246.404i 0.698030 + 0.698030i 0.963985 0.265956i \(-0.0856874\pi\)
−0.265956 + 0.963985i \(0.585687\pi\)
\(354\) −180.765 + 120.783i −0.510636 + 0.341196i
\(355\) 0 0
\(356\) 169.175i 0.475210i
\(357\) −508.126 184.507i −1.42332 0.516828i
\(358\) 149.790 0.418408
\(359\) 87.7860 + 211.934i 0.244529 + 0.590346i 0.997722 0.0674536i \(-0.0214875\pi\)
−0.753193 + 0.657799i \(0.771487\pi\)
\(360\) 0 0
\(361\) 101.551 101.551i 0.281306 0.281306i
\(362\) 1.19146 5.98987i 0.00329132 0.0165466i
\(363\) 65.3629 97.8225i 0.180063 0.269484i
\(364\) 187.889 + 944.580i 0.516177 + 2.59500i
\(365\) 0 0
\(366\) −58.7444 + 141.822i −0.160504 + 0.387491i
\(367\) −633.227 + 125.957i −1.72541 + 0.343206i −0.955511 0.294956i \(-0.904695\pi\)
−0.769902 + 0.638162i \(0.779695\pi\)
\(368\) 30.4084 + 20.3182i 0.0826315 + 0.0552126i
\(369\) 113.960 + 22.6680i 0.308834 + 0.0614308i
\(370\) 0 0
\(371\) 660.682 441.454i 1.78081 1.18990i
\(372\) 166.287 68.8781i 0.447007 0.185156i
\(373\) 17.3537i 0.0465246i 0.999729 + 0.0232623i \(0.00740529\pi\)
−0.999729 + 0.0232623i \(0.992595\pi\)
\(374\) 126.520 31.0607i 0.338288 0.0830500i
\(375\) 0 0
\(376\) 194.597 + 469.800i 0.517546 + 1.24947i
\(377\) 307.226 + 459.796i 0.814923 + 1.21962i
\(378\) 215.253 215.253i 0.569452 0.569452i
\(379\) 28.2844 142.195i 0.0746289 0.375185i −0.925363 0.379081i \(-0.876240\pi\)
0.999992 + 0.00389606i \(0.00124016\pi\)
\(380\) 0 0
\(381\) 29.9000 + 150.318i 0.0784778 + 0.394534i
\(382\) 94.1939 + 39.0164i 0.246581 + 0.102137i
\(383\) −5.20255 + 12.5601i −0.0135837 + 0.0327939i −0.930526 0.366226i \(-0.880650\pi\)
0.916942 + 0.399020i \(0.130650\pi\)
\(384\) 335.445 66.7241i 0.873554 0.173761i
\(385\) 0 0
\(386\) −142.507 28.3464i −0.369189 0.0734363i
\(387\) 93.4484 + 93.4484i 0.241469 + 0.241469i
\(388\) −34.8813 + 23.3069i −0.0899002 + 0.0600694i
\(389\) −527.645 + 218.558i −1.35641 + 0.561845i −0.938070 0.346445i \(-0.887389\pi\)
−0.418343 + 0.908289i \(0.637389\pi\)
\(390\) 0 0
\(391\) 83.0479 + 12.7180i 0.212399 + 0.0325268i
\(392\) −596.622 −1.52199
\(393\) −237.295 572.880i −0.603804 1.45771i
\(394\) 65.5209 + 98.0590i 0.166297 + 0.248881i
\(395\) 0 0
\(396\) 10.7304 53.9454i 0.0270970 0.136226i
\(397\) 412.128 616.794i 1.03811 1.55364i 0.222583 0.974914i \(-0.428551\pi\)
0.815524 0.578723i \(-0.196449\pi\)
\(398\) 17.9985 + 90.4847i 0.0452224 + 0.227348i
\(399\) 433.159 + 179.420i 1.08561 + 0.449675i
\(400\) 0 0
\(401\) −272.971 + 54.2973i −0.680726 + 0.135405i −0.523329 0.852131i \(-0.675310\pi\)
−0.157397 + 0.987535i \(0.550310\pi\)
\(402\) 78.9293 + 52.7388i 0.196341 + 0.131191i
\(403\) −511.031 101.650i −1.26807 0.252234i
\(404\) −166.869 166.869i −0.413041 0.413041i
\(405\) 0 0
\(406\) −215.064 + 89.0825i −0.529715 + 0.219415i
\(407\) 126.064i 0.309739i
\(408\) 230.420 169.219i 0.564755 0.414753i
\(409\) −417.503 −1.02079 −0.510395 0.859940i \(-0.670501\pi\)
−0.510395 + 0.859940i \(0.670501\pi\)
\(410\) 0 0
\(411\) −197.311 295.297i −0.480075 0.718483i
\(412\) 158.500 158.500i 0.384708 0.384708i
\(413\) 218.391 1097.92i 0.528791 2.65841i
\(414\) −4.66391 + 6.98004i −0.0112655 + 0.0168600i
\(415\) 0 0
\(416\) −730.711 302.670i −1.75652 0.727573i
\(417\) −1.51528 + 3.65821i −0.00363376 + 0.00877268i
\(418\) −110.817 + 22.0429i −0.265112 + 0.0527341i
\(419\) −453.352 302.920i −1.08199 0.722960i −0.119104 0.992882i \(-0.538002\pi\)
−0.962882 + 0.269921i \(0.913002\pi\)
\(420\) 0 0
\(421\) −362.826 362.826i −0.861820 0.861820i 0.129730 0.991549i \(-0.458589\pi\)
−0.991549 + 0.129730i \(0.958589\pi\)
\(422\) 133.833 89.4245i 0.317140 0.211906i
\(423\) 144.098 59.6875i 0.340658 0.141105i
\(424\) 420.210i 0.991062i
\(425\) 0 0
\(426\) 104.091 0.244346
\(427\) −302.480 730.252i −0.708385 1.71019i
\(428\) 51.2254 + 76.6642i 0.119686 + 0.179122i
\(429\) 409.342 409.342i 0.954178 0.954178i
\(430\) 0 0
\(431\) −157.395 + 235.558i −0.365185 + 0.546538i −0.967873 0.251439i \(-0.919096\pi\)
0.602688 + 0.797977i \(0.294096\pi\)
\(432\) −41.9664 210.979i −0.0971445 0.488378i
\(433\) 288.914 + 119.672i 0.667238 + 0.276379i 0.690481 0.723351i \(-0.257399\pi\)
−0.0232429 + 0.999730i \(0.507399\pi\)
\(434\) 83.9358 202.639i 0.193400 0.466910i
\(435\) 0 0
\(436\) 193.861 + 129.534i 0.444635 + 0.297096i
\(437\) −71.4664 14.2156i −0.163539 0.0325299i
\(438\) 74.7444 + 74.7444i 0.170649 + 0.170649i
\(439\) 63.4957 42.4264i 0.144637 0.0966434i −0.481146 0.876640i \(-0.659779\pi\)
0.625783 + 0.779997i \(0.284779\pi\)
\(440\) 0 0
\(441\) 182.998i 0.414961i
\(442\) −369.649 + 16.4195i −0.836310 + 0.0371482i
\(443\) 167.822 0.378830 0.189415 0.981897i \(-0.439341\pi\)
0.189415 + 0.981897i \(0.439341\pi\)
\(444\) −47.3314 114.268i −0.106602 0.257360i
\(445\) 0 0
\(446\) −47.0166 + 47.0166i −0.105418 + 0.105418i
\(447\) −32.4519 + 163.147i −0.0725993 + 0.364981i
\(448\) −11.8597 + 17.7492i −0.0264725 + 0.0396189i
\(449\) 7.23934 + 36.3946i 0.0161233 + 0.0810571i 0.988009 0.154395i \(-0.0493429\pi\)
−0.971886 + 0.235452i \(0.924343\pi\)
\(450\) 0 0
\(451\) −200.603 + 484.297i −0.444795 + 1.07383i
\(452\) 88.6521 17.6340i 0.196133 0.0390133i
\(453\) −230.957 154.320i −0.509838 0.340663i
\(454\) 107.891 + 21.4609i 0.237646 + 0.0472707i
\(455\) 0 0
\(456\) −206.157 + 137.750i −0.452099 + 0.302083i
\(457\) −304.553 + 126.150i −0.666418 + 0.276039i −0.690136 0.723679i \(-0.742449\pi\)
0.0237185 + 0.999719i \(0.492449\pi\)
\(458\) 288.120i 0.629084i
\(459\) −292.512 398.304i −0.637282 0.867765i
\(460\) 0 0
\(461\) 199.727 + 482.184i 0.433248 + 1.04595i 0.978233 + 0.207507i \(0.0665351\pi\)
−0.544986 + 0.838445i \(0.683465\pi\)
\(462\) 135.386 + 202.620i 0.293044 + 0.438571i
\(463\) 195.559 195.559i 0.422373 0.422373i −0.463647 0.886020i \(-0.653459\pi\)
0.886020 + 0.463647i \(0.153459\pi\)
\(464\) −32.0916 + 161.335i −0.0691629 + 0.347705i
\(465\) 0 0
\(466\) −37.4983 188.517i −0.0804684 0.404542i
\(467\) 439.119 + 181.889i 0.940298 + 0.389484i 0.799576 0.600565i \(-0.205058\pi\)
0.140722 + 0.990049i \(0.455058\pi\)
\(468\) −59.7821 + 144.327i −0.127740 + 0.308391i
\(469\) −479.398 + 95.3582i −1.02217 + 0.203322i
\(470\) 0 0
\(471\) 369.355 + 73.4692i 0.784192 + 0.155986i
\(472\) 418.605 + 418.605i 0.886874 + 0.886874i
\(473\) −495.739 + 331.242i −1.04807 + 0.700301i
\(474\) −90.4655 + 37.4720i −0.190856 + 0.0790550i
\(475\) 0 0
\(476\) −99.6257 + 650.553i −0.209298 + 1.36671i
\(477\) 128.888 0.270206
\(478\) −33.5949 81.1053i −0.0702823 0.169676i
\(479\) −220.245 329.620i −0.459802 0.688142i 0.527038 0.849842i \(-0.323303\pi\)
−0.986840 + 0.161699i \(0.948303\pi\)
\(480\) 0 0
\(481\) −69.8517 + 351.168i −0.145222 + 0.730079i
\(482\) 33.5161 50.1604i 0.0695354 0.104067i
\(483\) 30.6596 + 154.136i 0.0634775 + 0.319123i
\(484\) −132.330 54.8128i −0.273409 0.113250i
\(485\) 0 0
\(486\) 88.2646 17.5569i 0.181614 0.0361253i
\(487\) −228.096 152.409i −0.468369 0.312954i 0.298895 0.954286i \(-0.403382\pi\)
−0.767263 + 0.641332i \(0.778382\pi\)
\(488\) 409.970 + 81.5481i 0.840102 + 0.167107i
\(489\) −43.2898 43.2898i −0.0885273 0.0885273i
\(490\) 0 0
\(491\) −439.630 + 182.101i −0.895378 + 0.370878i −0.782441 0.622725i \(-0.786026\pi\)
−0.112937 + 0.993602i \(0.536026\pi\)
\(492\) 514.299i 1.04532i
\(493\) 90.0979 + 366.997i 0.182754 + 0.744415i
\(494\) 320.910 0.649615
\(495\) 0 0
\(496\) −86.1091 128.871i −0.173607 0.259821i
\(497\) −378.992 + 378.992i −0.762560 + 0.762560i
\(498\) 10.3403 51.9844i 0.0207637 0.104386i
\(499\) −266.019 + 398.126i −0.533104 + 0.797847i −0.996074 0.0885272i \(-0.971784\pi\)
0.462969 + 0.886374i \(0.346784\pi\)
\(500\) 0 0
\(501\) −461.990 191.363i −0.922136 0.381961i
\(502\) 125.573 303.159i 0.250145 0.603902i
\(503\) −5.45243 + 1.08456i −0.0108398 + 0.00215617i −0.200507 0.979692i \(-0.564259\pi\)
0.189667 + 0.981848i \(0.439259\pi\)
\(504\) −122.296 81.7157i −0.242651 0.162134i
\(505\) 0 0
\(506\) −26.7804 26.7804i −0.0529256 0.0529256i
\(507\) −993.767 + 664.014i −1.96009 + 1.30969i
\(508\) 172.386 71.4045i 0.339342 0.140560i
\(509\) 460.670i 0.905049i −0.891752 0.452524i \(-0.850524\pi\)
0.891752 0.452524i \(-0.149476\pi\)
\(510\) 0 0
\(511\) −544.282 −1.06513
\(512\) −161.733 390.458i −0.315885 0.762613i
\(513\) 238.115 + 356.364i 0.464161 + 0.694666i
\(514\) −188.655 + 188.655i −0.367034 + 0.367034i
\(515\) 0 0
\(516\) −324.986 + 486.376i −0.629818 + 0.942589i
\(517\) 137.277 + 690.141i 0.265527 + 1.33489i
\(518\) −139.248 57.6786i −0.268819 0.111349i
\(519\) 223.953 540.670i 0.431508 1.04175i
\(520\) 0 0
\(521\) 814.191 + 544.025i 1.56275 + 1.04419i 0.971302 + 0.237849i \(0.0764422\pi\)
0.591445 + 0.806346i \(0.298558\pi\)
\(522\) −37.0334 7.36640i −0.0709452 0.0141119i
\(523\) −25.9709 25.9709i −0.0496575 0.0496575i 0.681842 0.731499i \(-0.261179\pi\)
−0.731499 + 0.681842i \(0.761179\pi\)
\(524\) −627.690 + 419.409i −1.19788 + 0.800398i
\(525\) 0 0
\(526\) 291.579i 0.554333i
\(527\) −304.541 184.485i −0.577877 0.350066i
\(528\) 172.202 0.326140
\(529\) 193.093 + 466.167i 0.365014 + 0.881223i
\(530\) 0 0
\(531\) 128.396 128.396i 0.241800 0.241800i
\(532\) 111.357 559.829i 0.209318 1.05231i
\(533\) 827.155 1237.92i 1.55188 2.32256i
\(534\) 23.7188 + 119.243i 0.0444173 + 0.223301i
\(535\) 0 0
\(536\) 98.9196 238.813i 0.184551 0.445547i
\(537\) 446.111 88.7370i 0.830746 0.165246i
\(538\) 218.141 + 145.757i 0.405467 + 0.270924i
\(539\) −809.728 161.065i −1.50228 0.298822i
\(540\) 0 0
\(541\) −423.296 + 282.838i −0.782433 + 0.522805i −0.881448 0.472281i \(-0.843431\pi\)
0.0990149 + 0.995086i \(0.468431\pi\)
\(542\) 112.368 46.5443i 0.207321 0.0858751i
\(543\) 18.5451i 0.0341531i
\(544\) −398.762 364.843i −0.733018 0.670668i
\(545\) 0 0
\(546\) −264.866 639.442i −0.485102 1.17114i
\(547\) −290.720 435.093i −0.531481 0.795417i 0.464444 0.885602i \(-0.346254\pi\)
−0.995925 + 0.0901850i \(0.971254\pi\)
\(548\) −305.736 + 305.736i −0.557913 + 0.557913i
\(549\) 25.0127 125.747i 0.0455604 0.229048i
\(550\) 0 0
\(551\) −63.9399 321.447i −0.116043 0.583389i
\(552\) −76.7833 31.8047i −0.139100 0.0576172i
\(553\) 192.947 465.815i 0.348910 0.842342i
\(554\) 84.7594 16.8597i 0.152995 0.0304327i
\(555\) 0 0
\(556\) 4.72800 + 0.940457i 0.00850359 + 0.00169147i
\(557\) −150.954 150.954i −0.271012 0.271012i 0.558496 0.829507i \(-0.311379\pi\)
−0.829507 + 0.558496i \(0.811379\pi\)
\(558\) 29.5815 19.7657i 0.0530135 0.0354225i
\(559\) 1564.49 648.033i 2.79873 1.15927i
\(560\) 0 0
\(561\) 358.406 167.458i 0.638870 0.298499i
\(562\) −1.06439 −0.00189393
\(563\) 169.562 + 409.360i 0.301176 + 0.727104i 0.999931 + 0.0117427i \(0.00373790\pi\)
−0.698755 + 0.715361i \(0.746262\pi\)
\(564\) 383.550 + 574.023i 0.680052 + 1.01777i
\(565\) 0 0
\(566\) −26.2801 + 132.119i −0.0464313 + 0.233426i
\(567\) 397.368 594.703i 0.700825 1.04886i
\(568\) −55.2970 277.997i −0.0973539 0.489431i
\(569\) 795.099 + 329.341i 1.39736 + 0.578806i 0.949065 0.315079i \(-0.102031\pi\)
0.448296 + 0.893885i \(0.352031\pi\)
\(570\) 0 0
\(571\) −751.766 + 149.535i −1.31658 + 0.261883i −0.802907 0.596104i \(-0.796714\pi\)
−0.513670 + 0.857988i \(0.671714\pi\)
\(572\) −586.000 391.553i −1.02448 0.684533i
\(573\) 303.646 + 60.3989i 0.529923 + 0.105408i
\(574\) 443.166 + 443.166i 0.772066 + 0.772066i
\(575\) 0 0
\(576\) −3.19901 + 1.32507i −0.00555384 + 0.00230048i
\(577\) 970.916i 1.68270i 0.540493 + 0.841349i \(0.318238\pi\)
−0.540493 + 0.841349i \(0.681762\pi\)
\(578\) −241.266 75.6695i −0.417415 0.130916i
\(579\) −441.213 −0.762026
\(580\) 0 0
\(581\) 151.624 + 226.922i 0.260971 + 0.390571i
\(582\) 21.3183 21.3183i 0.0366294 0.0366294i
\(583\) −113.441 + 570.304i −0.194581 + 0.978224i
\(584\) 159.913 239.327i 0.273824 0.409806i
\(585\) 0 0
\(586\) −151.453 62.7337i −0.258452 0.107054i
\(587\) 38.4507 92.8282i 0.0655038 0.158140i −0.887738 0.460349i \(-0.847724\pi\)
0.953242 + 0.302209i \(0.0977241\pi\)
\(588\) −794.435 + 158.023i −1.35108 + 0.268746i
\(589\) 256.766 + 171.565i 0.435935 + 0.291283i
\(590\) 0 0
\(591\) 253.228 + 253.228i 0.428474 + 0.428474i
\(592\) −88.5572 + 59.1720i −0.149590 + 0.0999528i
\(593\) −171.814 + 71.1679i −0.289738 + 0.120013i −0.522818 0.852444i \(-0.675119\pi\)
0.233081 + 0.972457i \(0.425119\pi\)
\(594\) 222.767i 0.375028i
\(595\) 0 0
\(596\) 202.514 0.339788
\(597\) 107.208 + 258.823i 0.179578 + 0.433539i
\(598\) 59.7615 + 89.4394i 0.0999356 + 0.149564i
\(599\) −210.427 + 210.427i −0.351297 + 0.351297i −0.860592 0.509295i \(-0.829906\pi\)
0.509295 + 0.860592i \(0.329906\pi\)
\(600\) 0 0
\(601\) −285.040 + 426.592i −0.474276 + 0.709804i −0.989060 0.147516i \(-0.952872\pi\)
0.514784 + 0.857320i \(0.327872\pi\)
\(602\) 139.068 + 699.142i 0.231010 + 1.16137i
\(603\) −73.2495 30.3409i −0.121475 0.0503166i
\(604\) −129.412 + 312.428i −0.214258 + 0.517264i
\(605\) 0 0
\(606\) 141.012 + 94.2215i 0.232694 + 0.155481i
\(607\) −943.017 187.578i −1.55357 0.309024i −0.657679 0.753298i \(-0.728462\pi\)
−0.895891 + 0.444274i \(0.853462\pi\)
\(608\) 331.461 + 331.461i 0.545166 + 0.545166i
\(609\) −587.740 + 392.715i −0.965090 + 0.644853i
\(610\) 0 0
\(611\) 1998.55i 3.27095i
\(612\) −72.0622 + 78.7617i −0.117749 + 0.128696i
\(613\) 757.810 1.23623 0.618116 0.786087i \(-0.287896\pi\)
0.618116 + 0.786087i \(0.287896\pi\)
\(614\) 168.384 + 406.516i 0.274242 + 0.662078i
\(615\) 0 0
\(616\) 469.214 469.214i 0.761712 0.761712i
\(617\) −43.8045 + 220.220i −0.0709959 + 0.356921i −0.999911 0.0133733i \(-0.995743\pi\)
0.928915 + 0.370294i \(0.120743\pi\)
\(618\) −89.4961 + 133.940i −0.144816 + 0.216732i
\(619\) −231.722 1164.94i −0.374348 1.88198i −0.463726 0.885979i \(-0.653488\pi\)
0.0893776 0.995998i \(-0.471512\pi\)
\(620\) 0 0
\(621\) −54.9776 + 132.728i −0.0885308 + 0.213732i
\(622\) −81.1684 + 16.1454i −0.130496 + 0.0259572i
\(623\) −520.516 347.798i −0.835499 0.558263i
\(624\) −479.692 95.4167i −0.768737 0.152911i
\(625\) 0 0
\(626\) −308.609 + 206.206i −0.492986 + 0.329402i
\(627\) −316.981 + 131.298i −0.505553 + 0.209407i
\(628\) 458.479i 0.730062i
\(629\) −126.773 + 209.273i −0.201548 + 0.332708i
\(630\) 0 0
\(631\) −184.417 445.222i −0.292262 0.705582i 0.707738 0.706475i \(-0.249716\pi\)
−1.00000 0.000892895i \(0.999716\pi\)
\(632\) 148.135 + 221.700i 0.234391 + 0.350791i
\(633\) 345.612 345.612i 0.545991 0.545991i
\(634\) 36.0890 181.431i 0.0569227 0.286170i
\(635\) 0 0
\(636\) 111.298 + 559.533i 0.174997 + 0.879769i
\(637\) 2166.36 + 897.338i 3.40089 + 1.40869i
\(638\) 65.1897 157.382i 0.102178 0.246680i
\(639\) −85.2680 + 16.9609i −0.133440 + 0.0265428i
\(640\) 0 0
\(641\) −89.5481 17.8122i −0.139701 0.0277882i 0.124745 0.992189i \(-0.460189\pi\)
−0.264445 + 0.964401i \(0.585189\pi\)
\(642\) −46.8547 46.8547i −0.0729823 0.0729823i
\(643\) −169.429 + 113.209i −0.263498 + 0.176064i −0.680300 0.732933i \(-0.738151\pi\)
0.416803 + 0.908997i \(0.363151\pi\)
\(644\) 176.765 73.2185i 0.274480 0.113693i
\(645\) 0 0
\(646\) 206.129 + 74.8484i 0.319086 + 0.115864i
\(647\) −1013.82 −1.56696 −0.783478 0.621420i \(-0.786556\pi\)
−0.783478 + 0.621420i \(0.786556\pi\)
\(648\) 144.748 + 349.454i 0.223377 + 0.539280i
\(649\) 455.118 + 681.133i 0.701261 + 1.04951i
\(650\) 0 0
\(651\) 129.936 653.232i 0.199594 1.00343i
\(652\) −41.4085 + 61.9723i −0.0635100 + 0.0950495i
\(653\) −60.1893 302.592i −0.0921735 0.463387i −0.999112 0.0421251i \(-0.986587\pi\)
0.906939 0.421262i \(-0.138413\pi\)
\(654\) −154.803 64.1217i −0.236703 0.0980454i
\(655\) 0 0
\(656\) 434.368 86.4012i 0.662147 0.131709i
\(657\) −73.4070 49.0490i −0.111731 0.0746560i
\(658\) 825.130 + 164.128i 1.25400 + 0.249435i
\(659\) 554.044 + 554.044i 0.840734 + 0.840734i 0.988954 0.148220i \(-0.0473544\pi\)
−0.148220 + 0.988954i \(0.547354\pi\)
\(660\) 0 0
\(661\) −396.870 + 164.389i −0.600409 + 0.248697i −0.662121 0.749397i \(-0.730344\pi\)
0.0617128 + 0.998094i \(0.480344\pi\)
\(662\) 201.496i 0.304375i
\(663\) −1091.18 + 267.885i −1.64582 + 0.404050i
\(664\) −144.328 −0.217361
\(665\) 0 0
\(666\) −13.5825 20.3277i −0.0203942 0.0305221i
\(667\) 77.6819 77.6819i 0.116465 0.116465i
\(668\) −118.769 + 597.092i −0.177798 + 0.893851i
\(669\) −112.174 + 167.880i −0.167674 + 0.250941i
\(670\) 0 0
\(671\) 534.392 + 221.352i 0.796411 + 0.329884i
\(672\) 386.892 934.041i 0.575733 1.38994i
\(673\) −1023.84 + 203.655i −1.52131 + 0.302607i −0.883811 0.467845i \(-0.845031\pi\)
−0.637498 + 0.770452i \(0.720031\pi\)
\(674\) −449.670 300.460i −0.667166 0.445786i
\(675\) 0 0
\(676\) 1028.90 + 1028.90i 1.52204 + 1.52204i
\(677\) 984.303 657.690i 1.45392 0.971477i 0.457300 0.889313i \(-0.348817\pi\)
0.996619 0.0821649i \(-0.0261834\pi\)
\(678\) −60.0139 + 24.8586i −0.0885161 + 0.0366646i
\(679\) 155.238i 0.228627i
\(680\) 0 0
\(681\) 334.040 0.490514
\(682\) 61.4234 + 148.289i 0.0900636 + 0.217433i
\(683\) −218.936 327.661i −0.320551 0.479738i 0.635843 0.771818i \(-0.280653\pi\)
−0.956394 + 0.292080i \(0.905653\pi\)
\(684\) 65.4687 65.4687i 0.0957145 0.0957145i
\(685\) 0 0
\(686\) −263.310 + 394.071i −0.383833 + 0.574447i
\(687\) 170.685 + 858.092i 0.248450 + 1.24904i
\(688\) 465.382 + 192.767i 0.676427 + 0.280185i
\(689\) 632.009 1525.80i 0.917285 2.21452i
\(690\) 0 0
\(691\) −44.0092 29.4060i −0.0636892 0.0425558i 0.523318 0.852137i \(-0.324694\pi\)
−0.587007 + 0.809582i \(0.699694\pi\)
\(692\) −698.780 138.996i −1.00980 0.200861i
\(693\) −143.919 143.919i −0.207675 0.207675i
\(694\) −443.877 + 296.589i −0.639592 + 0.427362i
\(695\) 0 0
\(696\) 373.817i 0.537094i
\(697\) 820.036 602.230i 1.17652 0.864031i
\(698\) −155.869 −0.223308
\(699\) −223.358 539.234i −0.319539 0.771437i
\(700\) 0 0
\(701\) 581.552 581.552i 0.829603 0.829603i −0.157859 0.987462i \(-0.550459\pi\)
0.987462 + 0.157859i \(0.0504590\pi\)
\(702\) 123.435 620.548i 0.175833 0.883971i
\(703\) 117.896 176.443i 0.167703 0.250986i
\(704\) −3.04759 15.3213i −0.00432896 0.0217631i
\(705\) 0 0
\(706\) −116.674 + 281.676i −0.165261 + 0.398975i
\(707\) −856.476 + 170.364i −1.21142 + 0.240967i
\(708\) 668.268 + 446.522i 0.943881 + 0.630681i
\(709\) −222.555 44.2689i −0.313900 0.0624385i 0.0356263 0.999365i \(-0.488657\pi\)
−0.349526 + 0.936927i \(0.613657\pi\)
\(710\) 0 0
\(711\) 68.0004 45.4364i 0.0956405 0.0639050i
\(712\) 305.861 126.692i 0.429580 0.177938i
\(713\) 103.512i 0.145178i
\(714\) −20.9885 472.509i −0.0293956 0.661777i
\(715\) 0 0
\(716\) −211.913 511.604i −0.295968 0.714531i
\(717\) −148.101 221.650i −0.206557 0.309135i
\(718\) −141.919 + 141.919i −0.197659 + 0.197659i
\(719\) −158.183 + 795.241i −0.220005 + 1.10604i 0.700004 + 0.714139i \(0.253182\pi\)
−0.920008 + 0.391899i \(0.871818\pi\)
\(720\) 0 0
\(721\) −161.820 813.523i −0.224438 1.12833i
\(722\) 116.088 + 48.0853i 0.160787 + 0.0666001i
\(723\) 70.1036 169.245i 0.0969621 0.234087i
\(724\) −22.1439 + 4.40469i −0.0305855 + 0.00608383i
\(725\) 0 0
\(726\) 100.957 + 20.0817i 0.139060 + 0.0276607i
\(727\) 230.482 + 230.482i 0.317032 + 0.317032i 0.847626 0.530594i \(-0.178031\pi\)
−0.530594 + 0.847626i \(0.678031\pi\)
\(728\) −1567.05 + 1047.07i −2.15254 + 1.43828i
\(729\) 749.353 310.392i 1.02792 0.425778i
\(730\) 0 0
\(731\) 1156.06 51.3514i 1.58148 0.0702481i
\(732\) 567.497 0.775269
\(733\) −99.7350 240.782i −0.136064 0.328488i 0.841131 0.540832i \(-0.181890\pi\)
−0.977195 + 0.212344i \(0.931890\pi\)
\(734\) −313.831 469.681i −0.427562 0.639892i
\(735\) 0 0
\(736\) −30.6537 + 154.106i −0.0416490 + 0.209384i
\(737\) 198.723 297.410i 0.269638 0.403541i
\(738\) 19.8328 + 99.7062i 0.0268737 + 0.135103i
\(739\) 152.235 + 63.0577i 0.206001 + 0.0853285i 0.483298 0.875456i \(-0.339439\pi\)
−0.277297 + 0.960784i \(0.589439\pi\)
\(740\) 0 0
\(741\) 955.748 190.110i 1.28981 0.256559i
\(742\) 578.048 + 386.239i 0.779040 + 0.520538i
\(743\) −286.905 57.0690i −0.386145 0.0768089i −0.00179939 0.999998i \(-0.500573\pi\)
−0.384345 + 0.923189i \(0.625573\pi\)
\(744\) 249.057 + 249.057i 0.334754 + 0.334754i
\(745\) 0 0
\(746\) −14.0274 + 5.81035i −0.0188035 + 0.00778868i
\(747\) 44.2686i 0.0592619i
\(748\) −285.079 388.183i −0.381122 0.518961i
\(749\) 341.192 0.455530
\(750\) 0 0
\(751\) −300.658 449.967i −0.400344 0.599157i 0.575453 0.817835i \(-0.304826\pi\)
−0.975797 + 0.218677i \(0.929826\pi\)
\(752\) 420.374 420.374i 0.559008 0.559008i
\(753\) 194.391 977.272i 0.258156 1.29784i
\(754\) −268.800 + 402.288i −0.356499 + 0.533538i
\(755\) 0 0
\(756\) −1039.72 430.665i −1.37529 0.569663i
\(757\) −99.0239 + 239.065i −0.130811 + 0.315805i −0.975691 0.219150i \(-0.929672\pi\)
0.844880 + 0.534955i \(0.179672\pi\)
\(758\) 124.410 24.7467i 0.164130 0.0326474i
\(759\) −95.6234 63.8935i −0.125986 0.0841812i
\(760\) 0 0
\(761\) 176.582 + 176.582i 0.232039 + 0.232039i 0.813543 0.581504i \(-0.197536\pi\)
−0.581504 + 0.813543i \(0.697536\pi\)
\(762\) −111.495 + 74.4983i −0.146318 + 0.0977668i
\(763\) 797.097 330.168i 1.04469 0.432724i
\(764\) 376.915i 0.493344i
\(765\) 0 0
\(766\) −11.8945 −0.0155281
\(767\) −890.381 2149.57i −1.16086 2.80257i
\(768\) 155.718 + 233.049i 0.202758 + 0.303449i
\(769\) 644.591 644.591i 0.838220 0.838220i −0.150405 0.988624i \(-0.548058\pi\)
0.988624 + 0.150405i \(0.0480577\pi\)
\(770\) 0 0
\(771\) −450.100 + 673.623i −0.583788 + 0.873700i
\(772\) 104.793 + 526.832i 0.135743 + 0.682425i
\(773\) −1016.27 420.952i −1.31471 0.544569i −0.388451 0.921469i \(-0.626990\pi\)
−0.926254 + 0.376900i \(0.876990\pi\)
\(774\) −44.2484 + 106.825i −0.0571685 + 0.138017i
\(775\) 0 0
\(776\) −68.2598 45.6097i −0.0879636 0.0587754i
\(777\) −448.885 89.2888i −0.577716 0.114915i
\(778\) −353.332 353.332i −0.454154 0.454154i
\(779\) −733.688 + 490.234i −0.941833 + 0.629312i
\(780\) 0 0
\(781\) 392.222i 0.502205i
\(782\) 17.5258 + 71.3881i 0.0224115 + 0.0912891i
\(783\) −646.181 −0.825263
\(784\) 266.927 + 644.418i 0.340468 + 0.821962i
\(785\) 0 0
\(786\) 383.623 383.623i 0.488070 0.488070i
\(787\) 261.903 1316.68i 0.332787 1.67303i −0.345643 0.938366i \(-0.612339\pi\)
0.678430 0.734665i \(-0.262661\pi\)
\(788\) 242.223 362.513i 0.307390 0.460042i
\(789\) 172.734 + 868.394i 0.218928 + 1.10063i
\(790\) 0 0
\(791\) 127.999 309.017i 0.161819 0.390666i
\(792\) 105.567 20.9985i 0.133291 0.0265133i
\(793\) −1365.97 912.713i −1.72254 1.15096i
\(794\) 636.560 + 126.620i 0.801712 + 0.159470i
\(795\) 0 0
\(796\) 283.585 189.486i 0.356263 0.238047i
\(797\) 665.304 275.578i 0.834761 0.345769i 0.0759753 0.997110i \(-0.475793\pi\)
0.758786 + 0.651340i \(0.225793\pi\)
\(798\) 410.207i 0.514044i
\(799\) 466.137 1283.72i 0.583401 1.60666i
\(800\) 0 0
\(801\) −38.8592 93.8145i −0.0485134 0.117122i
\(802\) −135.286 202.470i −0.168686 0.252456i
\(803\) 281.641 281.641i 0.350736 0.350736i
\(804\) 68.4642 344.193i 0.0851545 0.428101i
\(805\) 0 0
\(806\) −88.9367 447.115i −0.110343 0.554733i
\(807\) 736.025 + 304.872i 0.912051 + 0.377784i
\(808\) 176.726 426.655i 0.218721 0.528039i
\(809\) −1547.67 + 307.850i −1.91306 + 0.380532i −0.999649 0.0265023i \(-0.991563\pi\)
−0.913413 + 0.407034i \(0.866563\pi\)
\(810\) 0 0
\(811\) 152.516 + 30.3374i 0.188059 + 0.0374073i 0.288221 0.957564i \(-0.406936\pi\)
−0.100162 + 0.994971i \(0.531936\pi\)
\(812\) 608.519 + 608.519i 0.749407 + 0.749407i
\(813\) 307.086 205.188i 0.377719 0.252384i
\(814\) 101.901 42.2087i 0.125185 0.0518534i
\(815\) 0 0
\(816\) −285.865 173.171i −0.350325 0.212220i
\(817\) −1003.63 −1.22844
\(818\) −139.788 337.479i −0.170890 0.412566i
\(819\) 321.161 + 480.651i 0.392138 + 0.586876i
\(820\) 0 0
\(821\) −219.728 + 1104.65i −0.267634 + 1.34549i 0.579874 + 0.814707i \(0.303102\pi\)
−0.847508 + 0.530783i \(0.821898\pi\)
\(822\) 172.632 258.363i 0.210015 0.314310i
\(823\) 250.771 + 1260.71i 0.304703 + 1.53185i 0.764971 + 0.644065i \(0.222753\pi\)
−0.460268 + 0.887780i \(0.652247\pi\)
\(824\) 405.258 + 167.863i 0.491818 + 0.203718i
\(825\) 0 0
\(826\) 960.603 191.076i 1.16296 0.231327i
\(827\) 281.307 + 187.964i 0.340154 + 0.227284i 0.713900 0.700247i \(-0.246927\pi\)
−0.373746 + 0.927531i \(0.621927\pi\)
\(828\) 30.4384 + 6.05457i 0.0367613 + 0.00731229i
\(829\) 52.6400 + 52.6400i 0.0634982 + 0.0634982i 0.738143 0.674645i \(-0.235703\pi\)
−0.674645 + 0.738143i \(0.735703\pi\)
\(830\) 0 0
\(831\) 242.446 100.425i 0.291753 0.120848i
\(832\) 44.3681i 0.0533271i
\(833\) 1182.22 + 1081.66i 1.41924 + 1.29852i
\(834\) −3.46437 −0.00415392
\(835\) 0 0
\(836\) 232.064 + 347.308i 0.277588 + 0.415440i
\(837\) 430.521 430.521i 0.514362 0.514362i
\(838\) 93.0672 467.881i 0.111059 0.558330i
\(839\) 676.864 1013.00i 0.806751 1.20739i −0.168372 0.985723i \(-0.553851\pi\)
0.975123 0.221664i \(-0.0711489\pi\)
\(840\) 0 0
\(841\) −320.464 132.741i −0.381051 0.157837i
\(842\) 171.801 414.763i 0.204039 0.492593i
\(843\) −3.17000 + 0.630553i −0.00376039 + 0.000747987i
\(844\) −494.767 330.592i −0.586216 0.391697i
\(845\) 0 0
\(846\) 96.4940 + 96.4940i 0.114059 + 0.114059i
\(847\) −440.698 + 294.465i −0.520304 + 0.347656i
\(848\) 453.874 188.001i 0.535229 0.221699i
\(849\) 409.051i 0.481803i
\(850\) 0 0
\(851\) 71.1308 0.0835849
\(852\) −147.262 355.522i −0.172843 0.417279i
\(853\) 548.333 + 820.639i 0.642829 + 0.962062i 0.999611 + 0.0278741i \(0.00887374\pi\)
−0.356782 + 0.934187i \(0.616126\pi\)
\(854\) 489.006 489.006i 0.572606 0.572606i
\(855\) 0 0
\(856\) −100.244 + 150.026i −0.117107 + 0.175264i
\(857\) −169.587 852.570i −0.197884 0.994831i −0.944233 0.329277i \(-0.893195\pi\)
0.746349 0.665555i \(-0.231805\pi\)
\(858\) 467.938 + 193.826i 0.545382 + 0.225905i
\(859\) 194.793 470.272i 0.226767 0.547465i −0.769013 0.639233i \(-0.779252\pi\)
0.995780 + 0.0917683i \(0.0292519\pi\)
\(860\) 0 0
\(861\) 1582.39 + 1057.32i 1.83785 + 1.22801i
\(862\) −243.106 48.3569i −0.282026 0.0560984i
\(863\) −164.373 164.373i −0.190467 0.190467i 0.605431 0.795898i \(-0.293001\pi\)
−0.795898 + 0.605431i \(0.793001\pi\)
\(864\) 768.444 513.458i 0.889402 0.594280i
\(865\) 0 0
\(866\) 273.605i 0.315941i
\(867\) −763.375 82.4341i −0.880479 0.0950797i
\(868\) −810.856 −0.934166
\(869\) 141.197 + 340.879i 0.162482 + 0.392266i
\(870\) 0 0
\(871\) −718.364 + 718.364i −0.824758 + 0.824758i
\(872\) −89.0127 + 447.497i −0.102079 + 0.513185i
\(873\) −13.9895 + 20.9368i −0.0160247 + 0.0239826i
\(874\) −12.4376 62.5278i −0.0142306 0.0715421i
\(875\) 0 0
\(876\) 149.544 361.032i 0.170713 0.412137i
\(877\) −968.898 + 192.726i −1.10479 + 0.219756i −0.713598 0.700555i \(-0.752936\pi\)
−0.391188 + 0.920311i \(0.627936\pi\)
\(878\) 55.5540 + 37.1200i 0.0632734 + 0.0422779i
\(879\) −488.227 97.1144i −0.555435 0.110483i
\(880\) 0 0
\(881\) 440.820 294.546i 0.500363 0.334332i −0.279643 0.960104i \(-0.590216\pi\)
0.780006 + 0.625772i \(0.215216\pi\)
\(882\) −147.922 + 61.2712i −0.167712 + 0.0694685i
\(883\) 744.697i 0.843371i 0.906742 + 0.421686i \(0.138561\pi\)
−0.906742 + 0.421686i \(0.861439\pi\)
\(884\) 579.037 + 1239.30i 0.655019 + 1.40192i
\(885\) 0 0
\(886\) 56.1900 + 135.655i 0.0634198 + 0.153109i
\(887\) 740.766 + 1108.63i 0.835136 + 1.24987i 0.966019 + 0.258472i \(0.0832189\pi\)
−0.130883 + 0.991398i \(0.541781\pi\)
\(888\) 171.146 171.146i 0.192732 0.192732i
\(889\) 134.702 677.192i 0.151521 0.761746i
\(890\) 0 0
\(891\) 102.112 + 513.351i 0.114604 + 0.576151i
\(892\) 227.100 + 94.0680i 0.254597 + 0.105457i
\(893\) −453.285 + 1094.33i −0.507598 + 1.22545i
\(894\) −142.741 + 28.3930i −0.159666 + 0.0317595i
\(895\) 0 0
\(896\) −1511.20 300.597i −1.68661 0.335488i
\(897\) 230.969 + 230.969i 0.257490 + 0.257490i
\(898\) −26.9949 + 18.0374i −0.0300611 + 0.0200862i
\(899\) −430.143 + 178.171i −0.478469 + 0.198188i
\(900\) 0 0
\(901\) 761.833 832.659i 0.845541 0.924150i
\(902\) −458.636 −0.508466
\(903\) 828.357 + 1999.83i 0.917339 + 2.21465i
\(904\) 98.2713 + 147.073i 0.108707 + 0.162692i
\(905\) 0 0
\(906\) 47.4123 238.358i 0.0523315 0.263088i
\(907\) 247.751 370.786i 0.273154 0.408804i −0.669377 0.742923i \(-0.733439\pi\)
0.942531 + 0.334119i \(0.108439\pi\)
\(908\) −79.3386 398.862i −0.0873773 0.439275i
\(909\) −130.865 54.2061i −0.143966 0.0596327i
\(910\) 0 0
\(911\) −700.509 + 139.340i −0.768945 + 0.152953i −0.563948 0.825810i \(-0.690718\pi\)
−0.204996 + 0.978763i \(0.565718\pi\)
\(912\) 241.019 + 161.044i 0.264276 + 0.176583i
\(913\) −195.880 38.9629i −0.214545 0.0426757i
\(914\) −203.941 203.941i −0.223130 0.223130i
\(915\) 0 0
\(916\) 984.069 407.615i 1.07431 0.444994i
\(917\) 2793.51i 3.04636i
\(918\) 224.021 369.806i 0.244031 0.402838i
\(919\) −866.411 −0.942776 −0.471388 0.881926i \(-0.656247\pi\)
−0.471388 + 0.881926i \(0.656247\pi\)
\(920\) 0 0
\(921\) 742.313 + 1110.95i 0.805986 + 1.20624i
\(922\) −322.890 + 322.890i −0.350206 + 0.350206i
\(923\) −217.330 + 1092.59i −0.235460 + 1.18374i
\(924\) 500.507 749.062i 0.541675 0.810673i
\(925\) 0 0
\(926\) 223.552 + 92.5984i 0.241417 + 0.0999983i
\(927\) 51.4876 124.302i 0.0555421 0.134091i
\(928\) −693.152 + 137.877i −0.746931 + 0.148574i
\(929\) 215.616 + 144.070i 0.232094 + 0.155081i 0.666180 0.745791i \(-0.267928\pi\)
−0.434085 + 0.900872i \(0.642928\pi\)
\(930\) 0 0
\(931\) −982.694 982.694i −1.05553 1.05553i
\(932\) −590.824 + 394.776i −0.633932 + 0.423580i
\(933\) −232.174 + 96.1698i −0.248847 + 0.103076i
\(934\) 415.851i 0.445237i
\(935\) 0 0
\(936\) −305.706 −0.326609
\(937\) 313.638 + 757.189i 0.334726 + 0.808099i 0.998204 + 0.0599037i \(0.0190794\pi\)
−0.663479 + 0.748195i \(0.730921\pi\)
\(938\) −237.592 355.582i −0.253297 0.379085i
\(939\) −796.954 + 796.954i −0.848727 + 0.848727i
\(940\) 0 0
\(941\) 366.641 548.717i 0.389629 0.583121i −0.583860 0.811854i \(-0.698458\pi\)
0.973489 + 0.228733i \(0.0734583\pi\)
\(942\) 64.2801 + 323.158i 0.0682379 + 0.343055i
\(943\) −273.262 113.189i −0.289779 0.120031i
\(944\) 264.857 639.423i 0.280569 0.677354i
\(945\) 0 0
\(946\) −433.735 289.813i −0.458494 0.306356i
\(947\) 1485.67 + 295.518i 1.56882 + 0.312057i 0.901521 0.432735i \(-0.142452\pi\)
0.667296 + 0.744792i \(0.267452\pi\)
\(948\) 255.970 + 255.970i 0.270011 + 0.270011i
\(949\) −940.607 + 628.494i −0.991156 + 0.662269i
\(950\) 0 0
\(951\) 561.727i 0.590669i
\(952\) −1250.78 + 307.067i −1.31384 + 0.322549i
\(953\) 341.348 0.358182 0.179091 0.983832i \(-0.442684\pi\)
0.179091 + 0.983832i \(0.442684\pi\)
\(954\) 43.1543 + 104.184i 0.0452351 + 0.109207i
\(955\) 0 0
\(956\) −229.486 + 229.486i −0.240048 + 0.240048i
\(957\) 100.916 507.341i 0.105451 0.530136i
\(958\) 192.698 288.393i 0.201146 0.301037i
\(959\) 312.140 + 1569.24i 0.325485 + 1.63632i
\(960\) 0 0
\(961\) −199.881 + 482.556i −0.207993 + 0.502140i
\(962\) −307.246 + 61.1151i −0.319383 + 0.0635292i
\(963\) 46.0163 + 30.7471i 0.0477843 + 0.0319285i
\(964\) −218.738 43.5097i −0.226907 0.0451346i
\(965\) 0 0
\(966\) −114.327 + 76.3909i −0.118351 + 0.0790796i
\(967\) −948.511 + 392.886i −0.980880 + 0.406294i −0.814752 0.579810i \(-0.803127\pi\)
−0.166129 + 0.986104i \(0.553127\pi\)
\(968\) 280.295i 0.289561i
\(969\) 658.245 + 100.804i 0.679303 + 0.104029i
\(970\) 0 0
\(971\) 617.925 + 1491.80i 0.636380 + 1.53636i 0.831469 + 0.555571i \(0.187500\pi\)
−0.195089 + 0.980786i \(0.562500\pi\)
\(972\) −184.836 276.627i −0.190161 0.284596i
\(973\) 12.6136 12.6136i 0.0129636 0.0129636i
\(974\) 46.8250 235.405i 0.0480749 0.241689i
\(975\) 0 0
\(976\) −95.3383 479.298i −0.0976827 0.491084i
\(977\) 49.4428 + 20.4799i 0.0506067 + 0.0209620i 0.407843 0.913052i \(-0.366281\pi\)
−0.357237 + 0.934014i \(0.616281\pi\)
\(978\) 20.4980 49.4866i 0.0209591 0.0505998i
\(979\) 449.313 89.3738i 0.458951 0.0912909i
\(980\) 0 0
\(981\) 137.258 + 27.3023i 0.139916 + 0.0278310i
\(982\) −294.394 294.394i −0.299790 0.299790i
\(983\) 1049.19 701.045i 1.06733 0.713169i 0.107632 0.994191i \(-0.465673\pi\)
0.959701 + 0.281022i \(0.0906733\pi\)
\(984\) −929.830 + 385.148i −0.944949 + 0.391411i
\(985\) 0 0
\(986\) −266.487 + 195.706i −0.270270 + 0.198485i
\(987\) 2554.67 2.58832
\(988\) −454.003 1096.06i −0.459518 1.10937i
\(989\) −186.902 279.718i −0.188980 0.282829i
\(990\) 0 0
\(991\) 48.3001 242.821i 0.0487387 0.245026i −0.948734 0.316075i \(-0.897635\pi\)
0.997473 + 0.0710492i \(0.0226347\pi\)
\(992\) 369.955 553.676i 0.372938 0.558141i
\(993\) 119.368 + 600.104i 0.120210 + 0.604334i
\(994\) −433.244 179.455i −0.435859 0.180539i
\(995\) 0 0
\(996\) −192.180 + 38.2270i −0.192952 + 0.0383806i
\(997\) −442.522 295.683i −0.443853 0.296573i 0.313489 0.949592i \(-0.398502\pi\)
−0.757342 + 0.653019i \(0.773502\pi\)
\(998\) −410.884 81.7299i −0.411707 0.0818937i
\(999\) −295.843 295.843i −0.296139 0.296139i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.c.226.8 yes 96
5.2 odd 4 425.3.t.f.124.5 96
5.3 odd 4 425.3.t.g.124.8 96
5.4 even 2 425.3.u.d.226.5 yes 96
17.7 odd 16 inner 425.3.u.c.126.8 96
85.7 even 16 425.3.t.g.24.8 96
85.24 odd 16 425.3.u.d.126.5 yes 96
85.58 even 16 425.3.t.f.24.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.3.t.f.24.5 96 85.58 even 16
425.3.t.f.124.5 96 5.2 odd 4
425.3.t.g.24.8 96 85.7 even 16
425.3.t.g.124.8 96 5.3 odd 4
425.3.u.c.126.8 96 17.7 odd 16 inner
425.3.u.c.226.8 yes 96 1.1 even 1 trivial
425.3.u.d.126.5 yes 96 85.24 odd 16
425.3.u.d.226.5 yes 96 5.4 even 2