Properties

Label 425.2.e.a.251.1
Level $425$
Weight $2$
Character 425.251
Analytic conductor $3.394$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(251,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 425.251
Dual form 425.2.e.a.276.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.00000 - 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 - 1.00000i) q^{6} +(-3.00000 + 3.00000i) q^{7} +3.00000i q^{8} -1.00000i q^{9} +(-3.00000 + 3.00000i) q^{11} +(-1.00000 - 1.00000i) q^{12} +(-3.00000 - 3.00000i) q^{14} -1.00000 q^{16} +(4.00000 + 1.00000i) q^{17} +1.00000 q^{18} +6.00000i q^{19} +6.00000 q^{21} +(-3.00000 - 3.00000i) q^{22} +(-1.00000 + 1.00000i) q^{23} +(3.00000 - 3.00000i) q^{24} +(-4.00000 + 4.00000i) q^{27} +(-3.00000 + 3.00000i) q^{28} +(3.00000 + 3.00000i) q^{29} +(-1.00000 - 1.00000i) q^{31} +5.00000i q^{32} +6.00000 q^{33} +(-1.00000 + 4.00000i) q^{34} -1.00000i q^{36} +(-3.00000 - 3.00000i) q^{37} -6.00000 q^{38} +(-3.00000 + 3.00000i) q^{41} +6.00000i q^{42} -12.0000i q^{43} +(-3.00000 + 3.00000i) q^{44} +(-1.00000 - 1.00000i) q^{46} +2.00000 q^{47} +(1.00000 + 1.00000i) q^{48} -11.0000i q^{49} +(-3.00000 - 5.00000i) q^{51} +2.00000i q^{53} +(-4.00000 - 4.00000i) q^{54} +(-9.00000 - 9.00000i) q^{56} +(6.00000 - 6.00000i) q^{57} +(-3.00000 + 3.00000i) q^{58} +6.00000i q^{59} +(1.00000 - 1.00000i) q^{61} +(1.00000 - 1.00000i) q^{62} +(3.00000 + 3.00000i) q^{63} -7.00000 q^{64} +6.00000i q^{66} +6.00000 q^{67} +(4.00000 + 1.00000i) q^{68} +2.00000 q^{69} +(3.00000 + 3.00000i) q^{71} +3.00000 q^{72} +(3.00000 + 3.00000i) q^{73} +(3.00000 - 3.00000i) q^{74} +6.00000i q^{76} -18.0000i q^{77} +(7.00000 - 7.00000i) q^{79} +5.00000 q^{81} +(-3.00000 - 3.00000i) q^{82} -4.00000i q^{83} +6.00000 q^{84} +12.0000 q^{86} -6.00000i q^{87} +(-9.00000 - 9.00000i) q^{88} -6.00000 q^{89} +(-1.00000 + 1.00000i) q^{92} +2.00000i q^{93} +2.00000i q^{94} +(5.00000 - 5.00000i) q^{96} +(-3.00000 - 3.00000i) q^{97} +11.0000 q^{98} +(3.00000 + 3.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} + 2 q^{6} - 6 q^{7} - 6 q^{11} - 2 q^{12} - 6 q^{14} - 2 q^{16} + 8 q^{17} + 2 q^{18} + 12 q^{21} - 6 q^{22} - 2 q^{23} + 6 q^{24} - 8 q^{27} - 6 q^{28} + 6 q^{29} - 2 q^{31} + 12 q^{33}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) −1.00000 1.00000i −0.577350 0.577350i 0.356822 0.934172i \(-0.383860\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 1.00000i 0.408248 0.408248i
\(7\) −3.00000 + 3.00000i −1.13389 + 1.13389i −0.144370 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −3.00000 + 3.00000i −0.904534 + 0.904534i −0.995824 0.0912903i \(-0.970901\pi\)
0.0912903 + 0.995824i \(0.470901\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −3.00000 3.00000i −0.801784 0.801784i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.00000 + 1.00000i 0.970143 + 0.242536i
\(18\) 1.00000 0.235702
\(19\) 6.00000i 1.37649i 0.725476 + 0.688247i \(0.241620\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) 0 0
\(21\) 6.00000 1.30931
\(22\) −3.00000 3.00000i −0.639602 0.639602i
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) 3.00000 3.00000i 0.612372 0.612372i
\(25\) 0 0
\(26\) 0 0
\(27\) −4.00000 + 4.00000i −0.769800 + 0.769800i
\(28\) −3.00000 + 3.00000i −0.566947 + 0.566947i
\(29\) 3.00000 + 3.00000i 0.557086 + 0.557086i 0.928477 0.371391i \(-0.121119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −1.00000 1.00000i −0.179605 0.179605i 0.611578 0.791184i \(-0.290535\pi\)
−0.791184 + 0.611578i \(0.790535\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 6.00000 1.04447
\(34\) −1.00000 + 4.00000i −0.171499 + 0.685994i
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 + 3.00000i −0.468521 + 0.468521i −0.901435 0.432914i \(-0.857485\pi\)
0.432914 + 0.901435i \(0.357485\pi\)
\(42\) 6.00000i 0.925820i
\(43\) 12.0000i 1.82998i −0.403473 0.914991i \(-0.632197\pi\)
0.403473 0.914991i \(-0.367803\pi\)
\(44\) −3.00000 + 3.00000i −0.452267 + 0.452267i
\(45\) 0 0
\(46\) −1.00000 1.00000i −0.147442 0.147442i
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 1.00000 + 1.00000i 0.144338 + 0.144338i
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −3.00000 5.00000i −0.420084 0.700140i
\(52\) 0 0
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) 0 0
\(56\) −9.00000 9.00000i −1.20268 1.20268i
\(57\) 6.00000 6.00000i 0.794719 0.794719i
\(58\) −3.00000 + 3.00000i −0.393919 + 0.393919i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) 1.00000 1.00000i 0.128037 0.128037i −0.640184 0.768221i \(-0.721142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 1.00000 1.00000i 0.127000 0.127000i
\(63\) 3.00000 + 3.00000i 0.377964 + 0.377964i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 6.00000i 0.738549i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 4.00000 + 1.00000i 0.485071 + 0.121268i
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 3.00000 + 3.00000i 0.356034 + 0.356034i 0.862349 0.506314i \(-0.168992\pi\)
−0.506314 + 0.862349i \(0.668992\pi\)
\(72\) 3.00000 0.353553
\(73\) 3.00000 + 3.00000i 0.351123 + 0.351123i 0.860527 0.509404i \(-0.170134\pi\)
−0.509404 + 0.860527i \(0.670134\pi\)
\(74\) 3.00000 3.00000i 0.348743 0.348743i
\(75\) 0 0
\(76\) 6.00000i 0.688247i
\(77\) 18.0000i 2.05129i
\(78\) 0 0
\(79\) 7.00000 7.00000i 0.787562 0.787562i −0.193532 0.981094i \(-0.561994\pi\)
0.981094 + 0.193532i \(0.0619944\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) −3.00000 3.00000i −0.331295 0.331295i
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 6.00000 0.654654
\(85\) 0 0
\(86\) 12.0000 1.29399
\(87\) 6.00000i 0.643268i
\(88\) −9.00000 9.00000i −0.959403 0.959403i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.00000 + 1.00000i −0.104257 + 0.104257i
\(93\) 2.00000i 0.207390i
\(94\) 2.00000i 0.206284i
\(95\) 0 0
\(96\) 5.00000 5.00000i 0.510310 0.510310i
\(97\) −3.00000 3.00000i −0.304604 0.304604i 0.538208 0.842812i \(-0.319101\pi\)
−0.842812 + 0.538208i \(0.819101\pi\)
\(98\) 11.0000 1.11117
\(99\) 3.00000 + 3.00000i 0.301511 + 0.301511i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 5.00000 3.00000i 0.495074 0.297044i
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 9.00000 + 9.00000i 0.870063 + 0.870063i 0.992479 0.122416i \(-0.0390642\pi\)
−0.122416 + 0.992479i \(0.539064\pi\)
\(108\) −4.00000 + 4.00000i −0.384900 + 0.384900i
\(109\) 7.00000 7.00000i 0.670478 0.670478i −0.287348 0.957826i \(-0.592774\pi\)
0.957826 + 0.287348i \(0.0927736\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) 3.00000 3.00000i 0.283473 0.283473i
\(113\) 9.00000 9.00000i 0.846649 0.846649i −0.143065 0.989713i \(-0.545696\pi\)
0.989713 + 0.143065i \(0.0456957\pi\)
\(114\) 6.00000 + 6.00000i 0.561951 + 0.561951i
\(115\) 0 0
\(116\) 3.00000 + 3.00000i 0.278543 + 0.278543i
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) −15.0000 + 9.00000i −1.37505 + 0.825029i
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 1.00000 + 1.00000i 0.0905357 + 0.0905357i
\(123\) 6.00000 0.541002
\(124\) −1.00000 1.00000i −0.0898027 0.0898027i
\(125\) 0 0
\(126\) −3.00000 + 3.00000i −0.267261 + 0.267261i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −12.0000 + 12.0000i −1.05654 + 1.05654i
\(130\) 0 0
\(131\) 3.00000 + 3.00000i 0.262111 + 0.262111i 0.825911 0.563800i \(-0.190661\pi\)
−0.563800 + 0.825911i \(0.690661\pi\)
\(132\) 6.00000 0.522233
\(133\) −18.0000 18.0000i −1.56080 1.56080i
\(134\) 6.00000i 0.518321i
\(135\) 0 0
\(136\) −3.00000 + 12.0000i −0.257248 + 1.02899i
\(137\) 4.00000 0.341743 0.170872 0.985293i \(-0.445342\pi\)
0.170872 + 0.985293i \(0.445342\pi\)
\(138\) 2.00000i 0.170251i
\(139\) −7.00000 7.00000i −0.593732 0.593732i 0.344905 0.938638i \(-0.387911\pi\)
−0.938638 + 0.344905i \(0.887911\pi\)
\(140\) 0 0
\(141\) −2.00000 2.00000i −0.168430 0.168430i
\(142\) −3.00000 + 3.00000i −0.251754 + 0.251754i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −3.00000 + 3.00000i −0.248282 + 0.248282i
\(147\) −11.0000 + 11.0000i −0.907265 + 0.907265i
\(148\) −3.00000 3.00000i −0.246598 0.246598i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) −18.0000 −1.45999
\(153\) 1.00000 4.00000i 0.0808452 0.323381i
\(154\) 18.0000 1.45048
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 7.00000 + 7.00000i 0.556890 + 0.556890i
\(159\) 2.00000 2.00000i 0.158610 0.158610i
\(160\) 0 0
\(161\) 6.00000i 0.472866i
\(162\) 5.00000i 0.392837i
\(163\) −9.00000 + 9.00000i −0.704934 + 0.704934i −0.965465 0.260531i \(-0.916102\pi\)
0.260531 + 0.965465i \(0.416102\pi\)
\(164\) −3.00000 + 3.00000i −0.234261 + 0.234261i
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) −3.00000 3.00000i −0.232147 0.232147i 0.581441 0.813588i \(-0.302489\pi\)
−0.813588 + 0.581441i \(0.802489\pi\)
\(168\) 18.0000i 1.38873i
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 12.0000i 0.914991i
\(173\) 15.0000 + 15.0000i 1.14043 + 1.14043i 0.988372 + 0.152057i \(0.0485898\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 3.00000 3.00000i 0.226134 0.226134i
\(177\) 6.00000 6.00000i 0.450988 0.450988i
\(178\) 6.00000i 0.449719i
\(179\) 6.00000i 0.448461i 0.974536 + 0.224231i \(0.0719869\pi\)
−0.974536 + 0.224231i \(0.928013\pi\)
\(180\) 0 0
\(181\) −11.0000 + 11.0000i −0.817624 + 0.817624i −0.985763 0.168140i \(-0.946224\pi\)
0.168140 + 0.985763i \(0.446224\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) −3.00000 3.00000i −0.221163 0.221163i
\(185\) 0 0
\(186\) −2.00000 −0.146647
\(187\) −15.0000 + 9.00000i −1.09691 + 0.658145i
\(188\) 2.00000 0.145865
\(189\) 24.0000i 1.74574i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 7.00000 + 7.00000i 0.505181 + 0.505181i
\(193\) −3.00000 + 3.00000i −0.215945 + 0.215945i −0.806787 0.590842i \(-0.798796\pi\)
0.590842 + 0.806787i \(0.298796\pi\)
\(194\) 3.00000 3.00000i 0.215387 0.215387i
\(195\) 0 0
\(196\) 11.0000i 0.785714i
\(197\) −13.0000 + 13.0000i −0.926212 + 0.926212i −0.997459 0.0712470i \(-0.977302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) −3.00000 + 3.00000i −0.213201 + 0.213201i
\(199\) 1.00000 + 1.00000i 0.0708881 + 0.0708881i 0.741662 0.670774i \(-0.234038\pi\)
−0.670774 + 0.741662i \(0.734038\pi\)
\(200\) 0 0
\(201\) −6.00000 6.00000i −0.423207 0.423207i
\(202\) 6.00000i 0.422159i
\(203\) −18.0000 −1.26335
\(204\) −3.00000 5.00000i −0.210042 0.350070i
\(205\) 0 0
\(206\) 6.00000i 0.418040i
\(207\) 1.00000 + 1.00000i 0.0695048 + 0.0695048i
\(208\) 0 0
\(209\) −18.0000 18.0000i −1.24509 1.24509i
\(210\) 0 0
\(211\) 17.0000 17.0000i 1.17033 1.17033i 0.188197 0.982131i \(-0.439736\pi\)
0.982131 0.188197i \(-0.0602643\pi\)
\(212\) 2.00000i 0.137361i
\(213\) 6.00000i 0.411113i
\(214\) −9.00000 + 9.00000i −0.615227 + 0.615227i
\(215\) 0 0
\(216\) −12.0000 12.0000i −0.816497 0.816497i
\(217\) 6.00000 0.407307
\(218\) 7.00000 + 7.00000i 0.474100 + 0.474100i
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 0 0
\(222\) −6.00000 −0.402694
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −15.0000 15.0000i −1.00223 1.00223i
\(225\) 0 0
\(226\) 9.00000 + 9.00000i 0.598671 + 0.598671i
\(227\) −15.0000 + 15.0000i −0.995585 + 0.995585i −0.999990 0.00440533i \(-0.998598\pi\)
0.00440533 + 0.999990i \(0.498598\pi\)
\(228\) 6.00000 6.00000i 0.397360 0.397360i
\(229\) 24.0000i 1.58596i 0.609245 + 0.792982i \(0.291473\pi\)
−0.609245 + 0.792982i \(0.708527\pi\)
\(230\) 0 0
\(231\) −18.0000 + 18.0000i −1.18431 + 1.18431i
\(232\) −9.00000 + 9.00000i −0.590879 + 0.590879i
\(233\) −5.00000 5.00000i −0.327561 0.327561i 0.524097 0.851658i \(-0.324403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000i 0.390567i
\(237\) −14.0000 −0.909398
\(238\) −9.00000 15.0000i −0.583383 0.972306i
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −19.0000 19.0000i −1.22390 1.22390i −0.966235 0.257663i \(-0.917048\pi\)
−0.257663 0.966235i \(-0.582952\pi\)
\(242\) 7.00000 0.449977
\(243\) 7.00000 + 7.00000i 0.449050 + 0.449050i
\(244\) 1.00000 1.00000i 0.0640184 0.0640184i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 0 0
\(248\) 3.00000 3.00000i 0.190500 0.190500i
\(249\) −4.00000 + 4.00000i −0.253490 + 0.253490i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 3.00000 + 3.00000i 0.188982 + 0.188982i
\(253\) 6.00000i 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 14.0000i 0.873296i 0.899632 + 0.436648i \(0.143834\pi\)
−0.899632 + 0.436648i \(0.856166\pi\)
\(258\) −12.0000 12.0000i −0.747087 0.747087i
\(259\) 18.0000 1.11847
\(260\) 0 0
\(261\) 3.00000 3.00000i 0.185695 0.185695i
\(262\) −3.00000 + 3.00000i −0.185341 + 0.185341i
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 18.0000i 1.10782i
\(265\) 0 0
\(266\) 18.0000 18.0000i 1.10365 1.10365i
\(267\) 6.00000 + 6.00000i 0.367194 + 0.367194i
\(268\) 6.00000 0.366508
\(269\) 3.00000 + 3.00000i 0.182913 + 0.182913i 0.792624 0.609711i \(-0.208714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) −4.00000 1.00000i −0.242536 0.0606339i
\(273\) 0 0
\(274\) 4.00000i 0.241649i
\(275\) 0 0
\(276\) 2.00000 0.120386
\(277\) 21.0000 + 21.0000i 1.26177 + 1.26177i 0.950236 + 0.311532i \(0.100842\pi\)
0.311532 + 0.950236i \(0.399158\pi\)
\(278\) 7.00000 7.00000i 0.419832 0.419832i
\(279\) −1.00000 + 1.00000i −0.0598684 + 0.0598684i
\(280\) 0 0
\(281\) 24.0000i 1.43172i 0.698244 + 0.715860i \(0.253965\pi\)
−0.698244 + 0.715860i \(0.746035\pi\)
\(282\) 2.00000 2.00000i 0.119098 0.119098i
\(283\) −9.00000 + 9.00000i −0.534994 + 0.534994i −0.922055 0.387060i \(-0.873491\pi\)
0.387060 + 0.922055i \(0.373491\pi\)
\(284\) 3.00000 + 3.00000i 0.178017 + 0.178017i
\(285\) 0 0
\(286\) 0 0
\(287\) 18.0000i 1.06251i
\(288\) 5.00000 0.294628
\(289\) 15.0000 + 8.00000i 0.882353 + 0.470588i
\(290\) 0 0
\(291\) 6.00000i 0.351726i
\(292\) 3.00000 + 3.00000i 0.175562 + 0.175562i
\(293\) 4.00000 0.233682 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) −11.0000 11.0000i −0.641533 0.641533i
\(295\) 0 0
\(296\) 9.00000 9.00000i 0.523114 0.523114i
\(297\) 24.0000i 1.39262i
\(298\) 18.0000i 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) 36.0000 + 36.0000i 2.07501 + 2.07501i
\(302\) 10.0000 0.575435
\(303\) 6.00000 + 6.00000i 0.344691 + 0.344691i
\(304\) 6.00000i 0.344124i
\(305\) 0 0
\(306\) 4.00000 + 1.00000i 0.228665 + 0.0571662i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 18.0000i 1.02565i
\(309\) −6.00000 6.00000i −0.341328 0.341328i
\(310\) 0 0
\(311\) 3.00000 + 3.00000i 0.170114 + 0.170114i 0.787030 0.616915i \(-0.211618\pi\)
−0.616915 + 0.787030i \(0.711618\pi\)
\(312\) 0 0
\(313\) −3.00000 + 3.00000i −0.169570 + 0.169570i −0.786790 0.617220i \(-0.788259\pi\)
0.617220 + 0.786790i \(0.288259\pi\)
\(314\) 12.0000i 0.677199i
\(315\) 0 0
\(316\) 7.00000 7.00000i 0.393781 0.393781i
\(317\) 15.0000 15.0000i 0.842484 0.842484i −0.146697 0.989181i \(-0.546864\pi\)
0.989181 + 0.146697i \(0.0468644\pi\)
\(318\) 2.00000 + 2.00000i 0.112154 + 0.112154i
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 18.0000i 1.00466i
\(322\) 6.00000 0.334367
\(323\) −6.00000 + 24.0000i −0.333849 + 1.33540i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) −9.00000 9.00000i −0.498464 0.498464i
\(327\) −14.0000 −0.774202
\(328\) −9.00000 9.00000i −0.496942 0.496942i
\(329\) −6.00000 + 6.00000i −0.330791 + 0.330791i
\(330\) 0 0
\(331\) 18.0000i 0.989369i 0.869072 + 0.494685i \(0.164716\pi\)
−0.869072 + 0.494685i \(0.835284\pi\)
\(332\) 4.00000i 0.219529i
\(333\) −3.00000 + 3.00000i −0.164399 + 0.164399i
\(334\) 3.00000 3.00000i 0.164153 0.164153i
\(335\) 0 0
\(336\) −6.00000 −0.327327
\(337\) −15.0000 15.0000i −0.817102 0.817102i 0.168585 0.985687i \(-0.446080\pi\)
−0.985687 + 0.168585i \(0.946080\pi\)
\(338\) 13.0000i 0.707107i
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 6.00000i 0.324443i
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 36.0000 1.94099
\(345\) 0 0
\(346\) −15.0000 + 15.0000i −0.806405 + 0.806405i
\(347\) 9.00000 9.00000i 0.483145 0.483145i −0.422989 0.906135i \(-0.639019\pi\)
0.906135 + 0.422989i \(0.139019\pi\)
\(348\) 6.00000i 0.321634i
\(349\) 28.0000i 1.49881i 0.662114 + 0.749403i \(0.269659\pi\)
−0.662114 + 0.749403i \(0.730341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −15.0000 15.0000i −0.799503 0.799503i
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 6.00000 + 6.00000i 0.318896 + 0.318896i
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 24.0000 + 6.00000i 1.27021 + 0.317554i
\(358\) −6.00000 −0.317110
\(359\) 30.0000i 1.58334i −0.610949 0.791670i \(-0.709212\pi\)
0.610949 0.791670i \(-0.290788\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) −11.0000 11.0000i −0.578147 0.578147i
\(363\) −7.00000 + 7.00000i −0.367405 + 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 2.00000i 0.104542i
\(367\) −3.00000 + 3.00000i −0.156599 + 0.156599i −0.781058 0.624459i \(-0.785320\pi\)
0.624459 + 0.781058i \(0.285320\pi\)
\(368\) 1.00000 1.00000i 0.0521286 0.0521286i
\(369\) 3.00000 + 3.00000i 0.156174 + 0.156174i
\(370\) 0 0
\(371\) −6.00000 6.00000i −0.311504 0.311504i
\(372\) 2.00000i 0.103695i
\(373\) 24.0000 1.24267 0.621336 0.783544i \(-0.286590\pi\)
0.621336 + 0.783544i \(0.286590\pi\)
\(374\) −9.00000 15.0000i −0.465379 0.775632i
\(375\) 0 0
\(376\) 6.00000i 0.309426i
\(377\) 0 0
\(378\) 24.0000 1.23443
\(379\) −11.0000 11.0000i −0.565032 0.565032i 0.365701 0.930733i \(-0.380829\pi\)
−0.930733 + 0.365701i \(0.880829\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.0000i 0.817562i −0.912633 0.408781i \(-0.865954\pi\)
0.912633 0.408781i \(-0.134046\pi\)
\(384\) 3.00000 3.00000i 0.153093 0.153093i
\(385\) 0 0
\(386\) −3.00000 3.00000i −0.152696 0.152696i
\(387\) −12.0000 −0.609994
\(388\) −3.00000 3.00000i −0.152302 0.152302i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −5.00000 + 3.00000i −0.252861 + 0.151717i
\(392\) 33.0000 1.66675
\(393\) 6.00000i 0.302660i
\(394\) −13.0000 13.0000i −0.654931 0.654931i
\(395\) 0 0
\(396\) 3.00000 + 3.00000i 0.150756 + 0.150756i
\(397\) 27.0000 27.0000i 1.35509 1.35509i 0.475229 0.879862i \(-0.342365\pi\)
0.879862 0.475229i \(-0.157635\pi\)
\(398\) −1.00000 + 1.00000i −0.0501255 + 0.0501255i
\(399\) 36.0000i 1.80225i
\(400\) 0 0
\(401\) 9.00000 9.00000i 0.449439 0.449439i −0.445729 0.895168i \(-0.647056\pi\)
0.895168 + 0.445729i \(0.147056\pi\)
\(402\) 6.00000 6.00000i 0.299253 0.299253i
\(403\) 0 0
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 18.0000i 0.893325i
\(407\) 18.0000 0.892227
\(408\) 15.0000 9.00000i 0.742611 0.445566i
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) −4.00000 4.00000i −0.197305 0.197305i
\(412\) 6.00000 0.295599
\(413\) −18.0000 18.0000i −0.885722 0.885722i
\(414\) −1.00000 + 1.00000i −0.0491473 + 0.0491473i
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000i 0.685583i
\(418\) 18.0000 18.0000i 0.880409 0.880409i
\(419\) 15.0000 15.0000i 0.732798 0.732798i −0.238375 0.971173i \(-0.576615\pi\)
0.971173 + 0.238375i \(0.0766148\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 17.0000 + 17.0000i 0.827547 + 0.827547i
\(423\) 2.00000i 0.0972433i
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 6.00000 0.290701
\(427\) 6.00000i 0.290360i
\(428\) 9.00000 + 9.00000i 0.435031 + 0.435031i
\(429\) 0 0
\(430\) 0 0
\(431\) 9.00000 9.00000i 0.433515 0.433515i −0.456307 0.889822i \(-0.650828\pi\)
0.889822 + 0.456307i \(0.150828\pi\)
\(432\) 4.00000 4.00000i 0.192450 0.192450i
\(433\) 30.0000i 1.44171i −0.693087 0.720854i \(-0.743750\pi\)
0.693087 0.720854i \(-0.256250\pi\)
\(434\) 6.00000i 0.288009i
\(435\) 0 0
\(436\) 7.00000 7.00000i 0.335239 0.335239i
\(437\) −6.00000 6.00000i −0.287019 0.287019i
\(438\) 6.00000 0.286691
\(439\) −19.0000 19.0000i −0.906821 0.906821i 0.0891938 0.996014i \(-0.471571\pi\)
−0.996014 + 0.0891938i \(0.971571\pi\)
\(440\) 0 0
\(441\) −11.0000 −0.523810
\(442\) 0 0
\(443\) −22.0000 −1.04525 −0.522626 0.852562i \(-0.675047\pi\)
−0.522626 + 0.852562i \(0.675047\pi\)
\(444\) 6.00000i 0.284747i
\(445\) 0 0
\(446\) 0 0
\(447\) −18.0000 18.0000i −0.851371 0.851371i
\(448\) 21.0000 21.0000i 0.992157 0.992157i
\(449\) 15.0000 15.0000i 0.707894 0.707894i −0.258198 0.966092i \(-0.583129\pi\)
0.966092 + 0.258198i \(0.0831288\pi\)
\(450\) 0 0
\(451\) 18.0000i 0.847587i
\(452\) 9.00000 9.00000i 0.423324 0.423324i
\(453\) −10.0000 + 10.0000i −0.469841 + 0.469841i
\(454\) −15.0000 15.0000i −0.703985 0.703985i
\(455\) 0 0
\(456\) 18.0000 + 18.0000i 0.842927 + 0.842927i
\(457\) 6.00000i 0.280668i 0.990104 + 0.140334i \(0.0448177\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(458\) −24.0000 −1.12145
\(459\) −20.0000 + 12.0000i −0.933520 + 0.560112i
\(460\) 0 0
\(461\) 12.0000i 0.558896i −0.960161 0.279448i \(-0.909849\pi\)
0.960161 0.279448i \(-0.0901514\pi\)
\(462\) −18.0000 18.0000i −0.837436 0.837436i
\(463\) −18.0000 −0.836531 −0.418265 0.908325i \(-0.637362\pi\)
−0.418265 + 0.908325i \(0.637362\pi\)
\(464\) −3.00000 3.00000i −0.139272 0.139272i
\(465\) 0 0
\(466\) 5.00000 5.00000i 0.231621 0.231621i
\(467\) 28.0000i 1.29569i 0.761774 + 0.647843i \(0.224329\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(468\) 0 0
\(469\) −18.0000 + 18.0000i −0.831163 + 0.831163i
\(470\) 0 0
\(471\) −12.0000 12.0000i −0.552931 0.552931i
\(472\) −18.0000 −0.828517
\(473\) 36.0000 + 36.0000i 1.65528 + 1.65528i
\(474\) 14.0000i 0.643041i
\(475\) 0 0
\(476\) −15.0000 + 9.00000i −0.687524 + 0.412514i
\(477\) 2.00000 0.0915737
\(478\) 24.0000i 1.09773i
\(479\) 9.00000 + 9.00000i 0.411220 + 0.411220i 0.882164 0.470943i \(-0.156086\pi\)
−0.470943 + 0.882164i \(0.656086\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 19.0000 19.0000i 0.865426 0.865426i
\(483\) −6.00000 + 6.00000i −0.273009 + 0.273009i
\(484\) 7.00000i 0.318182i
\(485\) 0 0
\(486\) −7.00000 + 7.00000i −0.317526 + 0.317526i
\(487\) −3.00000 + 3.00000i −0.135943 + 0.135943i −0.771804 0.635861i \(-0.780645\pi\)
0.635861 + 0.771804i \(0.280645\pi\)
\(488\) 3.00000 + 3.00000i 0.135804 + 0.135804i
\(489\) 18.0000 0.813988
\(490\) 0 0
\(491\) 6.00000i 0.270776i −0.990793 0.135388i \(-0.956772\pi\)
0.990793 0.135388i \(-0.0432281\pi\)
\(492\) 6.00000 0.270501
\(493\) 9.00000 + 15.0000i 0.405340 + 0.675566i
\(494\) 0 0
\(495\) 0 0
\(496\) 1.00000 + 1.00000i 0.0449013 + 0.0449013i
\(497\) −18.0000 −0.807410
\(498\) −4.00000 4.00000i −0.179244 0.179244i
\(499\) 23.0000 23.0000i 1.02962 1.02962i 0.0300737 0.999548i \(-0.490426\pi\)
0.999548 0.0300737i \(-0.00957421\pi\)
\(500\) 0 0
\(501\) 6.00000i 0.268060i
\(502\) 12.0000i 0.535586i
\(503\) 3.00000 3.00000i 0.133763 0.133763i −0.637055 0.770818i \(-0.719848\pi\)
0.770818 + 0.637055i \(0.219848\pi\)
\(504\) −9.00000 + 9.00000i −0.400892 + 0.400892i
\(505\) 0 0
\(506\) 6.00000 0.266733
\(507\) 13.0000 + 13.0000i 0.577350 + 0.577350i
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) 11.0000i 0.486136i
\(513\) −24.0000 24.0000i −1.05963 1.05963i
\(514\) −14.0000 −0.617514
\(515\) 0 0
\(516\) −12.0000 + 12.0000i −0.528271 + 0.528271i
\(517\) −6.00000 + 6.00000i −0.263880 + 0.263880i
\(518\) 18.0000i 0.790875i
\(519\) 30.0000i 1.31685i
\(520\) 0 0
\(521\) 9.00000 9.00000i 0.394297 0.394297i −0.481919 0.876216i \(-0.660060\pi\)
0.876216 + 0.481919i \(0.160060\pi\)
\(522\) 3.00000 + 3.00000i 0.131306 + 0.131306i
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 3.00000 + 3.00000i 0.131056 + 0.131056i
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) −3.00000 5.00000i −0.130682 0.217803i
\(528\) −6.00000 −0.261116
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) −18.0000 18.0000i −0.780399 0.780399i
\(533\) 0 0
\(534\) −6.00000 + 6.00000i −0.259645 + 0.259645i
\(535\) 0 0
\(536\) 18.0000i 0.777482i
\(537\) 6.00000 6.00000i 0.258919 0.258919i
\(538\) −3.00000 + 3.00000i −0.129339 + 0.129339i
\(539\) 33.0000 + 33.0000i 1.42141 + 1.42141i
\(540\) 0 0
\(541\) 1.00000 + 1.00000i 0.0429934 + 0.0429934i 0.728277 0.685283i \(-0.240322\pi\)
−0.685283 + 0.728277i \(0.740322\pi\)
\(542\) 24.0000i 1.03089i
\(543\) 22.0000 0.944110
\(544\) −5.00000 + 20.0000i −0.214373 + 0.857493i
\(545\) 0 0
\(546\) 0 0
\(547\) 9.00000 + 9.00000i 0.384812 + 0.384812i 0.872832 0.488020i \(-0.162281\pi\)
−0.488020 + 0.872832i \(0.662281\pi\)
\(548\) 4.00000 0.170872
\(549\) −1.00000 1.00000i −0.0426790 0.0426790i
\(550\) 0 0
\(551\) −18.0000 + 18.0000i −0.766826 + 0.766826i
\(552\) 6.00000i 0.255377i
\(553\) 42.0000i 1.78602i
\(554\) −21.0000 + 21.0000i −0.892205 + 0.892205i
\(555\) 0 0
\(556\) −7.00000 7.00000i −0.296866 0.296866i
\(557\) −32.0000 −1.35588 −0.677942 0.735116i \(-0.737128\pi\)
−0.677942 + 0.735116i \(0.737128\pi\)
\(558\) −1.00000 1.00000i −0.0423334 0.0423334i
\(559\) 0 0
\(560\) 0 0
\(561\) 24.0000 + 6.00000i 1.01328 + 0.253320i
\(562\) −24.0000 −1.01238
\(563\) 28.0000i 1.18006i −0.807382 0.590030i \(-0.799116\pi\)
0.807382 0.590030i \(-0.200884\pi\)
\(564\) −2.00000 2.00000i −0.0842152 0.0842152i
\(565\) 0 0
\(566\) −9.00000 9.00000i −0.378298 0.378298i
\(567\) −15.0000 + 15.0000i −0.629941 + 0.629941i
\(568\) −9.00000 + 9.00000i −0.377632 + 0.377632i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −23.0000 + 23.0000i −0.962520 + 0.962520i −0.999323 0.0368025i \(-0.988283\pi\)
0.0368025 + 0.999323i \(0.488283\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 18.0000 0.751305
\(575\) 0 0
\(576\) 7.00000i 0.291667i
\(577\) 36.0000 1.49870 0.749350 0.662174i \(-0.230366\pi\)
0.749350 + 0.662174i \(0.230366\pi\)
\(578\) −8.00000 + 15.0000i −0.332756 + 0.623918i
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) 12.0000 + 12.0000i 0.497844 + 0.497844i
\(582\) −6.00000 −0.248708
\(583\) −6.00000 6.00000i −0.248495 0.248495i
\(584\) −9.00000 + 9.00000i −0.372423 + 0.372423i
\(585\) 0 0
\(586\) 4.00000i 0.165238i
\(587\) 4.00000i 0.165098i −0.996587 0.0825488i \(-0.973694\pi\)
0.996587 0.0825488i \(-0.0263060\pi\)
\(588\) −11.0000 + 11.0000i −0.453632 + 0.453632i
\(589\) 6.00000 6.00000i 0.247226 0.247226i
\(590\) 0 0
\(591\) 26.0000 1.06950
\(592\) 3.00000 + 3.00000i 0.123299 + 0.123299i
\(593\) 2.00000i 0.0821302i −0.999156 0.0410651i \(-0.986925\pi\)
0.999156 0.0410651i \(-0.0130751\pi\)
\(594\) 24.0000 0.984732
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 2.00000i 0.0818546i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 29.0000 29.0000i 1.18293 1.18293i 0.203954 0.978980i \(-0.434621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) −36.0000 + 36.0000i −1.46725 + 1.46725i
\(603\) 6.00000i 0.244339i
\(604\) 10.0000i 0.406894i
\(605\) 0 0
\(606\) −6.00000 + 6.00000i −0.243733 + 0.243733i
\(607\) 33.0000 + 33.0000i 1.33943 + 1.33943i 0.896612 + 0.442816i \(0.146021\pi\)
0.442816 + 0.896612i \(0.353979\pi\)
\(608\) −30.0000 −1.21666
\(609\) 18.0000 + 18.0000i 0.729397 + 0.729397i
\(610\) 0 0
\(611\) 0 0
\(612\) 1.00000 4.00000i 0.0404226 0.161690i
\(613\) 36.0000 1.45403 0.727013 0.686624i \(-0.240908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 54.0000 2.17572
\(617\) −15.0000 15.0000i −0.603877 0.603877i 0.337462 0.941339i \(-0.390432\pi\)
−0.941339 + 0.337462i \(0.890432\pi\)
\(618\) 6.00000 6.00000i 0.241355 0.241355i
\(619\) −13.0000 + 13.0000i −0.522514 + 0.522514i −0.918330 0.395816i \(-0.870462\pi\)
0.395816 + 0.918330i \(0.370462\pi\)
\(620\) 0 0
\(621\) 8.00000i 0.321029i
\(622\) −3.00000 + 3.00000i −0.120289 + 0.120289i
\(623\) 18.0000 18.0000i 0.721155 0.721155i
\(624\) 0 0
\(625\) 0 0
\(626\) −3.00000 3.00000i −0.119904 0.119904i
\(627\) 36.0000i 1.43770i
\(628\) 12.0000 0.478852
\(629\) −9.00000 15.0000i −0.358854 0.598089i
\(630\) 0 0
\(631\) 34.0000i 1.35352i −0.736204 0.676759i \(-0.763384\pi\)
0.736204 0.676759i \(-0.236616\pi\)
\(632\) 21.0000 + 21.0000i 0.835335 + 0.835335i
\(633\) −34.0000 −1.35138
\(634\) 15.0000 + 15.0000i 0.595726 + 0.595726i
\(635\) 0 0
\(636\) 2.00000 2.00000i 0.0793052 0.0793052i
\(637\) 0 0
\(638\) 18.0000i 0.712627i
\(639\) 3.00000 3.00000i 0.118678 0.118678i
\(640\) 0 0
\(641\) 9.00000 + 9.00000i 0.355479 + 0.355479i 0.862143 0.506665i \(-0.169122\pi\)
−0.506665 + 0.862143i \(0.669122\pi\)
\(642\) 18.0000 0.710403
\(643\) −9.00000 9.00000i −0.354925 0.354925i 0.507013 0.861938i \(-0.330750\pi\)
−0.861938 + 0.507013i \(0.830750\pi\)
\(644\) 6.00000i 0.236433i
\(645\) 0 0
\(646\) −24.0000 6.00000i −0.944267 0.236067i
\(647\) −46.0000 −1.80845 −0.904223 0.427060i \(-0.859549\pi\)
−0.904223 + 0.427060i \(0.859549\pi\)
\(648\) 15.0000i 0.589256i
\(649\) −18.0000 18.0000i −0.706562 0.706562i
\(650\) 0 0
\(651\) −6.00000 6.00000i −0.235159 0.235159i
\(652\) −9.00000 + 9.00000i −0.352467 + 0.352467i
\(653\) 21.0000 21.0000i 0.821794 0.821794i −0.164572 0.986365i \(-0.552624\pi\)
0.986365 + 0.164572i \(0.0526242\pi\)
\(654\) 14.0000i 0.547443i
\(655\) 0 0
\(656\) 3.00000 3.00000i 0.117130 0.117130i
\(657\) 3.00000 3.00000i 0.117041 0.117041i
\(658\) −6.00000 6.00000i −0.233904 0.233904i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 36.0000i 1.40024i 0.714026 + 0.700119i \(0.246870\pi\)
−0.714026 + 0.700119i \(0.753130\pi\)
\(662\) −18.0000 −0.699590
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −3.00000 3.00000i −0.116248 0.116248i
\(667\) −6.00000 −0.232321
\(668\) −3.00000 3.00000i −0.116073 0.116073i
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000i 0.231627i
\(672\) 30.0000i 1.15728i
\(673\) −15.0000 + 15.0000i −0.578208 + 0.578208i −0.934409 0.356202i \(-0.884072\pi\)
0.356202 + 0.934409i \(0.384072\pi\)
\(674\) 15.0000 15.0000i 0.577778 0.577778i
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) −11.0000 11.0000i −0.422764 0.422764i 0.463390 0.886154i \(-0.346633\pi\)
−0.886154 + 0.463390i \(0.846633\pi\)
\(678\) 18.0000i 0.691286i
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) 30.0000 1.14960
\(682\) 6.00000i 0.229752i
\(683\) 15.0000 + 15.0000i 0.573959 + 0.573959i 0.933232 0.359273i \(-0.116975\pi\)
−0.359273 + 0.933232i \(0.616975\pi\)
\(684\) 6.00000 0.229416
\(685\) 0 0
\(686\) −12.0000 + 12.0000i −0.458162 + 0.458162i
\(687\) 24.0000 24.0000i 0.915657 0.915657i
\(688\) 12.0000i 0.457496i
\(689\) 0 0
\(690\) 0 0
\(691\) −19.0000 + 19.0000i −0.722794 + 0.722794i −0.969173 0.246379i \(-0.920759\pi\)
0.246379 + 0.969173i \(0.420759\pi\)
\(692\) 15.0000 + 15.0000i 0.570214 + 0.570214i
\(693\) −18.0000 −0.683763
\(694\) 9.00000 + 9.00000i 0.341635 + 0.341635i
\(695\) 0 0
\(696\) 18.0000 0.682288
\(697\) −15.0000 + 9.00000i −0.568166 + 0.340899i
\(698\) −28.0000 −1.05982
\(699\) 10.0000i 0.378235i
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 18.0000 18.0000i 0.678883 0.678883i
\(704\) 21.0000 21.0000i 0.791467 0.791467i
\(705\) 0 0
\(706\) 16.0000i 0.602168i
\(707\) 18.0000 18.0000i 0.676960 0.676960i
\(708\) 6.00000 6.00000i 0.225494 0.225494i
\(709\) −5.00000 5.00000i −0.187779 0.187779i 0.606956 0.794735i \(-0.292390\pi\)
−0.794735 + 0.606956i \(0.792390\pi\)
\(710\) 0 0
\(711\) −7.00000 7.00000i −0.262521 0.262521i
\(712\) 18.0000i 0.674579i
\(713\) 2.00000 0.0749006
\(714\) −6.00000 + 24.0000i −0.224544 + 0.898177i
\(715\) 0 0
\(716\) 6.00000i 0.224231i
\(717\) −24.0000 24.0000i −0.896296 0.896296i
\(718\) 30.0000 1.11959
\(719\) 21.0000 + 21.0000i 0.783168 + 0.783168i 0.980364 0.197196i \(-0.0631836\pi\)
−0.197196 + 0.980364i \(0.563184\pi\)
\(720\) 0 0
\(721\) −18.0000 + 18.0000i −0.670355 + 0.670355i
\(722\) 17.0000i 0.632674i
\(723\) 38.0000i 1.41324i
\(724\) −11.0000 + 11.0000i −0.408812 + 0.408812i
\(725\) 0 0
\(726\) −7.00000 7.00000i −0.259794 0.259794i
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 12.0000 48.0000i 0.443836 1.77534i
\(732\) −2.00000 −0.0739221
\(733\) 42.0000i 1.55131i 0.631160 + 0.775653i \(0.282579\pi\)
−0.631160 + 0.775653i \(0.717421\pi\)
\(734\) −3.00000 3.00000i −0.110732 0.110732i
\(735\) 0 0
\(736\) −5.00000 5.00000i −0.184302 0.184302i
\(737\) −18.0000 + 18.0000i −0.663039 + 0.663039i
\(738\) −3.00000 + 3.00000i −0.110432 + 0.110432i
\(739\) 34.0000i 1.25071i −0.780340 0.625355i \(-0.784954\pi\)
0.780340 0.625355i \(-0.215046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.00000 6.00000i 0.220267 0.220267i
\(743\) −9.00000 9.00000i −0.330178 0.330178i 0.522476 0.852654i \(-0.325008\pi\)
−0.852654 + 0.522476i \(0.825008\pi\)
\(744\) −6.00000 −0.219971
\(745\) 0 0
\(746\) 24.0000i 0.878702i
\(747\) −4.00000 −0.146352
\(748\) −15.0000 + 9.00000i −0.548454 + 0.329073i
\(749\) −54.0000 −1.97312
\(750\) 0 0
\(751\) 19.0000 + 19.0000i 0.693320 + 0.693320i 0.962961 0.269641i \(-0.0869050\pi\)
−0.269641 + 0.962961i \(0.586905\pi\)
\(752\) −2.00000 −0.0729325
\(753\) 12.0000 + 12.0000i 0.437304 + 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) 24.0000i 0.872872i
\(757\) 42.0000i 1.52652i 0.646094 + 0.763258i \(0.276401\pi\)
−0.646094 + 0.763258i \(0.723599\pi\)
\(758\) 11.0000 11.0000i 0.399538 0.399538i
\(759\) −6.00000 + 6.00000i −0.217786 + 0.217786i
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 42.0000i 1.52050i
\(764\) 0 0
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 0 0
\(768\) 17.0000 + 17.0000i 0.613435 + 0.613435i
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 14.0000 14.0000i 0.504198 0.504198i
\(772\) −3.00000 + 3.00000i −0.107972 + 0.107972i
\(773\) 26.0000i 0.935155i −0.883952 0.467578i \(-0.845127\pi\)
0.883952 0.467578i \(-0.154873\pi\)
\(774\) 12.0000i 0.431331i
\(775\) 0 0
\(776\) 9.00000 9.00000i 0.323081 0.323081i
\(777\) −18.0000 18.0000i −0.645746 0.645746i
\(778\) 0 0
\(779\) −18.0000 18.0000i −0.644917 0.644917i
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) −3.00000 5.00000i −0.107280 0.178800i
\(783\) −24.0000 −0.857690
\(784\) 11.0000i 0.392857i
\(785\) 0 0
\(786\) 6.00000 0.214013
\(787\) −27.0000 27.0000i −0.962446 0.962446i 0.0368739 0.999320i \(-0.488260\pi\)
−0.999320 + 0.0368739i \(0.988260\pi\)
\(788\) −13.0000 + 13.0000i −0.463106 + 0.463106i
\(789\) 16.0000 16.0000i 0.569615 0.569615i
\(790\) 0 0
\(791\) 54.0000i 1.92002i
\(792\) −9.00000 + 9.00000i −0.319801 + 0.319801i
\(793\) 0 0
\(794\) 27.0000 + 27.0000i 0.958194 + 0.958194i
\(795\) 0 0
\(796\) 1.00000 + 1.00000i 0.0354441 + 0.0354441i
\(797\) 34.0000i 1.20434i −0.798367 0.602171i \(-0.794303\pi\)
0.798367 0.602171i \(-0.205697\pi\)
\(798\) −36.0000 −1.27439
\(799\) 8.00000 + 2.00000i 0.283020 + 0.0707549i
\(800\) 0 0
\(801\) 6.00000i 0.212000i
\(802\) 9.00000 + 9.00000i 0.317801 + 0.317801i
\(803\) −18.0000 −0.635206
\(804\) −6.00000 6.00000i −0.211604 0.211604i
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000i 0.211210i
\(808\) 18.0000i 0.633238i
\(809\) 3.00000 3.00000i 0.105474 0.105474i −0.652400 0.757875i \(-0.726238\pi\)
0.757875 + 0.652400i \(0.226238\pi\)
\(810\) 0 0
\(811\) −1.00000 1.00000i −0.0351147 0.0351147i 0.689331 0.724446i \(-0.257904\pi\)
−0.724446 + 0.689331i \(0.757904\pi\)
\(812\) −18.0000 −0.631676
\(813\) −24.0000 24.0000i −0.841717 0.841717i
\(814\) 18.0000i 0.630900i
\(815\) 0 0
\(816\) 3.00000 + 5.00000i 0.105021 + 0.175035i
\(817\) 72.0000 2.51896
\(818\) 30.0000i 1.04893i
\(819\) 0 0
\(820\) 0 0
\(821\) −15.0000 15.0000i −0.523504 0.523504i 0.395124 0.918628i \(-0.370702\pi\)
−0.918628 + 0.395124i \(0.870702\pi\)
\(822\) 4.00000 4.00000i 0.139516 0.139516i
\(823\) 39.0000 39.0000i 1.35945 1.35945i 0.484866 0.874588i \(-0.338868\pi\)
0.874588 0.484866i \(-0.161132\pi\)
\(824\) 18.0000i 0.627060i
\(825\) 0 0
\(826\) 18.0000 18.0000i 0.626300 0.626300i
\(827\) 13.0000 13.0000i 0.452054 0.452054i −0.443982 0.896036i \(-0.646434\pi\)
0.896036 + 0.443982i \(0.146434\pi\)
\(828\) 1.00000 + 1.00000i 0.0347524 + 0.0347524i
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 42.0000i 1.45696i
\(832\) 0 0
\(833\) 11.0000 44.0000i 0.381127 1.52451i
\(834\) −14.0000 −0.484780
\(835\) 0 0
\(836\) −18.0000 18.0000i −0.622543 0.622543i
\(837\) 8.00000 0.276520
\(838\) 15.0000 + 15.0000i 0.518166 + 0.518166i
\(839\) 3.00000 3.00000i 0.103572 0.103572i −0.653422 0.756994i \(-0.726667\pi\)
0.756994 + 0.653422i \(0.226667\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 6.00000i 0.206774i
\(843\) 24.0000 24.0000i 0.826604 0.826604i
\(844\) 17.0000 17.0000i 0.585164 0.585164i
\(845\) 0 0
\(846\) 2.00000 0.0687614
\(847\) 21.0000 + 21.0000i 0.721569 + 0.721569i
\(848\) 2.00000i 0.0686803i
\(849\) 18.0000 0.617758
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 6.00000i 0.205557i
\(853\) 3.00000 + 3.00000i 0.102718 + 0.102718i 0.756598 0.653880i \(-0.226860\pi\)
−0.653880 + 0.756598i \(0.726860\pi\)
\(854\) −6.00000 −0.205316
\(855\) 0 0
\(856\) −27.0000 + 27.0000i −0.922841 + 0.922841i
\(857\) 11.0000 11.0000i 0.375753 0.375753i −0.493814 0.869567i \(-0.664398\pi\)
0.869567 + 0.493814i \(0.164398\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i 0.859109 + 0.511793i \(0.171019\pi\)
−0.859109 + 0.511793i \(0.828981\pi\)
\(860\) 0 0
\(861\) −18.0000 + 18.0000i −0.613438 + 0.613438i
\(862\) 9.00000 + 9.00000i 0.306541 + 0.306541i
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) −20.0000 20.0000i −0.680414 0.680414i
\(865\) 0 0
\(866\) 30.0000 1.01944
\(867\) −7.00000 23.0000i −0.237732 0.781121i
\(868\) 6.00000 0.203653
\(869\) 42.0000i 1.42475i
\(870\) 0 0
\(871\) 0 0
\(872\) 21.0000 + 21.0000i 0.711150 + 0.711150i
\(873\) −3.00000 + 3.00000i −0.101535 + 0.101535i
\(874\) 6.00000 6.00000i 0.202953 0.202953i
\(875\) 0 0
\(876\) 6.00000i 0.202721i
\(877\) 27.0000 27.0000i 0.911725 0.911725i −0.0846827 0.996408i \(-0.526988\pi\)
0.996408 + 0.0846827i \(0.0269877\pi\)
\(878\) 19.0000 19.0000i 0.641219 0.641219i
\(879\) −4.00000 4.00000i −0.134917 0.134917i
\(880\) 0 0
\(881\) −3.00000 3.00000i −0.101073 0.101073i 0.654762 0.755835i \(-0.272769\pi\)
−0.755835 + 0.654762i \(0.772769\pi\)
\(882\) 11.0000i 0.370389i
\(883\) −6.00000 −0.201916 −0.100958 0.994891i \(-0.532191\pi\)
−0.100958 + 0.994891i \(0.532191\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 22.0000i 0.739104i
\(887\) 17.0000 + 17.0000i 0.570804 + 0.570804i 0.932353 0.361549i \(-0.117752\pi\)
−0.361549 + 0.932353i \(0.617752\pi\)
\(888\) −18.0000 −0.604040
\(889\) 0 0
\(890\) 0 0
\(891\) −15.0000 + 15.0000i −0.502519 + 0.502519i
\(892\) 0 0
\(893\) 12.0000i 0.401565i
\(894\) 18.0000 18.0000i 0.602010 0.602010i
\(895\) 0 0
\(896\) −9.00000 9.00000i −0.300669 0.300669i
\(897\) 0 0
\(898\) 15.0000 + 15.0000i 0.500556 + 0.500556i
\(899\) 6.00000i 0.200111i
\(900\) 0 0
\(901\) −2.00000 + 8.00000i −0.0666297 + 0.266519i
\(902\) 18.0000 0.599334
\(903\) 72.0000i 2.39601i
\(904\) 27.0000 + 27.0000i 0.898007 + 0.898007i
\(905\) 0 0
\(906\) −10.0000 10.0000i −0.332228 0.332228i
\(907\) −15.0000 + 15.0000i −0.498067 + 0.498067i −0.910836 0.412769i \(-0.864562\pi\)
0.412769 + 0.910836i \(0.364562\pi\)
\(908\) −15.0000 + 15.0000i −0.497792 + 0.497792i
\(909\) 6.00000i 0.199007i
\(910\) 0 0
\(911\) 21.0000 21.0000i 0.695761 0.695761i −0.267732 0.963493i \(-0.586274\pi\)
0.963493 + 0.267732i \(0.0862743\pi\)
\(912\) −6.00000 + 6.00000i −0.198680 + 0.198680i
\(913\) 12.0000 + 12.0000i 0.397142 + 0.397142i
\(914\) −6.00000 −0.198462
\(915\) 0 0
\(916\) 24.0000i 0.792982i
\(917\) −18.0000 −0.594412
\(918\) −12.0000 20.0000i −0.396059 0.660098i
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 18.0000 + 18.0000i 0.593120 + 0.593120i
\(922\) 12.0000 0.395199
\(923\) 0 0
\(924\) −18.0000 + 18.0000i −0.592157 + 0.592157i
\(925\) 0 0
\(926\) 18.0000i 0.591517i
\(927\) 6.00000i 0.197066i
\(928\) −15.0000 + 15.0000i −0.492399 + 0.492399i
\(929\) −21.0000 + 21.0000i −0.688988 + 0.688988i −0.962008 0.273021i \(-0.911977\pi\)
0.273021 + 0.962008i \(0.411977\pi\)
\(930\) 0 0
\(931\) 66.0000 2.16306
\(932\) −5.00000 5.00000i −0.163780 0.163780i
\(933\) 6.00000i 0.196431i
\(934\) −28.0000 −0.916188
\(935\) 0 0
\(936\) 0 0
\(937\) 18.0000i 0.588034i 0.955800 + 0.294017i \(0.0949923\pi\)
−0.955800 + 0.294017i \(0.905008\pi\)
\(938\) −18.0000 18.0000i −0.587721 0.587721i
\(939\) 6.00000 0.195803
\(940\) 0 0
\(941\) −15.0000 + 15.0000i −0.488986 + 0.488986i −0.907986 0.419000i \(-0.862381\pi\)
0.419000 + 0.907986i \(0.362381\pi\)
\(942\) 12.0000 12.0000i 0.390981 0.390981i
\(943\) 6.00000i 0.195387i
\(944\) 6.00000i 0.195283i
\(945\) 0 0
\(946\) −36.0000 + 36.0000i −1.17046 + 1.17046i
\(947\) −11.0000 11.0000i −0.357452 0.357452i 0.505421 0.862873i \(-0.331337\pi\)
−0.862873 + 0.505421i \(0.831337\pi\)
\(948\) −14.0000 −0.454699
\(949\) 0 0
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) −27.0000 45.0000i −0.875075 1.45846i
\(953\) −4.00000 −0.129573 −0.0647864 0.997899i \(-0.520637\pi\)
−0.0647864 + 0.997899i \(0.520637\pi\)
\(954\) 2.00000i 0.0647524i
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 18.0000 + 18.0000i 0.581857 + 0.581857i
\(958\) −9.00000 + 9.00000i −0.290777 + 0.290777i
\(959\) −12.0000 + 12.0000i −0.387500 + 0.387500i
\(960\) 0 0
\(961\) 29.0000i 0.935484i
\(962\) 0 0
\(963\) 9.00000 9.00000i 0.290021 0.290021i
\(964\) −19.0000 19.0000i −0.611949 0.611949i
\(965\) 0 0
\(966\) −6.00000 6.00000i −0.193047 0.193047i
\(967\) 24.0000i 0.771788i −0.922543 0.385894i \(-0.873893\pi\)
0.922543 0.385894i \(-0.126107\pi\)
\(968\) 21.0000 0.674966
\(969\) 30.0000 18.0000i 0.963739 0.578243i
\(970\) 0 0
\(971\) 42.0000i 1.34784i 0.738802 + 0.673922i \(0.235392\pi\)
−0.738802 + 0.673922i \(0.764608\pi\)
\(972\) 7.00000 + 7.00000i 0.224525 + 0.224525i
\(973\) 42.0000 1.34646
\(974\) −3.00000 3.00000i −0.0961262 0.0961262i
\(975\) 0 0
\(976\) −1.00000 + 1.00000i −0.0320092 + 0.0320092i
\(977\) 46.0000i 1.47167i −0.677161 0.735835i \(-0.736790\pi\)
0.677161 0.735835i \(-0.263210\pi\)
\(978\) 18.0000i 0.575577i
\(979\) 18.0000 18.0000i 0.575282 0.575282i
\(980\) 0 0
\(981\) −7.00000 7.00000i −0.223493 0.223493i
\(982\) 6.00000 0.191468
\(983\) −21.0000 21.0000i −0.669796 0.669796i 0.287873 0.957669i \(-0.407052\pi\)
−0.957669 + 0.287873i \(0.907052\pi\)
\(984\) 18.0000i 0.573819i
\(985\) 0 0
\(986\) −15.0000 + 9.00000i −0.477697 + 0.286618i
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) 12.0000 + 12.0000i 0.381578 + 0.381578i
\(990\) 0 0
\(991\) −13.0000 13.0000i −0.412959 0.412959i 0.469809 0.882768i \(-0.344323\pi\)
−0.882768 + 0.469809i \(0.844323\pi\)
\(992\) 5.00000 5.00000i 0.158750 0.158750i
\(993\) 18.0000 18.0000i 0.571213 0.571213i
\(994\) 18.0000i 0.570925i
\(995\) 0 0
\(996\) −4.00000 + 4.00000i −0.126745 + 0.126745i
\(997\) 3.00000 3.00000i 0.0950110 0.0950110i −0.658004 0.753015i \(-0.728599\pi\)
0.753015 + 0.658004i \(0.228599\pi\)
\(998\) 23.0000 + 23.0000i 0.728052 + 0.728052i
\(999\) 24.0000 0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.a.251.1 2
5.2 odd 4 85.2.j.a.64.1 yes 2
5.3 odd 4 85.2.j.b.64.1 yes 2
5.4 even 2 425.2.e.b.251.1 2
15.2 even 4 765.2.t.b.64.1 2
15.8 even 4 765.2.t.a.64.1 2
17.2 even 8 7225.2.a.i.1.1 2
17.4 even 4 inner 425.2.e.a.276.1 2
17.15 even 8 7225.2.a.i.1.2 2
85.2 odd 8 1445.2.b.a.579.2 4
85.4 even 4 425.2.e.b.276.1 2
85.19 even 8 7225.2.a.p.1.2 2
85.32 odd 8 1445.2.b.a.579.1 4
85.38 odd 4 85.2.j.a.4.1 2
85.49 even 8 7225.2.a.p.1.1 2
85.53 odd 8 1445.2.b.a.579.3 4
85.72 odd 4 85.2.j.b.4.1 yes 2
85.83 odd 8 1445.2.b.a.579.4 4
255.38 even 4 765.2.t.b.514.1 2
255.242 even 4 765.2.t.a.514.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.a.4.1 2 85.38 odd 4
85.2.j.a.64.1 yes 2 5.2 odd 4
85.2.j.b.4.1 yes 2 85.72 odd 4
85.2.j.b.64.1 yes 2 5.3 odd 4
425.2.e.a.251.1 2 1.1 even 1 trivial
425.2.e.a.276.1 2 17.4 even 4 inner
425.2.e.b.251.1 2 5.4 even 2
425.2.e.b.276.1 2 85.4 even 4
765.2.t.a.64.1 2 15.8 even 4
765.2.t.a.514.1 2 255.242 even 4
765.2.t.b.64.1 2 15.2 even 4
765.2.t.b.514.1 2 255.38 even 4
1445.2.b.a.579.1 4 85.32 odd 8
1445.2.b.a.579.2 4 85.2 odd 8
1445.2.b.a.579.3 4 85.53 odd 8
1445.2.b.a.579.4 4 85.83 odd 8
7225.2.a.i.1.1 2 17.2 even 8
7225.2.a.i.1.2 2 17.15 even 8
7225.2.a.p.1.1 2 85.49 even 8
7225.2.a.p.1.2 2 85.19 even 8