Properties

Label 4232.2.a.x.1.5
Level $4232$
Weight $2$
Character 4232.1
Self dual yes
Analytic conductor $33.793$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4232,2,Mod(1,4232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4232 = 2^{3} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7926901354\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 157x^{8} - 616x^{6} + 1264x^{4} - 1272x^{2} + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.90564\) of defining polynomial
Character \(\chi\) \(=\) 4232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.368525 q^{3} -1.72190 q^{5} -0.634565 q^{7} -2.86419 q^{9} -6.09935 q^{11} +6.49865 q^{13} -0.634565 q^{15} -2.10696 q^{17} +4.13463 q^{19} -0.233853 q^{21} -2.03505 q^{25} -2.16110 q^{27} +0.137641 q^{29} +6.17402 q^{31} -2.24777 q^{33} +1.09266 q^{35} -9.22178 q^{37} +2.39492 q^{39} -3.58758 q^{41} -5.59880 q^{43} +4.93186 q^{45} +7.61453 q^{47} -6.59733 q^{49} -0.776469 q^{51} +7.23472 q^{53} +10.5025 q^{55} +1.52371 q^{57} -9.94415 q^{59} +1.63915 q^{61} +1.81751 q^{63} -11.1900 q^{65} +13.6926 q^{67} +4.13695 q^{71} +4.17219 q^{73} -0.749968 q^{75} +3.87043 q^{77} -2.88084 q^{79} +7.79615 q^{81} -10.3441 q^{83} +3.62799 q^{85} +0.0507241 q^{87} -1.91162 q^{89} -4.12381 q^{91} +2.27528 q^{93} -7.11942 q^{95} +6.18953 q^{97} +17.4697 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{3} + 8 q^{9} + 16 q^{13} + 4 q^{25} + 8 q^{27} + 8 q^{31} + 56 q^{35} + 64 q^{39} - 40 q^{41} + 32 q^{47} + 28 q^{49} + 64 q^{55} + 60 q^{59} - 32 q^{71} + 28 q^{73} + 16 q^{75} + 24 q^{77}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.368525 0.212768 0.106384 0.994325i \(-0.466073\pi\)
0.106384 + 0.994325i \(0.466073\pi\)
\(4\) 0 0
\(5\) −1.72190 −0.770058 −0.385029 0.922904i \(-0.625809\pi\)
−0.385029 + 0.922904i \(0.625809\pi\)
\(6\) 0 0
\(7\) −0.634565 −0.239843 −0.119921 0.992783i \(-0.538264\pi\)
−0.119921 + 0.992783i \(0.538264\pi\)
\(8\) 0 0
\(9\) −2.86419 −0.954730
\(10\) 0 0
\(11\) −6.09935 −1.83902 −0.919512 0.393062i \(-0.871416\pi\)
−0.919512 + 0.393062i \(0.871416\pi\)
\(12\) 0 0
\(13\) 6.49865 1.80240 0.901201 0.433402i \(-0.142687\pi\)
0.901201 + 0.433402i \(0.142687\pi\)
\(14\) 0 0
\(15\) −0.634565 −0.163844
\(16\) 0 0
\(17\) −2.10696 −0.511014 −0.255507 0.966807i \(-0.582242\pi\)
−0.255507 + 0.966807i \(0.582242\pi\)
\(18\) 0 0
\(19\) 4.13463 0.948548 0.474274 0.880377i \(-0.342711\pi\)
0.474274 + 0.880377i \(0.342711\pi\)
\(20\) 0 0
\(21\) −0.233853 −0.0510309
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −2.03505 −0.407010
\(26\) 0 0
\(27\) −2.16110 −0.415904
\(28\) 0 0
\(29\) 0.137641 0.0255593 0.0127796 0.999918i \(-0.495932\pi\)
0.0127796 + 0.999918i \(0.495932\pi\)
\(30\) 0 0
\(31\) 6.17402 1.10889 0.554443 0.832222i \(-0.312931\pi\)
0.554443 + 0.832222i \(0.312931\pi\)
\(32\) 0 0
\(33\) −2.24777 −0.391286
\(34\) 0 0
\(35\) 1.09266 0.184693
\(36\) 0 0
\(37\) −9.22178 −1.51605 −0.758026 0.652225i \(-0.773836\pi\)
−0.758026 + 0.652225i \(0.773836\pi\)
\(38\) 0 0
\(39\) 2.39492 0.383494
\(40\) 0 0
\(41\) −3.58758 −0.560286 −0.280143 0.959958i \(-0.590382\pi\)
−0.280143 + 0.959958i \(0.590382\pi\)
\(42\) 0 0
\(43\) −5.59880 −0.853809 −0.426904 0.904297i \(-0.640396\pi\)
−0.426904 + 0.904297i \(0.640396\pi\)
\(44\) 0 0
\(45\) 4.93186 0.735198
\(46\) 0 0
\(47\) 7.61453 1.11069 0.555347 0.831619i \(-0.312586\pi\)
0.555347 + 0.831619i \(0.312586\pi\)
\(48\) 0 0
\(49\) −6.59733 −0.942475
\(50\) 0 0
\(51\) −0.776469 −0.108727
\(52\) 0 0
\(53\) 7.23472 0.993766 0.496883 0.867818i \(-0.334478\pi\)
0.496883 + 0.867818i \(0.334478\pi\)
\(54\) 0 0
\(55\) 10.5025 1.41616
\(56\) 0 0
\(57\) 1.52371 0.201821
\(58\) 0 0
\(59\) −9.94415 −1.29462 −0.647309 0.762228i \(-0.724106\pi\)
−0.647309 + 0.762228i \(0.724106\pi\)
\(60\) 0 0
\(61\) 1.63915 0.209872 0.104936 0.994479i \(-0.466536\pi\)
0.104936 + 0.994479i \(0.466536\pi\)
\(62\) 0 0
\(63\) 1.81751 0.228985
\(64\) 0 0
\(65\) −11.1900 −1.38795
\(66\) 0 0
\(67\) 13.6926 1.67282 0.836411 0.548103i \(-0.184650\pi\)
0.836411 + 0.548103i \(0.184650\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.13695 0.490966 0.245483 0.969401i \(-0.421053\pi\)
0.245483 + 0.969401i \(0.421053\pi\)
\(72\) 0 0
\(73\) 4.17219 0.488318 0.244159 0.969735i \(-0.421488\pi\)
0.244159 + 0.969735i \(0.421488\pi\)
\(74\) 0 0
\(75\) −0.749968 −0.0865988
\(76\) 0 0
\(77\) 3.87043 0.441077
\(78\) 0 0
\(79\) −2.88084 −0.324120 −0.162060 0.986781i \(-0.551814\pi\)
−0.162060 + 0.986781i \(0.551814\pi\)
\(80\) 0 0
\(81\) 7.79615 0.866239
\(82\) 0 0
\(83\) −10.3441 −1.13541 −0.567705 0.823232i \(-0.692169\pi\)
−0.567705 + 0.823232i \(0.692169\pi\)
\(84\) 0 0
\(85\) 3.62799 0.393510
\(86\) 0 0
\(87\) 0.0507241 0.00543820
\(88\) 0 0
\(89\) −1.91162 −0.202632 −0.101316 0.994854i \(-0.532305\pi\)
−0.101316 + 0.994854i \(0.532305\pi\)
\(90\) 0 0
\(91\) −4.12381 −0.432293
\(92\) 0 0
\(93\) 2.27528 0.235936
\(94\) 0 0
\(95\) −7.11942 −0.730437
\(96\) 0 0
\(97\) 6.18953 0.628451 0.314226 0.949348i \(-0.398255\pi\)
0.314226 + 0.949348i \(0.398255\pi\)
\(98\) 0 0
\(99\) 17.4697 1.75577
\(100\) 0 0
\(101\) 11.6775 1.16195 0.580976 0.813921i \(-0.302671\pi\)
0.580976 + 0.813921i \(0.302671\pi\)
\(102\) 0 0
\(103\) 10.7801 1.06220 0.531098 0.847311i \(-0.321780\pi\)
0.531098 + 0.847311i \(0.321780\pi\)
\(104\) 0 0
\(105\) 0.402672 0.0392968
\(106\) 0 0
\(107\) 12.0266 1.16266 0.581329 0.813668i \(-0.302533\pi\)
0.581329 + 0.813668i \(0.302533\pi\)
\(108\) 0 0
\(109\) 12.6322 1.20994 0.604971 0.796248i \(-0.293185\pi\)
0.604971 + 0.796248i \(0.293185\pi\)
\(110\) 0 0
\(111\) −3.39846 −0.322567
\(112\) 0 0
\(113\) 11.9070 1.12012 0.560059 0.828453i \(-0.310778\pi\)
0.560059 + 0.828453i \(0.310778\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −18.6134 −1.72081
\(118\) 0 0
\(119\) 1.33700 0.122563
\(120\) 0 0
\(121\) 26.2021 2.38201
\(122\) 0 0
\(123\) −1.32211 −0.119211
\(124\) 0 0
\(125\) 12.1137 1.08348
\(126\) 0 0
\(127\) 4.21736 0.374230 0.187115 0.982338i \(-0.440086\pi\)
0.187115 + 0.982338i \(0.440086\pi\)
\(128\) 0 0
\(129\) −2.06330 −0.181663
\(130\) 0 0
\(131\) 13.4556 1.17562 0.587811 0.808998i \(-0.299990\pi\)
0.587811 + 0.808998i \(0.299990\pi\)
\(132\) 0 0
\(133\) −2.62369 −0.227503
\(134\) 0 0
\(135\) 3.72121 0.320271
\(136\) 0 0
\(137\) 0.974858 0.0832878 0.0416439 0.999133i \(-0.486741\pi\)
0.0416439 + 0.999133i \(0.486741\pi\)
\(138\) 0 0
\(139\) 11.4887 0.974455 0.487227 0.873275i \(-0.338008\pi\)
0.487227 + 0.873275i \(0.338008\pi\)
\(140\) 0 0
\(141\) 2.80615 0.236320
\(142\) 0 0
\(143\) −39.6376 −3.31466
\(144\) 0 0
\(145\) −0.237004 −0.0196821
\(146\) 0 0
\(147\) −2.43128 −0.200529
\(148\) 0 0
\(149\) −21.9309 −1.79665 −0.898327 0.439328i \(-0.855217\pi\)
−0.898327 + 0.439328i \(0.855217\pi\)
\(150\) 0 0
\(151\) 21.3858 1.74035 0.870176 0.492741i \(-0.164005\pi\)
0.870176 + 0.492741i \(0.164005\pi\)
\(152\) 0 0
\(153\) 6.03474 0.487880
\(154\) 0 0
\(155\) −10.6311 −0.853907
\(156\) 0 0
\(157\) 4.03077 0.321691 0.160845 0.986980i \(-0.448578\pi\)
0.160845 + 0.986980i \(0.448578\pi\)
\(158\) 0 0
\(159\) 2.66618 0.211442
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.07630 −0.162628 −0.0813141 0.996689i \(-0.525912\pi\)
−0.0813141 + 0.996689i \(0.525912\pi\)
\(164\) 0 0
\(165\) 3.87043 0.301313
\(166\) 0 0
\(167\) 6.50877 0.503663 0.251832 0.967771i \(-0.418967\pi\)
0.251832 + 0.967771i \(0.418967\pi\)
\(168\) 0 0
\(169\) 29.2324 2.24865
\(170\) 0 0
\(171\) −11.8424 −0.905607
\(172\) 0 0
\(173\) −23.5705 −1.79203 −0.896016 0.444021i \(-0.853551\pi\)
−0.896016 + 0.444021i \(0.853551\pi\)
\(174\) 0 0
\(175\) 1.29137 0.0976185
\(176\) 0 0
\(177\) −3.66467 −0.275453
\(178\) 0 0
\(179\) 19.5642 1.46230 0.731148 0.682219i \(-0.238985\pi\)
0.731148 + 0.682219i \(0.238985\pi\)
\(180\) 0 0
\(181\) 12.0695 0.897121 0.448560 0.893753i \(-0.351937\pi\)
0.448560 + 0.893753i \(0.351937\pi\)
\(182\) 0 0
\(183\) 0.604070 0.0446541
\(184\) 0 0
\(185\) 15.8790 1.16745
\(186\) 0 0
\(187\) 12.8511 0.939767
\(188\) 0 0
\(189\) 1.37136 0.0997517
\(190\) 0 0
\(191\) −3.99790 −0.289278 −0.144639 0.989485i \(-0.546202\pi\)
−0.144639 + 0.989485i \(0.546202\pi\)
\(192\) 0 0
\(193\) −8.97997 −0.646392 −0.323196 0.946332i \(-0.604757\pi\)
−0.323196 + 0.946332i \(0.604757\pi\)
\(194\) 0 0
\(195\) −4.12381 −0.295312
\(196\) 0 0
\(197\) 4.28855 0.305547 0.152773 0.988261i \(-0.451180\pi\)
0.152773 + 0.988261i \(0.451180\pi\)
\(198\) 0 0
\(199\) −1.36952 −0.0970830 −0.0485415 0.998821i \(-0.515457\pi\)
−0.0485415 + 0.998821i \(0.515457\pi\)
\(200\) 0 0
\(201\) 5.04608 0.355923
\(202\) 0 0
\(203\) −0.0873420 −0.00613021
\(204\) 0 0
\(205\) 6.17746 0.431453
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −25.2185 −1.74440
\(210\) 0 0
\(211\) −26.0920 −1.79624 −0.898122 0.439745i \(-0.855069\pi\)
−0.898122 + 0.439745i \(0.855069\pi\)
\(212\) 0 0
\(213\) 1.52457 0.104462
\(214\) 0 0
\(215\) 9.64059 0.657483
\(216\) 0 0
\(217\) −3.91781 −0.265959
\(218\) 0 0
\(219\) 1.53756 0.103898
\(220\) 0 0
\(221\) −13.6924 −0.921052
\(222\) 0 0
\(223\) 8.99643 0.602445 0.301223 0.953554i \(-0.402605\pi\)
0.301223 + 0.953554i \(0.402605\pi\)
\(224\) 0 0
\(225\) 5.82877 0.388585
\(226\) 0 0
\(227\) −3.51671 −0.233412 −0.116706 0.993166i \(-0.537234\pi\)
−0.116706 + 0.993166i \(0.537234\pi\)
\(228\) 0 0
\(229\) 11.0578 0.730718 0.365359 0.930867i \(-0.380946\pi\)
0.365359 + 0.930867i \(0.380946\pi\)
\(230\) 0 0
\(231\) 1.42635 0.0938471
\(232\) 0 0
\(233\) −14.4616 −0.947408 −0.473704 0.880684i \(-0.657083\pi\)
−0.473704 + 0.880684i \(0.657083\pi\)
\(234\) 0 0
\(235\) −13.1115 −0.855299
\(236\) 0 0
\(237\) −1.06166 −0.0689625
\(238\) 0 0
\(239\) 20.6516 1.33584 0.667921 0.744232i \(-0.267184\pi\)
0.667921 + 0.744232i \(0.267184\pi\)
\(240\) 0 0
\(241\) −12.9423 −0.833687 −0.416843 0.908978i \(-0.636864\pi\)
−0.416843 + 0.908978i \(0.636864\pi\)
\(242\) 0 0
\(243\) 9.35638 0.600212
\(244\) 0 0
\(245\) 11.3600 0.725761
\(246\) 0 0
\(247\) 26.8695 1.70966
\(248\) 0 0
\(249\) −3.81206 −0.241579
\(250\) 0 0
\(251\) 12.0115 0.758159 0.379080 0.925364i \(-0.376241\pi\)
0.379080 + 0.925364i \(0.376241\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.33700 0.0837265
\(256\) 0 0
\(257\) −2.03916 −0.127199 −0.0635997 0.997975i \(-0.520258\pi\)
−0.0635997 + 0.997975i \(0.520258\pi\)
\(258\) 0 0
\(259\) 5.85182 0.363614
\(260\) 0 0
\(261\) −0.394229 −0.0244022
\(262\) 0 0
\(263\) −22.9911 −1.41769 −0.708847 0.705362i \(-0.750784\pi\)
−0.708847 + 0.705362i \(0.750784\pi\)
\(264\) 0 0
\(265\) −12.4575 −0.765257
\(266\) 0 0
\(267\) −0.704481 −0.0431136
\(268\) 0 0
\(269\) −12.7407 −0.776815 −0.388407 0.921488i \(-0.626975\pi\)
−0.388407 + 0.921488i \(0.626975\pi\)
\(270\) 0 0
\(271\) −16.9416 −1.02913 −0.514563 0.857452i \(-0.672046\pi\)
−0.514563 + 0.857452i \(0.672046\pi\)
\(272\) 0 0
\(273\) −1.51973 −0.0919782
\(274\) 0 0
\(275\) 12.4125 0.748502
\(276\) 0 0
\(277\) −0.609022 −0.0365926 −0.0182963 0.999833i \(-0.505824\pi\)
−0.0182963 + 0.999833i \(0.505824\pi\)
\(278\) 0 0
\(279\) −17.6836 −1.05869
\(280\) 0 0
\(281\) −7.85105 −0.468354 −0.234177 0.972194i \(-0.575240\pi\)
−0.234177 + 0.972194i \(0.575240\pi\)
\(282\) 0 0
\(283\) 21.7802 1.29470 0.647348 0.762194i \(-0.275878\pi\)
0.647348 + 0.762194i \(0.275878\pi\)
\(284\) 0 0
\(285\) −2.62369 −0.155414
\(286\) 0 0
\(287\) 2.27655 0.134381
\(288\) 0 0
\(289\) −12.5607 −0.738865
\(290\) 0 0
\(291\) 2.28100 0.133714
\(292\) 0 0
\(293\) −9.72236 −0.567986 −0.283993 0.958826i \(-0.591659\pi\)
−0.283993 + 0.958826i \(0.591659\pi\)
\(294\) 0 0
\(295\) 17.1229 0.996931
\(296\) 0 0
\(297\) 13.1813 0.764858
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.55280 0.204780
\(302\) 0 0
\(303\) 4.30344 0.247226
\(304\) 0 0
\(305\) −2.82247 −0.161614
\(306\) 0 0
\(307\) 14.6370 0.835381 0.417690 0.908589i \(-0.362840\pi\)
0.417690 + 0.908589i \(0.362840\pi\)
\(308\) 0 0
\(309\) 3.97274 0.226001
\(310\) 0 0
\(311\) 19.2886 1.09376 0.546879 0.837211i \(-0.315816\pi\)
0.546879 + 0.837211i \(0.315816\pi\)
\(312\) 0 0
\(313\) −31.9483 −1.80582 −0.902912 0.429825i \(-0.858575\pi\)
−0.902912 + 0.429825i \(0.858575\pi\)
\(314\) 0 0
\(315\) −3.12958 −0.176332
\(316\) 0 0
\(317\) −25.6140 −1.43863 −0.719314 0.694686i \(-0.755544\pi\)
−0.719314 + 0.694686i \(0.755544\pi\)
\(318\) 0 0
\(319\) −0.839520 −0.0470041
\(320\) 0 0
\(321\) 4.43212 0.247377
\(322\) 0 0
\(323\) −8.71151 −0.484721
\(324\) 0 0
\(325\) −13.2251 −0.733596
\(326\) 0 0
\(327\) 4.65527 0.257437
\(328\) 0 0
\(329\) −4.83191 −0.266392
\(330\) 0 0
\(331\) 31.2416 1.71719 0.858597 0.512651i \(-0.171336\pi\)
0.858597 + 0.512651i \(0.171336\pi\)
\(332\) 0 0
\(333\) 26.4129 1.44742
\(334\) 0 0
\(335\) −23.5774 −1.28817
\(336\) 0 0
\(337\) 14.3237 0.780260 0.390130 0.920760i \(-0.372430\pi\)
0.390130 + 0.920760i \(0.372430\pi\)
\(338\) 0 0
\(339\) 4.38804 0.238326
\(340\) 0 0
\(341\) −37.6575 −2.03927
\(342\) 0 0
\(343\) 8.62838 0.465889
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.5062 1.26188 0.630939 0.775832i \(-0.282670\pi\)
0.630939 + 0.775832i \(0.282670\pi\)
\(348\) 0 0
\(349\) 22.5045 1.20464 0.602320 0.798255i \(-0.294243\pi\)
0.602320 + 0.798255i \(0.294243\pi\)
\(350\) 0 0
\(351\) −14.0442 −0.749626
\(352\) 0 0
\(353\) −32.7316 −1.74213 −0.871065 0.491168i \(-0.836570\pi\)
−0.871065 + 0.491168i \(0.836570\pi\)
\(354\) 0 0
\(355\) −7.12343 −0.378073
\(356\) 0 0
\(357\) 0.492720 0.0260775
\(358\) 0 0
\(359\) 9.50246 0.501521 0.250760 0.968049i \(-0.419319\pi\)
0.250760 + 0.968049i \(0.419319\pi\)
\(360\) 0 0
\(361\) −1.90487 −0.100256
\(362\) 0 0
\(363\) 9.65614 0.506816
\(364\) 0 0
\(365\) −7.18410 −0.376033
\(366\) 0 0
\(367\) −27.1399 −1.41669 −0.708346 0.705865i \(-0.750558\pi\)
−0.708346 + 0.705865i \(0.750558\pi\)
\(368\) 0 0
\(369\) 10.2755 0.534922
\(370\) 0 0
\(371\) −4.59090 −0.238348
\(372\) 0 0
\(373\) 6.57493 0.340437 0.170219 0.985406i \(-0.445553\pi\)
0.170219 + 0.985406i \(0.445553\pi\)
\(374\) 0 0
\(375\) 4.46419 0.230530
\(376\) 0 0
\(377\) 0.894480 0.0460680
\(378\) 0 0
\(379\) −11.6777 −0.599846 −0.299923 0.953963i \(-0.596961\pi\)
−0.299923 + 0.953963i \(0.596961\pi\)
\(380\) 0 0
\(381\) 1.55420 0.0796242
\(382\) 0 0
\(383\) −15.6271 −0.798507 −0.399254 0.916841i \(-0.630731\pi\)
−0.399254 + 0.916841i \(0.630731\pi\)
\(384\) 0 0
\(385\) −6.66451 −0.339655
\(386\) 0 0
\(387\) 16.0360 0.815157
\(388\) 0 0
\(389\) 8.36477 0.424111 0.212055 0.977258i \(-0.431984\pi\)
0.212055 + 0.977258i \(0.431984\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 4.95873 0.250135
\(394\) 0 0
\(395\) 4.96053 0.249592
\(396\) 0 0
\(397\) 14.1204 0.708682 0.354341 0.935116i \(-0.384705\pi\)
0.354341 + 0.935116i \(0.384705\pi\)
\(398\) 0 0
\(399\) −0.966895 −0.0484053
\(400\) 0 0
\(401\) 21.6128 1.07929 0.539645 0.841893i \(-0.318559\pi\)
0.539645 + 0.841893i \(0.318559\pi\)
\(402\) 0 0
\(403\) 40.1228 1.99866
\(404\) 0 0
\(405\) −13.4242 −0.667054
\(406\) 0 0
\(407\) 56.2469 2.78806
\(408\) 0 0
\(409\) −22.4656 −1.11085 −0.555427 0.831566i \(-0.687445\pi\)
−0.555427 + 0.831566i \(0.687445\pi\)
\(410\) 0 0
\(411\) 0.359260 0.0177210
\(412\) 0 0
\(413\) 6.31020 0.310505
\(414\) 0 0
\(415\) 17.8115 0.874333
\(416\) 0 0
\(417\) 4.23386 0.207333
\(418\) 0 0
\(419\) 22.4591 1.09720 0.548598 0.836086i \(-0.315162\pi\)
0.548598 + 0.836086i \(0.315162\pi\)
\(420\) 0 0
\(421\) 0.226618 0.0110447 0.00552235 0.999985i \(-0.498242\pi\)
0.00552235 + 0.999985i \(0.498242\pi\)
\(422\) 0 0
\(423\) −21.8095 −1.06041
\(424\) 0 0
\(425\) 4.28778 0.207988
\(426\) 0 0
\(427\) −1.04015 −0.0503364
\(428\) 0 0
\(429\) −14.6074 −0.705254
\(430\) 0 0
\(431\) 6.59735 0.317783 0.158892 0.987296i \(-0.449208\pi\)
0.158892 + 0.987296i \(0.449208\pi\)
\(432\) 0 0
\(433\) −22.2825 −1.07083 −0.535414 0.844590i \(-0.679844\pi\)
−0.535414 + 0.844590i \(0.679844\pi\)
\(434\) 0 0
\(435\) −0.0873420 −0.00418773
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −37.5746 −1.79334 −0.896668 0.442703i \(-0.854020\pi\)
−0.896668 + 0.442703i \(0.854020\pi\)
\(440\) 0 0
\(441\) 18.8960 0.899809
\(442\) 0 0
\(443\) 7.82901 0.371967 0.185984 0.982553i \(-0.440453\pi\)
0.185984 + 0.982553i \(0.440453\pi\)
\(444\) 0 0
\(445\) 3.29163 0.156038
\(446\) 0 0
\(447\) −8.08211 −0.382271
\(448\) 0 0
\(449\) −10.7712 −0.508327 −0.254163 0.967161i \(-0.581800\pi\)
−0.254163 + 0.967161i \(0.581800\pi\)
\(450\) 0 0
\(451\) 21.8819 1.03038
\(452\) 0 0
\(453\) 7.88121 0.370291
\(454\) 0 0
\(455\) 7.10081 0.332891
\(456\) 0 0
\(457\) 16.5736 0.775281 0.387641 0.921811i \(-0.373290\pi\)
0.387641 + 0.921811i \(0.373290\pi\)
\(458\) 0 0
\(459\) 4.55336 0.212533
\(460\) 0 0
\(461\) 2.45504 0.114343 0.0571714 0.998364i \(-0.481792\pi\)
0.0571714 + 0.998364i \(0.481792\pi\)
\(462\) 0 0
\(463\) 19.9722 0.928189 0.464094 0.885786i \(-0.346380\pi\)
0.464094 + 0.885786i \(0.346380\pi\)
\(464\) 0 0
\(465\) −3.91781 −0.181684
\(466\) 0 0
\(467\) 22.6227 1.04685 0.523426 0.852071i \(-0.324654\pi\)
0.523426 + 0.852071i \(0.324654\pi\)
\(468\) 0 0
\(469\) −8.68886 −0.401214
\(470\) 0 0
\(471\) 1.48544 0.0684455
\(472\) 0 0
\(473\) 34.1491 1.57018
\(474\) 0 0
\(475\) −8.41417 −0.386069
\(476\) 0 0
\(477\) −20.7216 −0.948778
\(478\) 0 0
\(479\) 40.8007 1.86423 0.932116 0.362160i \(-0.117961\pi\)
0.932116 + 0.362160i \(0.117961\pi\)
\(480\) 0 0
\(481\) −59.9291 −2.73253
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.6578 −0.483944
\(486\) 0 0
\(487\) −13.8661 −0.628332 −0.314166 0.949368i \(-0.601725\pi\)
−0.314166 + 0.949368i \(0.601725\pi\)
\(488\) 0 0
\(489\) −0.765168 −0.0346021
\(490\) 0 0
\(491\) 4.34220 0.195961 0.0979804 0.995188i \(-0.468762\pi\)
0.0979804 + 0.995188i \(0.468762\pi\)
\(492\) 0 0
\(493\) −0.290004 −0.0130611
\(494\) 0 0
\(495\) −30.0811 −1.35205
\(496\) 0 0
\(497\) −2.62516 −0.117755
\(498\) 0 0
\(499\) −11.9929 −0.536877 −0.268438 0.963297i \(-0.586508\pi\)
−0.268438 + 0.963297i \(0.586508\pi\)
\(500\) 0 0
\(501\) 2.39864 0.107164
\(502\) 0 0
\(503\) −23.0497 −1.02774 −0.513868 0.857869i \(-0.671788\pi\)
−0.513868 + 0.857869i \(0.671788\pi\)
\(504\) 0 0
\(505\) −20.1075 −0.894771
\(506\) 0 0
\(507\) 10.7729 0.478441
\(508\) 0 0
\(509\) −9.74900 −0.432117 −0.216058 0.976380i \(-0.569320\pi\)
−0.216058 + 0.976380i \(0.569320\pi\)
\(510\) 0 0
\(511\) −2.64752 −0.117120
\(512\) 0 0
\(513\) −8.93535 −0.394505
\(514\) 0 0
\(515\) −18.5623 −0.817952
\(516\) 0 0
\(517\) −46.4437 −2.04259
\(518\) 0 0
\(519\) −8.68633 −0.381287
\(520\) 0 0
\(521\) −16.6549 −0.729664 −0.364832 0.931073i \(-0.618874\pi\)
−0.364832 + 0.931073i \(0.618874\pi\)
\(522\) 0 0
\(523\) −35.7730 −1.56425 −0.782123 0.623124i \(-0.785863\pi\)
−0.782123 + 0.623124i \(0.785863\pi\)
\(524\) 0 0
\(525\) 0.475903 0.0207701
\(526\) 0 0
\(527\) −13.0084 −0.566656
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 28.4819 1.23601
\(532\) 0 0
\(533\) −23.3144 −1.00986
\(534\) 0 0
\(535\) −20.7087 −0.895315
\(536\) 0 0
\(537\) 7.20989 0.311130
\(538\) 0 0
\(539\) 40.2394 1.73324
\(540\) 0 0
\(541\) 23.0468 0.990859 0.495429 0.868648i \(-0.335011\pi\)
0.495429 + 0.868648i \(0.335011\pi\)
\(542\) 0 0
\(543\) 4.44792 0.190879
\(544\) 0 0
\(545\) −21.7514 −0.931726
\(546\) 0 0
\(547\) 31.3085 1.33865 0.669327 0.742968i \(-0.266582\pi\)
0.669327 + 0.742968i \(0.266582\pi\)
\(548\) 0 0
\(549\) −4.69485 −0.200371
\(550\) 0 0
\(551\) 0.569093 0.0242442
\(552\) 0 0
\(553\) 1.82808 0.0777380
\(554\) 0 0
\(555\) 5.85182 0.248396
\(556\) 0 0
\(557\) 14.4758 0.613358 0.306679 0.951813i \(-0.400782\pi\)
0.306679 + 0.951813i \(0.400782\pi\)
\(558\) 0 0
\(559\) −36.3846 −1.53891
\(560\) 0 0
\(561\) 4.73596 0.199952
\(562\) 0 0
\(563\) 30.7739 1.29696 0.648482 0.761230i \(-0.275404\pi\)
0.648482 + 0.761230i \(0.275404\pi\)
\(564\) 0 0
\(565\) −20.5027 −0.862557
\(566\) 0 0
\(567\) −4.94716 −0.207761
\(568\) 0 0
\(569\) 22.5834 0.946745 0.473372 0.880862i \(-0.343037\pi\)
0.473372 + 0.880862i \(0.343037\pi\)
\(570\) 0 0
\(571\) 2.71458 0.113601 0.0568007 0.998386i \(-0.481910\pi\)
0.0568007 + 0.998386i \(0.481910\pi\)
\(572\) 0 0
\(573\) −1.47333 −0.0615491
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.48252 0.144979 0.0724896 0.997369i \(-0.476906\pi\)
0.0724896 + 0.997369i \(0.476906\pi\)
\(578\) 0 0
\(579\) −3.30934 −0.137532
\(580\) 0 0
\(581\) 6.56399 0.272320
\(582\) 0 0
\(583\) −44.1271 −1.82756
\(584\) 0 0
\(585\) 32.0504 1.32512
\(586\) 0 0
\(587\) −6.02649 −0.248740 −0.124370 0.992236i \(-0.539691\pi\)
−0.124370 + 0.992236i \(0.539691\pi\)
\(588\) 0 0
\(589\) 25.5273 1.05183
\(590\) 0 0
\(591\) 1.58044 0.0650106
\(592\) 0 0
\(593\) 12.3095 0.505489 0.252745 0.967533i \(-0.418667\pi\)
0.252745 + 0.967533i \(0.418667\pi\)
\(594\) 0 0
\(595\) −2.30219 −0.0943807
\(596\) 0 0
\(597\) −0.504704 −0.0206562
\(598\) 0 0
\(599\) −27.2651 −1.11402 −0.557011 0.830505i \(-0.688052\pi\)
−0.557011 + 0.830505i \(0.688052\pi\)
\(600\) 0 0
\(601\) 32.7110 1.33431 0.667155 0.744919i \(-0.267512\pi\)
0.667155 + 0.744919i \(0.267512\pi\)
\(602\) 0 0
\(603\) −39.2183 −1.59709
\(604\) 0 0
\(605\) −45.1175 −1.83429
\(606\) 0 0
\(607\) −7.17263 −0.291128 −0.145564 0.989349i \(-0.546500\pi\)
−0.145564 + 0.989349i \(0.546500\pi\)
\(608\) 0 0
\(609\) −0.0321877 −0.00130431
\(610\) 0 0
\(611\) 49.4842 2.00191
\(612\) 0 0
\(613\) 33.4238 1.34997 0.674987 0.737830i \(-0.264149\pi\)
0.674987 + 0.737830i \(0.264149\pi\)
\(614\) 0 0
\(615\) 2.27655 0.0917994
\(616\) 0 0
\(617\) 28.2378 1.13681 0.568405 0.822749i \(-0.307561\pi\)
0.568405 + 0.822749i \(0.307561\pi\)
\(618\) 0 0
\(619\) −3.01950 −0.121364 −0.0606820 0.998157i \(-0.519328\pi\)
−0.0606820 + 0.998157i \(0.519328\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.21305 0.0485998
\(624\) 0 0
\(625\) −10.6833 −0.427333
\(626\) 0 0
\(627\) −9.29367 −0.371153
\(628\) 0 0
\(629\) 19.4300 0.774723
\(630\) 0 0
\(631\) −42.3604 −1.68634 −0.843171 0.537646i \(-0.819314\pi\)
−0.843171 + 0.537646i \(0.819314\pi\)
\(632\) 0 0
\(633\) −9.61555 −0.382184
\(634\) 0 0
\(635\) −7.26188 −0.288179
\(636\) 0 0
\(637\) −42.8737 −1.69872
\(638\) 0 0
\(639\) −11.8490 −0.468740
\(640\) 0 0
\(641\) 1.22041 0.0482034 0.0241017 0.999710i \(-0.492327\pi\)
0.0241017 + 0.999710i \(0.492327\pi\)
\(642\) 0 0
\(643\) −4.17771 −0.164753 −0.0823763 0.996601i \(-0.526251\pi\)
−0.0823763 + 0.996601i \(0.526251\pi\)
\(644\) 0 0
\(645\) 3.55280 0.139891
\(646\) 0 0
\(647\) −1.43130 −0.0562701 −0.0281351 0.999604i \(-0.508957\pi\)
−0.0281351 + 0.999604i \(0.508957\pi\)
\(648\) 0 0
\(649\) 60.6529 2.38083
\(650\) 0 0
\(651\) −1.44381 −0.0565875
\(652\) 0 0
\(653\) −31.9104 −1.24875 −0.624375 0.781125i \(-0.714646\pi\)
−0.624375 + 0.781125i \(0.714646\pi\)
\(654\) 0 0
\(655\) −23.1693 −0.905298
\(656\) 0 0
\(657\) −11.9499 −0.466211
\(658\) 0 0
\(659\) −17.5556 −0.683870 −0.341935 0.939724i \(-0.611082\pi\)
−0.341935 + 0.939724i \(0.611082\pi\)
\(660\) 0 0
\(661\) 33.8621 1.31708 0.658542 0.752544i \(-0.271173\pi\)
0.658542 + 0.752544i \(0.271173\pi\)
\(662\) 0 0
\(663\) −5.04600 −0.195970
\(664\) 0 0
\(665\) 4.51773 0.175190
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 3.31541 0.128181
\(670\) 0 0
\(671\) −9.99779 −0.385960
\(672\) 0 0
\(673\) −39.2280 −1.51213 −0.756064 0.654498i \(-0.772880\pi\)
−0.756064 + 0.654498i \(0.772880\pi\)
\(674\) 0 0
\(675\) 4.39795 0.169277
\(676\) 0 0
\(677\) −34.1775 −1.31355 −0.656773 0.754088i \(-0.728079\pi\)
−0.656773 + 0.754088i \(0.728079\pi\)
\(678\) 0 0
\(679\) −3.92766 −0.150730
\(680\) 0 0
\(681\) −1.29600 −0.0496627
\(682\) 0 0
\(683\) −28.6245 −1.09528 −0.547642 0.836713i \(-0.684474\pi\)
−0.547642 + 0.836713i \(0.684474\pi\)
\(684\) 0 0
\(685\) −1.67861 −0.0641364
\(686\) 0 0
\(687\) 4.07507 0.155473
\(688\) 0 0
\(689\) 47.0159 1.79116
\(690\) 0 0
\(691\) −37.0757 −1.41042 −0.705212 0.708996i \(-0.749148\pi\)
−0.705212 + 0.708996i \(0.749148\pi\)
\(692\) 0 0
\(693\) −11.0857 −0.421109
\(694\) 0 0
\(695\) −19.7823 −0.750387
\(696\) 0 0
\(697\) 7.55890 0.286314
\(698\) 0 0
\(699\) −5.32945 −0.201578
\(700\) 0 0
\(701\) 41.6704 1.57387 0.786935 0.617035i \(-0.211667\pi\)
0.786935 + 0.617035i \(0.211667\pi\)
\(702\) 0 0
\(703\) −38.1286 −1.43805
\(704\) 0 0
\(705\) −4.83191 −0.181980
\(706\) 0 0
\(707\) −7.41011 −0.278686
\(708\) 0 0
\(709\) −17.7695 −0.667349 −0.333674 0.942688i \(-0.608289\pi\)
−0.333674 + 0.942688i \(0.608289\pi\)
\(710\) 0 0
\(711\) 8.25128 0.309447
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 68.2520 2.55248
\(716\) 0 0
\(717\) 7.61064 0.284225
\(718\) 0 0
\(719\) −4.89622 −0.182598 −0.0912991 0.995824i \(-0.529102\pi\)
−0.0912991 + 0.995824i \(0.529102\pi\)
\(720\) 0 0
\(721\) −6.84067 −0.254760
\(722\) 0 0
\(723\) −4.76956 −0.177382
\(724\) 0 0
\(725\) −0.280106 −0.0104029
\(726\) 0 0
\(727\) 21.5740 0.800134 0.400067 0.916486i \(-0.368987\pi\)
0.400067 + 0.916486i \(0.368987\pi\)
\(728\) 0 0
\(729\) −19.9404 −0.738533
\(730\) 0 0
\(731\) 11.7965 0.436308
\(732\) 0 0
\(733\) 0.713744 0.0263627 0.0131814 0.999913i \(-0.495804\pi\)
0.0131814 + 0.999913i \(0.495804\pi\)
\(734\) 0 0
\(735\) 4.18643 0.154419
\(736\) 0 0
\(737\) −83.5162 −3.07636
\(738\) 0 0
\(739\) 35.3971 1.30210 0.651051 0.759034i \(-0.274328\pi\)
0.651051 + 0.759034i \(0.274328\pi\)
\(740\) 0 0
\(741\) 9.90208 0.363762
\(742\) 0 0
\(743\) 12.9756 0.476029 0.238015 0.971262i \(-0.423503\pi\)
0.238015 + 0.971262i \(0.423503\pi\)
\(744\) 0 0
\(745\) 37.7630 1.38353
\(746\) 0 0
\(747\) 29.6274 1.08401
\(748\) 0 0
\(749\) −7.63168 −0.278855
\(750\) 0 0
\(751\) 39.4606 1.43994 0.719968 0.694007i \(-0.244156\pi\)
0.719968 + 0.694007i \(0.244156\pi\)
\(752\) 0 0
\(753\) 4.42654 0.161312
\(754\) 0 0
\(755\) −36.8243 −1.34017
\(756\) 0 0
\(757\) −6.95737 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.72553 −0.280050 −0.140025 0.990148i \(-0.544718\pi\)
−0.140025 + 0.990148i \(0.544718\pi\)
\(762\) 0 0
\(763\) −8.01592 −0.290196
\(764\) 0 0
\(765\) −10.3912 −0.375696
\(766\) 0 0
\(767\) −64.6235 −2.33342
\(768\) 0 0
\(769\) 25.6432 0.924719 0.462360 0.886693i \(-0.347003\pi\)
0.462360 + 0.886693i \(0.347003\pi\)
\(770\) 0 0
\(771\) −0.751482 −0.0270640
\(772\) 0 0
\(773\) 39.1386 1.40772 0.703859 0.710340i \(-0.251459\pi\)
0.703859 + 0.710340i \(0.251459\pi\)
\(774\) 0 0
\(775\) −12.5644 −0.451328
\(776\) 0 0
\(777\) 2.15654 0.0773655
\(778\) 0 0
\(779\) −14.8333 −0.531458
\(780\) 0 0
\(781\) −25.2327 −0.902899
\(782\) 0 0
\(783\) −0.297456 −0.0106302
\(784\) 0 0
\(785\) −6.94060 −0.247721
\(786\) 0 0
\(787\) 37.3144 1.33012 0.665058 0.746792i \(-0.268407\pi\)
0.665058 + 0.746792i \(0.268407\pi\)
\(788\) 0 0
\(789\) −8.47281 −0.301640
\(790\) 0 0
\(791\) −7.55578 −0.268652
\(792\) 0 0
\(793\) 10.6523 0.378274
\(794\) 0 0
\(795\) −4.59090 −0.162822
\(796\) 0 0
\(797\) −34.6928 −1.22888 −0.614441 0.788963i \(-0.710618\pi\)
−0.614441 + 0.788963i \(0.710618\pi\)
\(798\) 0 0
\(799\) −16.0435 −0.567579
\(800\) 0 0
\(801\) 5.47525 0.193458
\(802\) 0 0
\(803\) −25.4477 −0.898028
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.69527 −0.165281
\(808\) 0 0
\(809\) 34.6506 1.21825 0.609125 0.793074i \(-0.291521\pi\)
0.609125 + 0.793074i \(0.291521\pi\)
\(810\) 0 0
\(811\) −19.3338 −0.678901 −0.339451 0.940624i \(-0.610241\pi\)
−0.339451 + 0.940624i \(0.610241\pi\)
\(812\) 0 0
\(813\) −6.24339 −0.218965
\(814\) 0 0
\(815\) 3.57518 0.125233
\(816\) 0 0
\(817\) −23.1489 −0.809879
\(818\) 0 0
\(819\) 11.8114 0.412723
\(820\) 0 0
\(821\) −2.71040 −0.0945937 −0.0472968 0.998881i \(-0.515061\pi\)
−0.0472968 + 0.998881i \(0.515061\pi\)
\(822\) 0 0
\(823\) −35.9917 −1.25459 −0.627295 0.778781i \(-0.715838\pi\)
−0.627295 + 0.778781i \(0.715838\pi\)
\(824\) 0 0
\(825\) 4.57432 0.159257
\(826\) 0 0
\(827\) −23.7293 −0.825149 −0.412575 0.910924i \(-0.635370\pi\)
−0.412575 + 0.910924i \(0.635370\pi\)
\(828\) 0 0
\(829\) −25.2855 −0.878201 −0.439101 0.898438i \(-0.644703\pi\)
−0.439101 + 0.898438i \(0.644703\pi\)
\(830\) 0 0
\(831\) −0.224440 −0.00778574
\(832\) 0 0
\(833\) 13.9003 0.481618
\(834\) 0 0
\(835\) −11.2075 −0.387850
\(836\) 0 0
\(837\) −13.3427 −0.461191
\(838\) 0 0
\(839\) 35.2390 1.21658 0.608292 0.793713i \(-0.291855\pi\)
0.608292 + 0.793713i \(0.291855\pi\)
\(840\) 0 0
\(841\) −28.9811 −0.999347
\(842\) 0 0
\(843\) −2.89331 −0.0996509
\(844\) 0 0
\(845\) −50.3354 −1.73159
\(846\) 0 0
\(847\) −16.6269 −0.571308
\(848\) 0 0
\(849\) 8.02654 0.275470
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 17.8585 0.611463 0.305732 0.952118i \(-0.401099\pi\)
0.305732 + 0.952118i \(0.401099\pi\)
\(854\) 0 0
\(855\) 20.3914 0.697370
\(856\) 0 0
\(857\) −5.03092 −0.171853 −0.0859265 0.996301i \(-0.527385\pi\)
−0.0859265 + 0.996301i \(0.527385\pi\)
\(858\) 0 0
\(859\) 46.2075 1.57658 0.788290 0.615304i \(-0.210967\pi\)
0.788290 + 0.615304i \(0.210967\pi\)
\(860\) 0 0
\(861\) 0.838967 0.0285919
\(862\) 0 0
\(863\) 2.72309 0.0926951 0.0463475 0.998925i \(-0.485242\pi\)
0.0463475 + 0.998925i \(0.485242\pi\)
\(864\) 0 0
\(865\) 40.5861 1.37997
\(866\) 0 0
\(867\) −4.62894 −0.157207
\(868\) 0 0
\(869\) 17.5713 0.596065
\(870\) 0 0
\(871\) 88.9836 3.01510
\(872\) 0 0
\(873\) −17.7280 −0.600001
\(874\) 0 0
\(875\) −7.68691 −0.259865
\(876\) 0 0
\(877\) 11.4314 0.386009 0.193005 0.981198i \(-0.438177\pi\)
0.193005 + 0.981198i \(0.438177\pi\)
\(878\) 0 0
\(879\) −3.58294 −0.120849
\(880\) 0 0
\(881\) 32.8953 1.10827 0.554136 0.832426i \(-0.313049\pi\)
0.554136 + 0.832426i \(0.313049\pi\)
\(882\) 0 0
\(883\) 32.7067 1.10067 0.550333 0.834945i \(-0.314501\pi\)
0.550333 + 0.834945i \(0.314501\pi\)
\(884\) 0 0
\(885\) 6.31020 0.212115
\(886\) 0 0
\(887\) −20.2976 −0.681527 −0.340764 0.940149i \(-0.610686\pi\)
−0.340764 + 0.940149i \(0.610686\pi\)
\(888\) 0 0
\(889\) −2.67618 −0.0897563
\(890\) 0 0
\(891\) −47.5515 −1.59303
\(892\) 0 0
\(893\) 31.4832 1.05355
\(894\) 0 0
\(895\) −33.6876 −1.12605
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.849797 0.0283423
\(900\) 0 0
\(901\) −15.2433 −0.507828
\(902\) 0 0
\(903\) 1.30930 0.0435707
\(904\) 0 0
\(905\) −20.7825 −0.690835
\(906\) 0 0
\(907\) 34.0919 1.13200 0.566001 0.824404i \(-0.308490\pi\)
0.566001 + 0.824404i \(0.308490\pi\)
\(908\) 0 0
\(909\) −33.4465 −1.10935
\(910\) 0 0
\(911\) 52.5516 1.74111 0.870557 0.492068i \(-0.163759\pi\)
0.870557 + 0.492068i \(0.163759\pi\)
\(912\) 0 0
\(913\) 63.0922 2.08805
\(914\) 0 0
\(915\) −1.04015 −0.0343863
\(916\) 0 0
\(917\) −8.53846 −0.281965
\(918\) 0 0
\(919\) −20.9862 −0.692269 −0.346135 0.938185i \(-0.612506\pi\)
−0.346135 + 0.938185i \(0.612506\pi\)
\(920\) 0 0
\(921\) 5.39412 0.177742
\(922\) 0 0
\(923\) 26.8846 0.884918
\(924\) 0 0
\(925\) 18.7668 0.617048
\(926\) 0 0
\(927\) −30.8763 −1.01411
\(928\) 0 0
\(929\) −48.6762 −1.59701 −0.798507 0.601985i \(-0.794377\pi\)
−0.798507 + 0.601985i \(0.794377\pi\)
\(930\) 0 0
\(931\) −27.2775 −0.893983
\(932\) 0 0
\(933\) 7.10835 0.232717
\(934\) 0 0
\(935\) −22.1284 −0.723675
\(936\) 0 0
\(937\) 9.68130 0.316274 0.158137 0.987417i \(-0.449451\pi\)
0.158137 + 0.987417i \(0.449451\pi\)
\(938\) 0 0
\(939\) −11.7738 −0.384222
\(940\) 0 0
\(941\) −15.8327 −0.516130 −0.258065 0.966128i \(-0.583085\pi\)
−0.258065 + 0.966128i \(0.583085\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −2.36135 −0.0768146
\(946\) 0 0
\(947\) 37.6683 1.22405 0.612027 0.790837i \(-0.290354\pi\)
0.612027 + 0.790837i \(0.290354\pi\)
\(948\) 0 0
\(949\) 27.1136 0.880144
\(950\) 0 0
\(951\) −9.43942 −0.306094
\(952\) 0 0
\(953\) −32.4286 −1.05047 −0.525233 0.850958i \(-0.676022\pi\)
−0.525233 + 0.850958i \(0.676022\pi\)
\(954\) 0 0
\(955\) 6.88399 0.222761
\(956\) 0 0
\(957\) −0.309384 −0.0100010
\(958\) 0 0
\(959\) −0.618611 −0.0199760
\(960\) 0 0
\(961\) 7.11851 0.229629
\(962\) 0 0
\(963\) −34.4466 −1.11002
\(964\) 0 0
\(965\) 15.4626 0.497760
\(966\) 0 0
\(967\) 2.57278 0.0827350 0.0413675 0.999144i \(-0.486829\pi\)
0.0413675 + 0.999144i \(0.486829\pi\)
\(968\) 0 0
\(969\) −3.21041 −0.103133
\(970\) 0 0
\(971\) 41.4181 1.32917 0.664585 0.747213i \(-0.268608\pi\)
0.664585 + 0.747213i \(0.268608\pi\)
\(972\) 0 0
\(973\) −7.29029 −0.233716
\(974\) 0 0
\(975\) −4.87378 −0.156086
\(976\) 0 0
\(977\) 10.2799 0.328883 0.164442 0.986387i \(-0.447418\pi\)
0.164442 + 0.986387i \(0.447418\pi\)
\(978\) 0 0
\(979\) 11.6597 0.372644
\(980\) 0 0
\(981\) −36.1809 −1.15517
\(982\) 0 0
\(983\) 46.5963 1.48619 0.743096 0.669185i \(-0.233357\pi\)
0.743096 + 0.669185i \(0.233357\pi\)
\(984\) 0 0
\(985\) −7.38447 −0.235289
\(986\) 0 0
\(987\) −1.78068 −0.0566797
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 19.9332 0.633200 0.316600 0.948559i \(-0.397459\pi\)
0.316600 + 0.948559i \(0.397459\pi\)
\(992\) 0 0
\(993\) 11.5133 0.365364
\(994\) 0 0
\(995\) 2.35819 0.0747596
\(996\) 0 0
\(997\) −33.8980 −1.07356 −0.536780 0.843722i \(-0.680360\pi\)
−0.536780 + 0.843722i \(0.680360\pi\)
\(998\) 0 0
\(999\) 19.9292 0.630532
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4232.2.a.x.1.5 12
4.3 odd 2 8464.2.a.cf.1.7 12
23.22 odd 2 inner 4232.2.a.x.1.6 yes 12
92.91 even 2 8464.2.a.cf.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.x.1.5 12 1.1 even 1 trivial
4232.2.a.x.1.6 yes 12 23.22 odd 2 inner
8464.2.a.cf.1.7 12 4.3 odd 2
8464.2.a.cf.1.8 12 92.91 even 2