Defining parameters
| Level: | \( N \) | \(=\) | \( 4232 = 2^{3} \cdot 23^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4232.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 28 \) | ||
| Sturm bound: | \(1104\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4232))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 600 | 126 | 474 |
| Cusp forms | 505 | 126 | 379 |
| Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(144\) | \(27\) | \(117\) | \(121\) | \(27\) | \(94\) | \(23\) | \(0\) | \(23\) | |||
| \(+\) | \(-\) | \(-\) | \(156\) | \(36\) | \(120\) | \(132\) | \(36\) | \(96\) | \(24\) | \(0\) | \(24\) | |||
| \(-\) | \(+\) | \(-\) | \(156\) | \(33\) | \(123\) | \(132\) | \(33\) | \(99\) | \(24\) | \(0\) | \(24\) | |||
| \(-\) | \(-\) | \(+\) | \(144\) | \(30\) | \(114\) | \(120\) | \(30\) | \(90\) | \(24\) | \(0\) | \(24\) | |||
| Plus space | \(+\) | \(288\) | \(57\) | \(231\) | \(241\) | \(57\) | \(184\) | \(47\) | \(0\) | \(47\) | ||||
| Minus space | \(-\) | \(312\) | \(69\) | \(243\) | \(264\) | \(69\) | \(195\) | \(48\) | \(0\) | \(48\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4232))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4232))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4232)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1058))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2116))\)\(^{\oplus 2}\)