Properties

Label 4232.2
Level 4232
Weight 2
Dimension 311630
Nonzero newspaces 12
Sturm bound 2234496

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4232 = 2^{3} \cdot 23^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(2234496\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4232))\).

Total New Old
Modular forms 563112 314448 248664
Cusp forms 554137 311630 242507
Eisenstein series 8975 2818 6157

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4232))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4232.2.a \(\chi_{4232}(1, \cdot)\) 4232.2.a.a 1 1
4232.2.a.b 1
4232.2.a.c 1
4232.2.a.d 1
4232.2.a.e 1
4232.2.a.f 1
4232.2.a.g 1
4232.2.a.h 1
4232.2.a.i 1
4232.2.a.j 1
4232.2.a.k 2
4232.2.a.l 2
4232.2.a.m 2
4232.2.a.n 2
4232.2.a.o 2
4232.2.a.p 2
4232.2.a.q 2
4232.2.a.r 4
4232.2.a.s 4
4232.2.a.t 4
4232.2.a.u 4
4232.2.a.v 6
4232.2.a.w 8
4232.2.a.x 12
4232.2.a.y 15
4232.2.a.z 15
4232.2.a.ba 15
4232.2.a.bb 15
4232.2.b \(\chi_{4232}(2117, \cdot)\) n/a 484 1
4232.2.c \(\chi_{4232}(4231, \cdot)\) None 0 1
4232.2.h \(\chi_{4232}(2115, \cdot)\) n/a 484 1
4232.2.i \(\chi_{4232}(177, \cdot)\) n/a 1260 10
4232.2.j \(\chi_{4232}(195, \cdot)\) n/a 4840 10
4232.2.o \(\chi_{4232}(63, \cdot)\) None 0 10
4232.2.p \(\chi_{4232}(501, \cdot)\) n/a 4840 10
4232.2.q \(\chi_{4232}(185, \cdot)\) n/a 3036 22
4232.2.r \(\chi_{4232}(91, \cdot)\) n/a 12100 22
4232.2.w \(\chi_{4232}(183, \cdot)\) None 0 22
4232.2.x \(\chi_{4232}(93, \cdot)\) n/a 12100 22
4232.2.y \(\chi_{4232}(9, \cdot)\) n/a 30360 220
4232.2.z \(\chi_{4232}(13, \cdot)\) n/a 121000 220
4232.2.ba \(\chi_{4232}(7, \cdot)\) None 0 220
4232.2.bf \(\chi_{4232}(11, \cdot)\) n/a 121000 220

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4232))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4232)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1058))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2116))\)\(^{\oplus 2}\)