Properties

Label 4232.2.a.x.1.4
Level $4232$
Weight $2$
Character 4232.1
Self dual yes
Analytic conductor $33.793$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4232,2,Mod(1,4232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4232.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4232 = 2^{3} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7926901354\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 157x^{8} - 616x^{6} + 1264x^{4} - 1272x^{2} + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.12938\) of defining polynomial
Character \(\chi\) \(=\) 4232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.534266 q^{3} +2.85360 q^{5} -1.52458 q^{7} -2.71456 q^{9} +3.72860 q^{11} +1.48994 q^{13} -1.52458 q^{15} +6.09414 q^{17} +8.39902 q^{19} +0.814534 q^{21} +3.14306 q^{25} +3.05310 q^{27} -1.98697 q^{29} +3.69466 q^{31} -1.99206 q^{33} -4.35056 q^{35} -9.05221 q^{37} -0.796024 q^{39} -2.86381 q^{41} +2.13351 q^{43} -7.74628 q^{45} -9.05831 q^{47} -4.67564 q^{49} -3.25589 q^{51} +1.56105 q^{53} +10.6399 q^{55} -4.48732 q^{57} +8.98316 q^{59} -14.4631 q^{61} +4.13858 q^{63} +4.25169 q^{65} +4.29489 q^{67} -0.584685 q^{71} +3.96707 q^{73} -1.67923 q^{75} -5.68456 q^{77} +6.05191 q^{79} +6.51251 q^{81} -11.9759 q^{83} +17.3902 q^{85} +1.06157 q^{87} +18.2247 q^{89} -2.27154 q^{91} -1.97394 q^{93} +23.9675 q^{95} +10.5468 q^{97} -10.1215 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{3} + 8 q^{9} + 16 q^{13} + 4 q^{25} + 8 q^{27} + 8 q^{31} + 56 q^{35} + 64 q^{39} - 40 q^{41} + 32 q^{47} + 28 q^{49} + 64 q^{55} + 60 q^{59} - 32 q^{71} + 28 q^{73} + 16 q^{75} + 24 q^{77}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.534266 −0.308459 −0.154229 0.988035i \(-0.549289\pi\)
−0.154229 + 0.988035i \(0.549289\pi\)
\(4\) 0 0
\(5\) 2.85360 1.27617 0.638085 0.769966i \(-0.279727\pi\)
0.638085 + 0.769966i \(0.279727\pi\)
\(6\) 0 0
\(7\) −1.52458 −0.576239 −0.288119 0.957594i \(-0.593030\pi\)
−0.288119 + 0.957594i \(0.593030\pi\)
\(8\) 0 0
\(9\) −2.71456 −0.904853
\(10\) 0 0
\(11\) 3.72860 1.12421 0.562107 0.827065i \(-0.309991\pi\)
0.562107 + 0.827065i \(0.309991\pi\)
\(12\) 0 0
\(13\) 1.48994 0.413235 0.206617 0.978422i \(-0.433754\pi\)
0.206617 + 0.978422i \(0.433754\pi\)
\(14\) 0 0
\(15\) −1.52458 −0.393646
\(16\) 0 0
\(17\) 6.09414 1.47804 0.739022 0.673681i \(-0.235288\pi\)
0.739022 + 0.673681i \(0.235288\pi\)
\(18\) 0 0
\(19\) 8.39902 1.92687 0.963434 0.267946i \(-0.0863447\pi\)
0.963434 + 0.267946i \(0.0863447\pi\)
\(20\) 0 0
\(21\) 0.814534 0.177746
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 3.14306 0.628611
\(26\) 0 0
\(27\) 3.05310 0.587569
\(28\) 0 0
\(29\) −1.98697 −0.368971 −0.184485 0.982835i \(-0.559062\pi\)
−0.184485 + 0.982835i \(0.559062\pi\)
\(30\) 0 0
\(31\) 3.69466 0.663581 0.331791 0.943353i \(-0.392347\pi\)
0.331791 + 0.943353i \(0.392347\pi\)
\(32\) 0 0
\(33\) −1.99206 −0.346774
\(34\) 0 0
\(35\) −4.35056 −0.735379
\(36\) 0 0
\(37\) −9.05221 −1.48817 −0.744087 0.668083i \(-0.767115\pi\)
−0.744087 + 0.668083i \(0.767115\pi\)
\(38\) 0 0
\(39\) −0.796024 −0.127466
\(40\) 0 0
\(41\) −2.86381 −0.447251 −0.223626 0.974675i \(-0.571789\pi\)
−0.223626 + 0.974675i \(0.571789\pi\)
\(42\) 0 0
\(43\) 2.13351 0.325358 0.162679 0.986679i \(-0.447987\pi\)
0.162679 + 0.986679i \(0.447987\pi\)
\(44\) 0 0
\(45\) −7.74628 −1.15475
\(46\) 0 0
\(47\) −9.05831 −1.32129 −0.660645 0.750699i \(-0.729717\pi\)
−0.660645 + 0.750699i \(0.729717\pi\)
\(48\) 0 0
\(49\) −4.67564 −0.667949
\(50\) 0 0
\(51\) −3.25589 −0.455916
\(52\) 0 0
\(53\) 1.56105 0.214426 0.107213 0.994236i \(-0.465807\pi\)
0.107213 + 0.994236i \(0.465807\pi\)
\(54\) 0 0
\(55\) 10.6399 1.43469
\(56\) 0 0
\(57\) −4.48732 −0.594359
\(58\) 0 0
\(59\) 8.98316 1.16951 0.584754 0.811211i \(-0.301191\pi\)
0.584754 + 0.811211i \(0.301191\pi\)
\(60\) 0 0
\(61\) −14.4631 −1.85182 −0.925908 0.377749i \(-0.876698\pi\)
−0.925908 + 0.377749i \(0.876698\pi\)
\(62\) 0 0
\(63\) 4.13858 0.521411
\(64\) 0 0
\(65\) 4.25169 0.527358
\(66\) 0 0
\(67\) 4.29489 0.524704 0.262352 0.964972i \(-0.415502\pi\)
0.262352 + 0.964972i \(0.415502\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.584685 −0.0693893 −0.0346947 0.999398i \(-0.511046\pi\)
−0.0346947 + 0.999398i \(0.511046\pi\)
\(72\) 0 0
\(73\) 3.96707 0.464311 0.232155 0.972679i \(-0.425422\pi\)
0.232155 + 0.972679i \(0.425422\pi\)
\(74\) 0 0
\(75\) −1.67923 −0.193901
\(76\) 0 0
\(77\) −5.68456 −0.647816
\(78\) 0 0
\(79\) 6.05191 0.680894 0.340447 0.940264i \(-0.389422\pi\)
0.340447 + 0.940264i \(0.389422\pi\)
\(80\) 0 0
\(81\) 6.51251 0.723612
\(82\) 0 0
\(83\) −11.9759 −1.31452 −0.657261 0.753663i \(-0.728285\pi\)
−0.657261 + 0.753663i \(0.728285\pi\)
\(84\) 0 0
\(85\) 17.3902 1.88624
\(86\) 0 0
\(87\) 1.06157 0.113812
\(88\) 0 0
\(89\) 18.2247 1.93182 0.965908 0.258886i \(-0.0833554\pi\)
0.965908 + 0.258886i \(0.0833554\pi\)
\(90\) 0 0
\(91\) −2.27154 −0.238122
\(92\) 0 0
\(93\) −1.97394 −0.204688
\(94\) 0 0
\(95\) 23.9675 2.45901
\(96\) 0 0
\(97\) 10.5468 1.07086 0.535432 0.844579i \(-0.320149\pi\)
0.535432 + 0.844579i \(0.320149\pi\)
\(98\) 0 0
\(99\) −10.1215 −1.01725
\(100\) 0 0
\(101\) 0.672736 0.0669397 0.0334699 0.999440i \(-0.489344\pi\)
0.0334699 + 0.999440i \(0.489344\pi\)
\(102\) 0 0
\(103\) 6.84834 0.674787 0.337394 0.941364i \(-0.390455\pi\)
0.337394 + 0.941364i \(0.390455\pi\)
\(104\) 0 0
\(105\) 2.32436 0.226834
\(106\) 0 0
\(107\) 14.7117 1.42224 0.711119 0.703072i \(-0.248189\pi\)
0.711119 + 0.703072i \(0.248189\pi\)
\(108\) 0 0
\(109\) −15.0822 −1.44461 −0.722305 0.691575i \(-0.756917\pi\)
−0.722305 + 0.691575i \(0.756917\pi\)
\(110\) 0 0
\(111\) 4.83629 0.459040
\(112\) 0 0
\(113\) 4.58025 0.430874 0.215437 0.976518i \(-0.430882\pi\)
0.215437 + 0.976518i \(0.430882\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.04453 −0.373917
\(118\) 0 0
\(119\) −9.29102 −0.851707
\(120\) 0 0
\(121\) 2.90243 0.263857
\(122\) 0 0
\(123\) 1.53004 0.137959
\(124\) 0 0
\(125\) −5.29898 −0.473956
\(126\) 0 0
\(127\) 17.0255 1.51077 0.755383 0.655283i \(-0.227451\pi\)
0.755383 + 0.655283i \(0.227451\pi\)
\(128\) 0 0
\(129\) −1.13986 −0.100359
\(130\) 0 0
\(131\) 17.7284 1.54893 0.774467 0.632614i \(-0.218018\pi\)
0.774467 + 0.632614i \(0.218018\pi\)
\(132\) 0 0
\(133\) −12.8050 −1.11034
\(134\) 0 0
\(135\) 8.71233 0.749838
\(136\) 0 0
\(137\) 11.8729 1.01437 0.507187 0.861836i \(-0.330685\pi\)
0.507187 + 0.861836i \(0.330685\pi\)
\(138\) 0 0
\(139\) 3.16290 0.268274 0.134137 0.990963i \(-0.457174\pi\)
0.134137 + 0.990963i \(0.457174\pi\)
\(140\) 0 0
\(141\) 4.83955 0.407563
\(142\) 0 0
\(143\) 5.55538 0.464564
\(144\) 0 0
\(145\) −5.67002 −0.470869
\(146\) 0 0
\(147\) 2.49804 0.206035
\(148\) 0 0
\(149\) −6.22118 −0.509659 −0.254829 0.966986i \(-0.582019\pi\)
−0.254829 + 0.966986i \(0.582019\pi\)
\(150\) 0 0
\(151\) −16.6063 −1.35140 −0.675699 0.737178i \(-0.736158\pi\)
−0.675699 + 0.737178i \(0.736158\pi\)
\(152\) 0 0
\(153\) −16.5429 −1.33741
\(154\) 0 0
\(155\) 10.5431 0.846843
\(156\) 0 0
\(157\) 0.449800 0.0358979 0.0179490 0.999839i \(-0.494286\pi\)
0.0179490 + 0.999839i \(0.494286\pi\)
\(158\) 0 0
\(159\) −0.834015 −0.0661417
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.1529 0.951889 0.475944 0.879475i \(-0.342106\pi\)
0.475944 + 0.879475i \(0.342106\pi\)
\(164\) 0 0
\(165\) −5.68456 −0.442542
\(166\) 0 0
\(167\) 19.6914 1.52377 0.761883 0.647714i \(-0.224275\pi\)
0.761883 + 0.647714i \(0.224275\pi\)
\(168\) 0 0
\(169\) −10.7801 −0.829237
\(170\) 0 0
\(171\) −22.7996 −1.74353
\(172\) 0 0
\(173\) 10.9868 0.835314 0.417657 0.908605i \(-0.362851\pi\)
0.417657 + 0.908605i \(0.362851\pi\)
\(174\) 0 0
\(175\) −4.79185 −0.362230
\(176\) 0 0
\(177\) −4.79940 −0.360745
\(178\) 0 0
\(179\) −21.4750 −1.60512 −0.802560 0.596571i \(-0.796529\pi\)
−0.802560 + 0.596571i \(0.796529\pi\)
\(180\) 0 0
\(181\) 7.94598 0.590620 0.295310 0.955401i \(-0.404577\pi\)
0.295310 + 0.955401i \(0.404577\pi\)
\(182\) 0 0
\(183\) 7.72717 0.571209
\(184\) 0 0
\(185\) −25.8314 −1.89916
\(186\) 0 0
\(187\) 22.7226 1.66164
\(188\) 0 0
\(189\) −4.65470 −0.338580
\(190\) 0 0
\(191\) −13.0951 −0.947525 −0.473763 0.880653i \(-0.657104\pi\)
−0.473763 + 0.880653i \(0.657104\pi\)
\(192\) 0 0
\(193\) −3.35883 −0.241774 −0.120887 0.992666i \(-0.538574\pi\)
−0.120887 + 0.992666i \(0.538574\pi\)
\(194\) 0 0
\(195\) −2.27154 −0.162668
\(196\) 0 0
\(197\) 20.7798 1.48050 0.740250 0.672332i \(-0.234707\pi\)
0.740250 + 0.672332i \(0.234707\pi\)
\(198\) 0 0
\(199\) −21.4565 −1.52101 −0.760506 0.649330i \(-0.775049\pi\)
−0.760506 + 0.649330i \(0.775049\pi\)
\(200\) 0 0
\(201\) −2.29461 −0.161850
\(202\) 0 0
\(203\) 3.02930 0.212615
\(204\) 0 0
\(205\) −8.17217 −0.570769
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 31.3166 2.16621
\(210\) 0 0
\(211\) 20.1736 1.38881 0.694405 0.719584i \(-0.255667\pi\)
0.694405 + 0.719584i \(0.255667\pi\)
\(212\) 0 0
\(213\) 0.312377 0.0214038
\(214\) 0 0
\(215\) 6.08820 0.415212
\(216\) 0 0
\(217\) −5.63283 −0.382381
\(218\) 0 0
\(219\) −2.11947 −0.143221
\(220\) 0 0
\(221\) 9.07989 0.610779
\(222\) 0 0
\(223\) 5.96866 0.399691 0.199845 0.979827i \(-0.435956\pi\)
0.199845 + 0.979827i \(0.435956\pi\)
\(224\) 0 0
\(225\) −8.53201 −0.568801
\(226\) 0 0
\(227\) 3.89888 0.258778 0.129389 0.991594i \(-0.458698\pi\)
0.129389 + 0.991594i \(0.458698\pi\)
\(228\) 0 0
\(229\) 7.55734 0.499403 0.249702 0.968323i \(-0.419667\pi\)
0.249702 + 0.968323i \(0.419667\pi\)
\(230\) 0 0
\(231\) 3.03707 0.199824
\(232\) 0 0
\(233\) 15.2400 0.998405 0.499203 0.866485i \(-0.333626\pi\)
0.499203 + 0.866485i \(0.333626\pi\)
\(234\) 0 0
\(235\) −25.8488 −1.68619
\(236\) 0 0
\(237\) −3.23333 −0.210028
\(238\) 0 0
\(239\) 22.7686 1.47278 0.736388 0.676560i \(-0.236530\pi\)
0.736388 + 0.676560i \(0.236530\pi\)
\(240\) 0 0
\(241\) −8.44396 −0.543923 −0.271962 0.962308i \(-0.587672\pi\)
−0.271962 + 0.962308i \(0.587672\pi\)
\(242\) 0 0
\(243\) −12.6387 −0.810773
\(244\) 0 0
\(245\) −13.3424 −0.852417
\(246\) 0 0
\(247\) 12.5140 0.796249
\(248\) 0 0
\(249\) 6.39831 0.405476
\(250\) 0 0
\(251\) −6.88513 −0.434585 −0.217293 0.976107i \(-0.569723\pi\)
−0.217293 + 0.976107i \(0.569723\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −9.29102 −0.581827
\(256\) 0 0
\(257\) −27.5891 −1.72096 −0.860480 0.509485i \(-0.829836\pi\)
−0.860480 + 0.509485i \(0.829836\pi\)
\(258\) 0 0
\(259\) 13.8009 0.857544
\(260\) 0 0
\(261\) 5.39374 0.333864
\(262\) 0 0
\(263\) 10.4539 0.644613 0.322307 0.946635i \(-0.395542\pi\)
0.322307 + 0.946635i \(0.395542\pi\)
\(264\) 0 0
\(265\) 4.45461 0.273644
\(266\) 0 0
\(267\) −9.73685 −0.595886
\(268\) 0 0
\(269\) −6.38665 −0.389401 −0.194701 0.980863i \(-0.562373\pi\)
−0.194701 + 0.980863i \(0.562373\pi\)
\(270\) 0 0
\(271\) 22.7152 1.37985 0.689926 0.723880i \(-0.257643\pi\)
0.689926 + 0.723880i \(0.257643\pi\)
\(272\) 0 0
\(273\) 1.21361 0.0734508
\(274\) 0 0
\(275\) 11.7192 0.706693
\(276\) 0 0
\(277\) −26.2170 −1.57523 −0.787613 0.616170i \(-0.788683\pi\)
−0.787613 + 0.616170i \(0.788683\pi\)
\(278\) 0 0
\(279\) −10.0294 −0.600444
\(280\) 0 0
\(281\) 5.70769 0.340492 0.170246 0.985402i \(-0.445544\pi\)
0.170246 + 0.985402i \(0.445544\pi\)
\(282\) 0 0
\(283\) −26.0990 −1.55142 −0.775712 0.631088i \(-0.782609\pi\)
−0.775712 + 0.631088i \(0.782609\pi\)
\(284\) 0 0
\(285\) −12.8050 −0.758504
\(286\) 0 0
\(287\) 4.36612 0.257724
\(288\) 0 0
\(289\) 20.1385 1.18462
\(290\) 0 0
\(291\) −5.63479 −0.330317
\(292\) 0 0
\(293\) 5.22212 0.305079 0.152540 0.988297i \(-0.451255\pi\)
0.152540 + 0.988297i \(0.451255\pi\)
\(294\) 0 0
\(295\) 25.6344 1.49249
\(296\) 0 0
\(297\) 11.3838 0.660553
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.25272 −0.187484
\(302\) 0 0
\(303\) −0.359420 −0.0206481
\(304\) 0 0
\(305\) −41.2721 −2.36323
\(306\) 0 0
\(307\) −31.9206 −1.82181 −0.910904 0.412619i \(-0.864614\pi\)
−0.910904 + 0.412619i \(0.864614\pi\)
\(308\) 0 0
\(309\) −3.65884 −0.208144
\(310\) 0 0
\(311\) 14.8254 0.840672 0.420336 0.907369i \(-0.361912\pi\)
0.420336 + 0.907369i \(0.361912\pi\)
\(312\) 0 0
\(313\) −2.21209 −0.125035 −0.0625175 0.998044i \(-0.519913\pi\)
−0.0625175 + 0.998044i \(0.519913\pi\)
\(314\) 0 0
\(315\) 11.8099 0.665410
\(316\) 0 0
\(317\) −10.1357 −0.569279 −0.284639 0.958635i \(-0.591874\pi\)
−0.284639 + 0.958635i \(0.591874\pi\)
\(318\) 0 0
\(319\) −7.40860 −0.414802
\(320\) 0 0
\(321\) −7.85998 −0.438702
\(322\) 0 0
\(323\) 51.1848 2.84800
\(324\) 0 0
\(325\) 4.68296 0.259764
\(326\) 0 0
\(327\) 8.05789 0.445603
\(328\) 0 0
\(329\) 13.8102 0.761378
\(330\) 0 0
\(331\) −6.41117 −0.352390 −0.176195 0.984355i \(-0.556379\pi\)
−0.176195 + 0.984355i \(0.556379\pi\)
\(332\) 0 0
\(333\) 24.5728 1.34658
\(334\) 0 0
\(335\) 12.2559 0.669612
\(336\) 0 0
\(337\) −1.73511 −0.0945172 −0.0472586 0.998883i \(-0.515048\pi\)
−0.0472586 + 0.998883i \(0.515048\pi\)
\(338\) 0 0
\(339\) −2.44708 −0.132907
\(340\) 0 0
\(341\) 13.7759 0.746007
\(342\) 0 0
\(343\) 17.8005 0.961137
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.70398 0.252523 0.126262 0.991997i \(-0.459702\pi\)
0.126262 + 0.991997i \(0.459702\pi\)
\(348\) 0 0
\(349\) 14.2876 0.764795 0.382398 0.923998i \(-0.375098\pi\)
0.382398 + 0.923998i \(0.375098\pi\)
\(350\) 0 0
\(351\) 4.54893 0.242804
\(352\) 0 0
\(353\) −9.50758 −0.506037 −0.253019 0.967461i \(-0.581423\pi\)
−0.253019 + 0.967461i \(0.581423\pi\)
\(354\) 0 0
\(355\) −1.66846 −0.0885526
\(356\) 0 0
\(357\) 4.96388 0.262716
\(358\) 0 0
\(359\) −35.1667 −1.85603 −0.928015 0.372543i \(-0.878486\pi\)
−0.928015 + 0.372543i \(0.878486\pi\)
\(360\) 0 0
\(361\) 51.5436 2.71282
\(362\) 0 0
\(363\) −1.55067 −0.0813890
\(364\) 0 0
\(365\) 11.3205 0.592540
\(366\) 0 0
\(367\) −36.6112 −1.91109 −0.955545 0.294846i \(-0.904732\pi\)
−0.955545 + 0.294846i \(0.904732\pi\)
\(368\) 0 0
\(369\) 7.77397 0.404697
\(370\) 0 0
\(371\) −2.37995 −0.123561
\(372\) 0 0
\(373\) 23.0471 1.19333 0.596667 0.802489i \(-0.296491\pi\)
0.596667 + 0.802489i \(0.296491\pi\)
\(374\) 0 0
\(375\) 2.83107 0.146196
\(376\) 0 0
\(377\) −2.96046 −0.152471
\(378\) 0 0
\(379\) −18.5575 −0.953234 −0.476617 0.879111i \(-0.658137\pi\)
−0.476617 + 0.879111i \(0.658137\pi\)
\(380\) 0 0
\(381\) −9.09614 −0.466009
\(382\) 0 0
\(383\) 19.7753 1.01047 0.505236 0.862981i \(-0.331405\pi\)
0.505236 + 0.862981i \(0.331405\pi\)
\(384\) 0 0
\(385\) −16.2215 −0.826723
\(386\) 0 0
\(387\) −5.79155 −0.294401
\(388\) 0 0
\(389\) 5.06128 0.256617 0.128309 0.991734i \(-0.459045\pi\)
0.128309 + 0.991734i \(0.459045\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −9.47167 −0.477782
\(394\) 0 0
\(395\) 17.2698 0.868936
\(396\) 0 0
\(397\) −25.6294 −1.28630 −0.643150 0.765740i \(-0.722373\pi\)
−0.643150 + 0.765740i \(0.722373\pi\)
\(398\) 0 0
\(399\) 6.84129 0.342493
\(400\) 0 0
\(401\) 18.5145 0.924570 0.462285 0.886731i \(-0.347030\pi\)
0.462285 + 0.886731i \(0.347030\pi\)
\(402\) 0 0
\(403\) 5.50482 0.274215
\(404\) 0 0
\(405\) 18.5841 0.923453
\(406\) 0 0
\(407\) −33.7520 −1.67303
\(408\) 0 0
\(409\) 6.78632 0.335562 0.167781 0.985824i \(-0.446340\pi\)
0.167781 + 0.985824i \(0.446340\pi\)
\(410\) 0 0
\(411\) −6.34331 −0.312893
\(412\) 0 0
\(413\) −13.6956 −0.673916
\(414\) 0 0
\(415\) −34.1744 −1.67756
\(416\) 0 0
\(417\) −1.68983 −0.0827514
\(418\) 0 0
\(419\) −9.80857 −0.479180 −0.239590 0.970874i \(-0.577013\pi\)
−0.239590 + 0.970874i \(0.577013\pi\)
\(420\) 0 0
\(421\) 22.5737 1.10017 0.550086 0.835108i \(-0.314595\pi\)
0.550086 + 0.835108i \(0.314595\pi\)
\(422\) 0 0
\(423\) 24.5893 1.19557
\(424\) 0 0
\(425\) 19.1542 0.929116
\(426\) 0 0
\(427\) 22.0503 1.06709
\(428\) 0 0
\(429\) −2.96805 −0.143299
\(430\) 0 0
\(431\) 32.8771 1.58363 0.791817 0.610759i \(-0.209136\pi\)
0.791817 + 0.610759i \(0.209136\pi\)
\(432\) 0 0
\(433\) −2.35694 −0.113267 −0.0566337 0.998395i \(-0.518037\pi\)
−0.0566337 + 0.998395i \(0.518037\pi\)
\(434\) 0 0
\(435\) 3.02930 0.145244
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −18.6307 −0.889195 −0.444597 0.895731i \(-0.646653\pi\)
−0.444597 + 0.895731i \(0.646653\pi\)
\(440\) 0 0
\(441\) 12.6923 0.604396
\(442\) 0 0
\(443\) −3.40046 −0.161561 −0.0807803 0.996732i \(-0.525741\pi\)
−0.0807803 + 0.996732i \(0.525741\pi\)
\(444\) 0 0
\(445\) 52.0061 2.46533
\(446\) 0 0
\(447\) 3.32376 0.157209
\(448\) 0 0
\(449\) −31.8441 −1.50282 −0.751409 0.659837i \(-0.770625\pi\)
−0.751409 + 0.659837i \(0.770625\pi\)
\(450\) 0 0
\(451\) −10.6780 −0.502806
\(452\) 0 0
\(453\) 8.87216 0.416851
\(454\) 0 0
\(455\) −6.48207 −0.303884
\(456\) 0 0
\(457\) −23.5089 −1.09970 −0.549849 0.835264i \(-0.685315\pi\)
−0.549849 + 0.835264i \(0.685315\pi\)
\(458\) 0 0
\(459\) 18.6060 0.868453
\(460\) 0 0
\(461\) 19.0051 0.885154 0.442577 0.896730i \(-0.354064\pi\)
0.442577 + 0.896730i \(0.354064\pi\)
\(462\) 0 0
\(463\) −13.8723 −0.644702 −0.322351 0.946620i \(-0.604473\pi\)
−0.322351 + 0.946620i \(0.604473\pi\)
\(464\) 0 0
\(465\) −5.63283 −0.261216
\(466\) 0 0
\(467\) −3.35064 −0.155049 −0.0775246 0.996990i \(-0.524702\pi\)
−0.0775246 + 0.996990i \(0.524702\pi\)
\(468\) 0 0
\(469\) −6.54792 −0.302355
\(470\) 0 0
\(471\) −0.240313 −0.0110730
\(472\) 0 0
\(473\) 7.95501 0.365772
\(474\) 0 0
\(475\) 26.3986 1.21125
\(476\) 0 0
\(477\) −4.23755 −0.194024
\(478\) 0 0
\(479\) −10.0565 −0.459493 −0.229746 0.973251i \(-0.573790\pi\)
−0.229746 + 0.973251i \(0.573790\pi\)
\(480\) 0 0
\(481\) −13.4872 −0.614965
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 30.0963 1.36660
\(486\) 0 0
\(487\) 26.0598 1.18088 0.590440 0.807081i \(-0.298954\pi\)
0.590440 + 0.807081i \(0.298954\pi\)
\(488\) 0 0
\(489\) −6.49289 −0.293619
\(490\) 0 0
\(491\) 0.547879 0.0247254 0.0123627 0.999924i \(-0.496065\pi\)
0.0123627 + 0.999924i \(0.496065\pi\)
\(492\) 0 0
\(493\) −12.1088 −0.545355
\(494\) 0 0
\(495\) −28.8827 −1.29818
\(496\) 0 0
\(497\) 0.891402 0.0399848
\(498\) 0 0
\(499\) −8.09369 −0.362323 −0.181162 0.983453i \(-0.557986\pi\)
−0.181162 + 0.983453i \(0.557986\pi\)
\(500\) 0 0
\(501\) −10.5205 −0.470019
\(502\) 0 0
\(503\) 9.46578 0.422058 0.211029 0.977480i \(-0.432318\pi\)
0.211029 + 0.977480i \(0.432318\pi\)
\(504\) 0 0
\(505\) 1.91972 0.0854265
\(506\) 0 0
\(507\) 5.75944 0.255786
\(508\) 0 0
\(509\) −23.8605 −1.05760 −0.528800 0.848747i \(-0.677358\pi\)
−0.528800 + 0.848747i \(0.677358\pi\)
\(510\) 0 0
\(511\) −6.04814 −0.267554
\(512\) 0 0
\(513\) 25.6430 1.13217
\(514\) 0 0
\(515\) 19.5425 0.861143
\(516\) 0 0
\(517\) −33.7748 −1.48541
\(518\) 0 0
\(519\) −5.86990 −0.257660
\(520\) 0 0
\(521\) −19.2303 −0.842495 −0.421248 0.906946i \(-0.638408\pi\)
−0.421248 + 0.906946i \(0.638408\pi\)
\(522\) 0 0
\(523\) 7.55486 0.330351 0.165176 0.986264i \(-0.447181\pi\)
0.165176 + 0.986264i \(0.447181\pi\)
\(524\) 0 0
\(525\) 2.56013 0.111733
\(526\) 0 0
\(527\) 22.5158 0.980803
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −24.3853 −1.05823
\(532\) 0 0
\(533\) −4.26690 −0.184820
\(534\) 0 0
\(535\) 41.9815 1.81502
\(536\) 0 0
\(537\) 11.4734 0.495113
\(538\) 0 0
\(539\) −17.4336 −0.750917
\(540\) 0 0
\(541\) −11.7376 −0.504640 −0.252320 0.967644i \(-0.581194\pi\)
−0.252320 + 0.967644i \(0.581194\pi\)
\(542\) 0 0
\(543\) −4.24527 −0.182182
\(544\) 0 0
\(545\) −43.0385 −1.84357
\(546\) 0 0
\(547\) 21.7408 0.929571 0.464786 0.885423i \(-0.346131\pi\)
0.464786 + 0.885423i \(0.346131\pi\)
\(548\) 0 0
\(549\) 39.2611 1.67562
\(550\) 0 0
\(551\) −16.6886 −0.710958
\(552\) 0 0
\(553\) −9.22666 −0.392357
\(554\) 0 0
\(555\) 13.8009 0.585814
\(556\) 0 0
\(557\) 12.1428 0.514508 0.257254 0.966344i \(-0.417182\pi\)
0.257254 + 0.966344i \(0.417182\pi\)
\(558\) 0 0
\(559\) 3.17880 0.134449
\(560\) 0 0
\(561\) −12.1399 −0.512547
\(562\) 0 0
\(563\) −4.09095 −0.172413 −0.0862066 0.996277i \(-0.527475\pi\)
−0.0862066 + 0.996277i \(0.527475\pi\)
\(564\) 0 0
\(565\) 13.0702 0.549869
\(566\) 0 0
\(567\) −9.92887 −0.416974
\(568\) 0 0
\(569\) −8.26623 −0.346538 −0.173269 0.984875i \(-0.555433\pi\)
−0.173269 + 0.984875i \(0.555433\pi\)
\(570\) 0 0
\(571\) 3.12975 0.130976 0.0654880 0.997853i \(-0.479140\pi\)
0.0654880 + 0.997853i \(0.479140\pi\)
\(572\) 0 0
\(573\) 6.99625 0.292272
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −6.14992 −0.256024 −0.128012 0.991773i \(-0.540860\pi\)
−0.128012 + 0.991773i \(0.540860\pi\)
\(578\) 0 0
\(579\) 1.79451 0.0745772
\(580\) 0 0
\(581\) 18.2582 0.757479
\(582\) 0 0
\(583\) 5.82051 0.241061
\(584\) 0 0
\(585\) −11.5415 −0.477181
\(586\) 0 0
\(587\) 21.7356 0.897123 0.448562 0.893752i \(-0.351936\pi\)
0.448562 + 0.893752i \(0.351936\pi\)
\(588\) 0 0
\(589\) 31.0316 1.27863
\(590\) 0 0
\(591\) −11.1020 −0.456673
\(592\) 0 0
\(593\) 2.93778 0.120640 0.0603202 0.998179i \(-0.480788\pi\)
0.0603202 + 0.998179i \(0.480788\pi\)
\(594\) 0 0
\(595\) −26.5129 −1.08692
\(596\) 0 0
\(597\) 11.4635 0.469170
\(598\) 0 0
\(599\) −7.58964 −0.310104 −0.155052 0.987906i \(-0.549555\pi\)
−0.155052 + 0.987906i \(0.549555\pi\)
\(600\) 0 0
\(601\) −22.4842 −0.917151 −0.458576 0.888655i \(-0.651640\pi\)
−0.458576 + 0.888655i \(0.651640\pi\)
\(602\) 0 0
\(603\) −11.6587 −0.474780
\(604\) 0 0
\(605\) 8.28238 0.336727
\(606\) 0 0
\(607\) −23.9936 −0.973872 −0.486936 0.873438i \(-0.661886\pi\)
−0.486936 + 0.873438i \(0.661886\pi\)
\(608\) 0 0
\(609\) −1.61845 −0.0655830
\(610\) 0 0
\(611\) −13.4963 −0.546003
\(612\) 0 0
\(613\) 40.8425 1.64961 0.824806 0.565416i \(-0.191284\pi\)
0.824806 + 0.565416i \(0.191284\pi\)
\(614\) 0 0
\(615\) 4.36612 0.176059
\(616\) 0 0
\(617\) −10.3708 −0.417514 −0.208757 0.977968i \(-0.566942\pi\)
−0.208757 + 0.977968i \(0.566942\pi\)
\(618\) 0 0
\(619\) −30.2348 −1.21524 −0.607619 0.794229i \(-0.707875\pi\)
−0.607619 + 0.794229i \(0.707875\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −27.7851 −1.11319
\(624\) 0 0
\(625\) −30.8365 −1.23346
\(626\) 0 0
\(627\) −16.7314 −0.668187
\(628\) 0 0
\(629\) −55.1654 −2.19959
\(630\) 0 0
\(631\) 33.2185 1.32241 0.661204 0.750206i \(-0.270046\pi\)
0.661204 + 0.750206i \(0.270046\pi\)
\(632\) 0 0
\(633\) −10.7781 −0.428391
\(634\) 0 0
\(635\) 48.5840 1.92800
\(636\) 0 0
\(637\) −6.96642 −0.276020
\(638\) 0 0
\(639\) 1.58716 0.0627872
\(640\) 0 0
\(641\) −15.9392 −0.629562 −0.314781 0.949164i \(-0.601931\pi\)
−0.314781 + 0.949164i \(0.601931\pi\)
\(642\) 0 0
\(643\) 30.0900 1.18663 0.593316 0.804969i \(-0.297818\pi\)
0.593316 + 0.804969i \(0.297818\pi\)
\(644\) 0 0
\(645\) −3.25272 −0.128076
\(646\) 0 0
\(647\) −36.8502 −1.44873 −0.724366 0.689416i \(-0.757867\pi\)
−0.724366 + 0.689416i \(0.757867\pi\)
\(648\) 0 0
\(649\) 33.4946 1.31478
\(650\) 0 0
\(651\) 3.00943 0.117949
\(652\) 0 0
\(653\) −15.1567 −0.593128 −0.296564 0.955013i \(-0.595841\pi\)
−0.296564 + 0.955013i \(0.595841\pi\)
\(654\) 0 0
\(655\) 50.5897 1.97670
\(656\) 0 0
\(657\) −10.7689 −0.420133
\(658\) 0 0
\(659\) 4.70664 0.183345 0.0916724 0.995789i \(-0.470779\pi\)
0.0916724 + 0.995789i \(0.470779\pi\)
\(660\) 0 0
\(661\) −17.4347 −0.678131 −0.339066 0.940763i \(-0.610111\pi\)
−0.339066 + 0.940763i \(0.610111\pi\)
\(662\) 0 0
\(663\) −4.85108 −0.188400
\(664\) 0 0
\(665\) −36.5405 −1.41698
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −3.18885 −0.123288
\(670\) 0 0
\(671\) −53.9272 −2.08184
\(672\) 0 0
\(673\) 39.5855 1.52591 0.762954 0.646453i \(-0.223748\pi\)
0.762954 + 0.646453i \(0.223748\pi\)
\(674\) 0 0
\(675\) 9.59605 0.369352
\(676\) 0 0
\(677\) 9.60757 0.369249 0.184624 0.982809i \(-0.440893\pi\)
0.184624 + 0.982809i \(0.440893\pi\)
\(678\) 0 0
\(679\) −16.0795 −0.617073
\(680\) 0 0
\(681\) −2.08304 −0.0798223
\(682\) 0 0
\(683\) 7.55260 0.288992 0.144496 0.989505i \(-0.453844\pi\)
0.144496 + 0.989505i \(0.453844\pi\)
\(684\) 0 0
\(685\) 33.8807 1.29451
\(686\) 0 0
\(687\) −4.03763 −0.154045
\(688\) 0 0
\(689\) 2.32586 0.0886084
\(690\) 0 0
\(691\) 23.5083 0.894298 0.447149 0.894459i \(-0.352439\pi\)
0.447149 + 0.894459i \(0.352439\pi\)
\(692\) 0 0
\(693\) 15.4311 0.586178
\(694\) 0 0
\(695\) 9.02567 0.342363
\(696\) 0 0
\(697\) −17.4524 −0.661058
\(698\) 0 0
\(699\) −8.14222 −0.307967
\(700\) 0 0
\(701\) −16.3848 −0.618845 −0.309423 0.950925i \(-0.600136\pi\)
−0.309423 + 0.950925i \(0.600136\pi\)
\(702\) 0 0
\(703\) −76.0297 −2.86752
\(704\) 0 0
\(705\) 13.8102 0.520120
\(706\) 0 0
\(707\) −1.02564 −0.0385733
\(708\) 0 0
\(709\) −22.5110 −0.845420 −0.422710 0.906265i \(-0.638921\pi\)
−0.422710 + 0.906265i \(0.638921\pi\)
\(710\) 0 0
\(711\) −16.4283 −0.616109
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 15.8529 0.592863
\(716\) 0 0
\(717\) −12.1645 −0.454291
\(718\) 0 0
\(719\) −12.2464 −0.456712 −0.228356 0.973578i \(-0.573335\pi\)
−0.228356 + 0.973578i \(0.573335\pi\)
\(720\) 0 0
\(721\) −10.4409 −0.388838
\(722\) 0 0
\(723\) 4.51132 0.167778
\(724\) 0 0
\(725\) −6.24515 −0.231939
\(726\) 0 0
\(727\) 23.9253 0.887340 0.443670 0.896190i \(-0.353676\pi\)
0.443670 + 0.896190i \(0.353676\pi\)
\(728\) 0 0
\(729\) −12.7851 −0.473522
\(730\) 0 0
\(731\) 13.0019 0.480893
\(732\) 0 0
\(733\) −35.4522 −1.30946 −0.654729 0.755864i \(-0.727217\pi\)
−0.654729 + 0.755864i \(0.727217\pi\)
\(734\) 0 0
\(735\) 7.12841 0.262935
\(736\) 0 0
\(737\) 16.0139 0.589880
\(738\) 0 0
\(739\) 7.23658 0.266202 0.133101 0.991102i \(-0.457507\pi\)
0.133101 + 0.991102i \(0.457507\pi\)
\(740\) 0 0
\(741\) −6.68582 −0.245610
\(742\) 0 0
\(743\) −22.3672 −0.820573 −0.410286 0.911957i \(-0.634571\pi\)
−0.410286 + 0.911957i \(0.634571\pi\)
\(744\) 0 0
\(745\) −17.7528 −0.650411
\(746\) 0 0
\(747\) 32.5092 1.18945
\(748\) 0 0
\(749\) −22.4293 −0.819548
\(750\) 0 0
\(751\) 37.1390 1.35522 0.677611 0.735420i \(-0.263015\pi\)
0.677611 + 0.735420i \(0.263015\pi\)
\(752\) 0 0
\(753\) 3.67849 0.134052
\(754\) 0 0
\(755\) −47.3877 −1.72461
\(756\) 0 0
\(757\) 11.4260 0.415286 0.207643 0.978205i \(-0.433421\pi\)
0.207643 + 0.978205i \(0.433421\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.5484 −0.418630 −0.209315 0.977848i \(-0.567123\pi\)
−0.209315 + 0.977848i \(0.567123\pi\)
\(762\) 0 0
\(763\) 22.9940 0.832440
\(764\) 0 0
\(765\) −47.2069 −1.70677
\(766\) 0 0
\(767\) 13.3844 0.483281
\(768\) 0 0
\(769\) 2.69911 0.0973323 0.0486662 0.998815i \(-0.484503\pi\)
0.0486662 + 0.998815i \(0.484503\pi\)
\(770\) 0 0
\(771\) 14.7399 0.530845
\(772\) 0 0
\(773\) −33.4401 −1.20276 −0.601378 0.798965i \(-0.705381\pi\)
−0.601378 + 0.798965i \(0.705381\pi\)
\(774\) 0 0
\(775\) 11.6125 0.417135
\(776\) 0 0
\(777\) −7.37333 −0.264517
\(778\) 0 0
\(779\) −24.0532 −0.861795
\(780\) 0 0
\(781\) −2.18005 −0.0780085
\(782\) 0 0
\(783\) −6.06640 −0.216796
\(784\) 0 0
\(785\) 1.28355 0.0458119
\(786\) 0 0
\(787\) −38.4522 −1.37067 −0.685337 0.728226i \(-0.740345\pi\)
−0.685337 + 0.728226i \(0.740345\pi\)
\(788\) 0 0
\(789\) −5.58515 −0.198837
\(790\) 0 0
\(791\) −6.98298 −0.248286
\(792\) 0 0
\(793\) −21.5492 −0.765234
\(794\) 0 0
\(795\) −2.37995 −0.0844080
\(796\) 0 0
\(797\) −32.1667 −1.13940 −0.569702 0.821851i \(-0.692941\pi\)
−0.569702 + 0.821851i \(0.692941\pi\)
\(798\) 0 0
\(799\) −55.2025 −1.95293
\(800\) 0 0
\(801\) −49.4721 −1.74801
\(802\) 0 0
\(803\) 14.7916 0.521985
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.41217 0.120114
\(808\) 0 0
\(809\) 17.2568 0.606717 0.303358 0.952876i \(-0.401892\pi\)
0.303358 + 0.952876i \(0.401892\pi\)
\(810\) 0 0
\(811\) 4.43848 0.155856 0.0779280 0.996959i \(-0.475170\pi\)
0.0779280 + 0.996959i \(0.475170\pi\)
\(812\) 0 0
\(813\) −12.1360 −0.425627
\(814\) 0 0
\(815\) 34.6796 1.21477
\(816\) 0 0
\(817\) 17.9194 0.626921
\(818\) 0 0
\(819\) 6.16622 0.215465
\(820\) 0 0
\(821\) −41.4228 −1.44567 −0.722833 0.691023i \(-0.757161\pi\)
−0.722833 + 0.691023i \(0.757161\pi\)
\(822\) 0 0
\(823\) −4.93096 −0.171882 −0.0859412 0.996300i \(-0.527390\pi\)
−0.0859412 + 0.996300i \(0.527390\pi\)
\(824\) 0 0
\(825\) −6.26117 −0.217986
\(826\) 0 0
\(827\) 8.67963 0.301820 0.150910 0.988547i \(-0.451780\pi\)
0.150910 + 0.988547i \(0.451780\pi\)
\(828\) 0 0
\(829\) −12.3701 −0.429630 −0.214815 0.976655i \(-0.568915\pi\)
−0.214815 + 0.976655i \(0.568915\pi\)
\(830\) 0 0
\(831\) 14.0069 0.485892
\(832\) 0 0
\(833\) −28.4940 −0.987258
\(834\) 0 0
\(835\) 56.1915 1.94459
\(836\) 0 0
\(837\) 11.2802 0.389900
\(838\) 0 0
\(839\) −30.9958 −1.07009 −0.535047 0.844822i \(-0.679706\pi\)
−0.535047 + 0.844822i \(0.679706\pi\)
\(840\) 0 0
\(841\) −25.0520 −0.863861
\(842\) 0 0
\(843\) −3.04943 −0.105028
\(844\) 0 0
\(845\) −30.7621 −1.05825
\(846\) 0 0
\(847\) −4.42500 −0.152045
\(848\) 0 0
\(849\) 13.9438 0.478550
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 31.3510 1.07344 0.536719 0.843761i \(-0.319664\pi\)
0.536719 + 0.843761i \(0.319664\pi\)
\(854\) 0 0
\(855\) −65.0612 −2.22504
\(856\) 0 0
\(857\) 35.0754 1.19815 0.599076 0.800692i \(-0.295535\pi\)
0.599076 + 0.800692i \(0.295535\pi\)
\(858\) 0 0
\(859\) 3.68637 0.125777 0.0628887 0.998021i \(-0.479969\pi\)
0.0628887 + 0.998021i \(0.479969\pi\)
\(860\) 0 0
\(861\) −2.33267 −0.0794971
\(862\) 0 0
\(863\) −22.4200 −0.763185 −0.381593 0.924331i \(-0.624624\pi\)
−0.381593 + 0.924331i \(0.624624\pi\)
\(864\) 0 0
\(865\) 31.3521 1.06600
\(866\) 0 0
\(867\) −10.7593 −0.365406
\(868\) 0 0
\(869\) 22.5651 0.765470
\(870\) 0 0
\(871\) 6.39912 0.216826
\(872\) 0 0
\(873\) −28.6299 −0.968974
\(874\) 0 0
\(875\) 8.07875 0.273112
\(876\) 0 0
\(877\) −55.2027 −1.86406 −0.932031 0.362379i \(-0.881965\pi\)
−0.932031 + 0.362379i \(0.881965\pi\)
\(878\) 0 0
\(879\) −2.79000 −0.0941044
\(880\) 0 0
\(881\) 4.98160 0.167834 0.0839172 0.996473i \(-0.473257\pi\)
0.0839172 + 0.996473i \(0.473257\pi\)
\(882\) 0 0
\(883\) −1.94580 −0.0654813 −0.0327406 0.999464i \(-0.510424\pi\)
−0.0327406 + 0.999464i \(0.510424\pi\)
\(884\) 0 0
\(885\) −13.6956 −0.460372
\(886\) 0 0
\(887\) −38.8970 −1.30603 −0.653017 0.757344i \(-0.726497\pi\)
−0.653017 + 0.757344i \(0.726497\pi\)
\(888\) 0 0
\(889\) −25.9568 −0.870563
\(890\) 0 0
\(891\) 24.2825 0.813495
\(892\) 0 0
\(893\) −76.0809 −2.54595
\(894\) 0 0
\(895\) −61.2813 −2.04841
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.34118 −0.244842
\(900\) 0 0
\(901\) 9.51323 0.316932
\(902\) 0 0
\(903\) 1.73782 0.0578310
\(904\) 0 0
\(905\) 22.6747 0.753732
\(906\) 0 0
\(907\) 41.0340 1.36251 0.681256 0.732045i \(-0.261434\pi\)
0.681256 + 0.732045i \(0.261434\pi\)
\(908\) 0 0
\(909\) −1.82618 −0.0605706
\(910\) 0 0
\(911\) −16.7967 −0.556499 −0.278249 0.960509i \(-0.589754\pi\)
−0.278249 + 0.960509i \(0.589754\pi\)
\(912\) 0 0
\(913\) −44.6532 −1.47780
\(914\) 0 0
\(915\) 22.0503 0.728960
\(916\) 0 0
\(917\) −27.0284 −0.892556
\(918\) 0 0
\(919\) −23.2745 −0.767753 −0.383877 0.923384i \(-0.625411\pi\)
−0.383877 + 0.923384i \(0.625411\pi\)
\(920\) 0 0
\(921\) 17.0541 0.561953
\(922\) 0 0
\(923\) −0.871145 −0.0286741
\(924\) 0 0
\(925\) −28.4516 −0.935483
\(926\) 0 0
\(927\) −18.5902 −0.610583
\(928\) 0 0
\(929\) −21.7654 −0.714098 −0.357049 0.934086i \(-0.616217\pi\)
−0.357049 + 0.934086i \(0.616217\pi\)
\(930\) 0 0
\(931\) −39.2708 −1.28705
\(932\) 0 0
\(933\) −7.92072 −0.259313
\(934\) 0 0
\(935\) 64.8412 2.12053
\(936\) 0 0
\(937\) −46.1603 −1.50799 −0.753995 0.656880i \(-0.771876\pi\)
−0.753995 + 0.656880i \(0.771876\pi\)
\(938\) 0 0
\(939\) 1.18185 0.0385681
\(940\) 0 0
\(941\) 8.17739 0.266575 0.133288 0.991077i \(-0.457447\pi\)
0.133288 + 0.991077i \(0.457447\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −13.2827 −0.432086
\(946\) 0 0
\(947\) 8.29747 0.269632 0.134816 0.990871i \(-0.456956\pi\)
0.134816 + 0.990871i \(0.456956\pi\)
\(948\) 0 0
\(949\) 5.91070 0.191869
\(950\) 0 0
\(951\) 5.41517 0.175599
\(952\) 0 0
\(953\) −53.0822 −1.71950 −0.859751 0.510713i \(-0.829381\pi\)
−0.859751 + 0.510713i \(0.829381\pi\)
\(954\) 0 0
\(955\) −37.3681 −1.20920
\(956\) 0 0
\(957\) 3.95816 0.127949
\(958\) 0 0
\(959\) −18.1013 −0.584522
\(960\) 0 0
\(961\) −17.3495 −0.559660
\(962\) 0 0
\(963\) −39.9359 −1.28692
\(964\) 0 0
\(965\) −9.58476 −0.308544
\(966\) 0 0
\(967\) −3.85444 −0.123950 −0.0619752 0.998078i \(-0.519740\pi\)
−0.0619752 + 0.998078i \(0.519740\pi\)
\(968\) 0 0
\(969\) −27.3463 −0.878490
\(970\) 0 0
\(971\) −2.27001 −0.0728480 −0.0364240 0.999336i \(-0.511597\pi\)
−0.0364240 + 0.999336i \(0.511597\pi\)
\(972\) 0 0
\(973\) −4.82211 −0.154590
\(974\) 0 0
\(975\) −2.50195 −0.0801265
\(976\) 0 0
\(977\) 35.5882 1.13857 0.569283 0.822142i \(-0.307221\pi\)
0.569283 + 0.822142i \(0.307221\pi\)
\(978\) 0 0
\(979\) 67.9526 2.17177
\(980\) 0 0
\(981\) 40.9414 1.30716
\(982\) 0 0
\(983\) −31.1891 −0.994776 −0.497388 0.867528i \(-0.665708\pi\)
−0.497388 + 0.867528i \(0.665708\pi\)
\(984\) 0 0
\(985\) 59.2973 1.88937
\(986\) 0 0
\(987\) −7.37830 −0.234854
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 51.2528 1.62810 0.814050 0.580795i \(-0.197258\pi\)
0.814050 + 0.580795i \(0.197258\pi\)
\(992\) 0 0
\(993\) 3.42527 0.108698
\(994\) 0 0
\(995\) −61.2284 −1.94107
\(996\) 0 0
\(997\) 16.4889 0.522208 0.261104 0.965311i \(-0.415913\pi\)
0.261104 + 0.965311i \(0.415913\pi\)
\(998\) 0 0
\(999\) −27.6373 −0.874405
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4232.2.a.x.1.4 yes 12
4.3 odd 2 8464.2.a.cf.1.10 12
23.22 odd 2 inner 4232.2.a.x.1.3 12
92.91 even 2 8464.2.a.cf.1.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.x.1.3 12 23.22 odd 2 inner
4232.2.a.x.1.4 yes 12 1.1 even 1 trivial
8464.2.a.cf.1.9 12 92.91 even 2
8464.2.a.cf.1.10 12 4.3 odd 2