Properties

Label 423.1.f.b
Level $423$
Weight $1$
Character orbit 423.f
Analytic conductor $0.211$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [423,1,Mod(187,423)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("423.187"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(423, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 423 = 3^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 423.f (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.211104500344\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of 15.1.1766485593616332297663.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{30}^{14} - \zeta_{30}^{11}) q^{2} + \zeta_{30}^{12} q^{3} + ( - \zeta_{30}^{13} + \cdots - \zeta_{30}^{7}) q^{4} + ( - \zeta_{30}^{11} + \zeta_{30}^{8}) q^{6} + (\zeta_{30}^{6} + \zeta_{30}^{4}) q^{7}+ \cdots + ( - \zeta_{30}^{11} + \cdots + \zeta_{30}^{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} - q^{7} - 8 q^{8} - 2 q^{9} - 2 q^{12} + 3 q^{14} + 2 q^{17} - 3 q^{18} - q^{21} + 2 q^{24} - 4 q^{25} - 2 q^{27} + 6 q^{28} - 4 q^{32} - 2 q^{34} + 3 q^{36}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/423\mathbb{Z}\right)^\times\).

\(n\) \(236\) \(334\)
\(\chi(n)\) \(\zeta_{30}^{10}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
187.1
−0.978148 + 0.207912i
0.669131 0.743145i
0.913545 + 0.406737i
−0.104528 + 0.994522i
0.669131 + 0.743145i
−0.978148 0.207912i
−0.104528 0.994522i
0.913545 0.406737i
−0.309017 + 0.535233i −0.809017 0.587785i 0.309017 + 0.535233i 0 0.564602 0.251377i 0.978148 1.69420i −1.00000 0.309017 + 0.951057i 0
187.2 −0.309017 + 0.535233i −0.809017 + 0.587785i 0.309017 + 0.535233i 0 −0.0646021 0.614648i −0.669131 + 1.15897i −1.00000 0.309017 0.951057i 0
187.3 0.809017 1.40126i 0.309017 0.951057i −0.809017 1.40126i 0 −1.08268 1.20243i −0.913545 + 1.58231i −1.00000 −0.809017 0.587785i 0
187.4 0.809017 1.40126i 0.309017 + 0.951057i −0.809017 1.40126i 0 1.58268 + 0.336408i 0.104528 0.181049i −1.00000 −0.809017 + 0.587785i 0
328.1 −0.309017 0.535233i −0.809017 0.587785i 0.309017 0.535233i 0 −0.0646021 + 0.614648i −0.669131 1.15897i −1.00000 0.309017 + 0.951057i 0
328.2 −0.309017 0.535233i −0.809017 + 0.587785i 0.309017 0.535233i 0 0.564602 + 0.251377i 0.978148 + 1.69420i −1.00000 0.309017 0.951057i 0
328.3 0.809017 + 1.40126i 0.309017 0.951057i −0.809017 + 1.40126i 0 1.58268 0.336408i 0.104528 + 0.181049i −1.00000 −0.809017 0.587785i 0
328.4 0.809017 + 1.40126i 0.309017 + 0.951057i −0.809017 + 1.40126i 0 −1.08268 + 1.20243i −0.913545 1.58231i −1.00000 −0.809017 + 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 187.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
47.b odd 2 1 CM by \(\Q(\sqrt{-47}) \)
9.c even 3 1 inner
423.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 423.1.f.b 8
3.b odd 2 1 1269.1.f.b 8
9.c even 3 1 inner 423.1.f.b 8
9.c even 3 1 3807.1.d.c 4
9.d odd 6 1 1269.1.f.b 8
9.d odd 6 1 3807.1.d.d 4
47.b odd 2 1 CM 423.1.f.b 8
141.c even 2 1 1269.1.f.b 8
423.f odd 6 1 inner 423.1.f.b 8
423.f odd 6 1 3807.1.d.c 4
423.g even 6 1 1269.1.f.b 8
423.g even 6 1 3807.1.d.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
423.1.f.b 8 1.a even 1 1 trivial
423.1.f.b 8 9.c even 3 1 inner
423.1.f.b 8 47.b odd 2 1 CM
423.1.f.b 8 423.f odd 6 1 inner
1269.1.f.b 8 3.b odd 2 1
1269.1.f.b 8 9.d odd 6 1
1269.1.f.b 8 141.c even 2 1
1269.1.f.b 8 423.g even 6 1
3807.1.d.c 4 9.c even 3 1
3807.1.d.c 4 423.f odd 6 1
3807.1.d.d 4 9.d odd 6 1
3807.1.d.d 4 423.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - T_{2}^{3} + 2T_{2}^{2} + T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(423, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} - T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{4} - T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} - T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{8} + T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} - T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} + T^{7} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
show more
show less