| L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s − 4·6-s − 7-s + 2·8-s + 9-s − 6·12-s − 2·14-s + 16-s + 2·17-s + 2·18-s + 2·21-s − 4·24-s − 4·25-s − 3·28-s − 2·32-s + 4·34-s + 3·36-s + 2·37-s + 4·42-s − 4·47-s − 2·48-s − 8·50-s − 4·51-s + 2·53-s − 2·56-s + ⋯ |
| L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s − 4·6-s − 7-s + 2·8-s + 9-s − 6·12-s − 2·14-s + 16-s + 2·17-s + 2·18-s + 2·21-s − 4·24-s − 4·25-s − 3·28-s − 2·32-s + 4·34-s + 3·36-s + 2·37-s + 4·42-s − 4·47-s − 2·48-s − 8·50-s − 4·51-s + 2·53-s − 2·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 47^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 47^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2794283636\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2794283636\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 47 | \( ( 1 + T + T^{2} )^{4} \) |
| good | 2 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 5 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 7 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 11 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 13 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 17 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 19 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 23 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 29 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 31 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 37 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 41 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 43 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 53 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 59 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 61 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 67 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 71 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 73 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 79 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 83 | \( ( 1 - T )^{8}( 1 + T + T^{2} )^{4} \) |
| 89 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 97 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.35290046575934266941915186013, −5.03985278215547249185162285982, −5.02878368975889317506954929294, −4.87368303731495029081758209312, −4.83446835446314400678472897808, −4.79825810786855805095326739351, −4.25875436907266130233692872818, −4.03714651761181730073059658024, −3.97982168942489421517439082962, −3.92641758329400160316985149334, −3.91760896990749318742992186360, −3.50874694957051403424191154082, −3.48954466008293303714467466060, −3.40713398305892743161237063158, −3.19460294627564169633014206233, −3.09669115543710024576826660933, −2.83852832426714649569912142394, −2.70294911625623485015209604010, −2.38065710463709234217052358424, −2.31391733557936781195930898767, −2.10016892991935633818616321260, −1.73547466048131857853209190585, −1.66319743137274956418888759876, −1.41041753636882314956627302363, −0.829276598152766612275609290981,
0.829276598152766612275609290981, 1.41041753636882314956627302363, 1.66319743137274956418888759876, 1.73547466048131857853209190585, 2.10016892991935633818616321260, 2.31391733557936781195930898767, 2.38065710463709234217052358424, 2.70294911625623485015209604010, 2.83852832426714649569912142394, 3.09669115543710024576826660933, 3.19460294627564169633014206233, 3.40713398305892743161237063158, 3.48954466008293303714467466060, 3.50874694957051403424191154082, 3.91760896990749318742992186360, 3.92641758329400160316985149334, 3.97982168942489421517439082962, 4.03714651761181730073059658024, 4.25875436907266130233692872818, 4.79825810786855805095326739351, 4.83446835446314400678472897808, 4.87368303731495029081758209312, 5.02878368975889317506954929294, 5.03985278215547249185162285982, 5.35290046575934266941915186013
Plot not available for L-functions of degree greater than 10.