Properties

Label 3807.1.d.c
Level $3807$
Weight $1$
Character orbit 3807.d
Self dual yes
Analytic conductor $1.900$
Analytic rank $0$
Dimension $4$
Projective image $D_{15}$
CM discriminant -47
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3807,1,Mod(892,3807)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3807.892"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3807, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3807 = 3^{4} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3807.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.89994050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 423)
Projective image: \(D_{15}\)
Projective field: Galois closure of 15.1.1766485593616332297663.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 1) q^{2} + (\beta_{3} + 1) q^{4} + \beta_1 q^{7} - q^{8} + ( - \beta_{3} - \beta_{2} - 1) q^{14} + \beta_{2} q^{17} + q^{25} + (\beta_{3} + \beta_{2} + 1) q^{28} + q^{32} + ( - \beta_{2} - \beta_1 + 1) q^{34}+ \cdots + ( - \beta_{3} - \beta_{2} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{4} + q^{7} - 4 q^{8} - 3 q^{14} + q^{17} + 4 q^{25} + 3 q^{28} + 4 q^{32} + 2 q^{34} + q^{37} + 4 q^{47} + 5 q^{49} - 2 q^{50} + q^{53} - q^{56} + q^{59} + q^{61} - 2 q^{64}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{15} + \zeta_{15}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3807\mathbb{Z}\right)^\times\).

\(n\) \(2026\) \(2351\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
892.1
−0.209057
1.82709
−1.95630
1.33826
−1.61803 0 1.61803 0 0 −0.209057 −1.00000 0 0
892.2 −1.61803 0 1.61803 0 0 1.82709 −1.00000 0 0
892.3 0.618034 0 −0.618034 0 0 −1.95630 −1.00000 0 0
892.4 0.618034 0 −0.618034 0 0 1.33826 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
47.b odd 2 1 CM by \(\Q(\sqrt{-47}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3807.1.d.c 4
3.b odd 2 1 3807.1.d.d 4
9.c even 3 2 423.1.f.b 8
9.d odd 6 2 1269.1.f.b 8
47.b odd 2 1 CM 3807.1.d.c 4
141.c even 2 1 3807.1.d.d 4
423.f odd 6 2 423.1.f.b 8
423.g even 6 2 1269.1.f.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
423.1.f.b 8 9.c even 3 2
423.1.f.b 8 423.f odd 6 2
1269.1.f.b 8 9.d odd 6 2
1269.1.f.b 8 423.g even 6 2
3807.1.d.c 4 1.a even 1 1 trivial
3807.1.d.c 4 47.b odd 2 1 CM
3807.1.d.d 4 3.b odd 2 1
3807.1.d.d 4 141.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} - 1 \) acting on \(S_{1}^{\mathrm{new}}(3807, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T - 1)^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( (T + 1)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
show more
show less