Properties

Label 4212.2.i.y.2809.3
Level $4212$
Weight $2$
Character 4212.2809
Analytic conductor $33.633$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1405,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1405"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-8,0,0,0,0,0,-6,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 41x^{8} - 152x^{6} + 656x^{4} - 1280x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2809.3
Root \(1.86751 - 0.715814i\) of defining polynomial
Character \(\chi\) \(=\) 4212.2809
Dual form 4212.2.i.y.1405.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.313845 - 0.543595i) q^{5} +(1.47522 - 2.55516i) q^{7} +(2.73354 - 4.73463i) q^{11} +(-0.500000 - 0.866025i) q^{13} -0.356762 q^{17} -1.86325 q^{19} +(-1.23983 - 2.14744i) q^{23} +(2.30300 - 3.98892i) q^{25} +(0.373800 - 0.647441i) q^{29} +(-0.456405 - 0.790517i) q^{31} -1.85196 q^{35} +7.60601 q^{37} +(-2.04590 - 3.54359i) q^{41} +(-3.25941 + 5.64546i) q^{43} +(0.925981 - 1.60385i) q^{47} +(-0.852559 - 1.47668i) q^{49} -3.58401 q^{53} -3.43163 q^{55} +(-4.95782 - 8.58719i) q^{59} +(-3.90685 + 6.76686i) q^{61} +(-0.313845 + 0.543595i) q^{65} +(-0.456405 - 0.790517i) q^{67} -7.70691 q^{71} +5.20769 q^{73} +(-8.06516 - 13.9693i) q^{77} +(-1.30896 + 2.26719i) q^{79} +(-1.61363 + 2.79488i) q^{83} +(0.111968 + 0.193934i) q^{85} +15.2110 q^{89} -2.95044 q^{91} +(0.584772 + 1.01286i) q^{95} +(-5.95044 + 10.3065i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} - 6 q^{13} + 4 q^{19} - 4 q^{25} - 18 q^{31} + 28 q^{37} - 20 q^{43} - 30 q^{49} - 28 q^{55} - 8 q^{61} - 18 q^{67} + 48 q^{73} - 48 q^{79} + 2 q^{85} + 16 q^{91} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.313845 0.543595i −0.140356 0.243103i 0.787275 0.616602i \(-0.211491\pi\)
−0.927631 + 0.373499i \(0.878158\pi\)
\(6\) 0 0
\(7\) 1.47522 2.55516i 0.557581 0.965759i −0.440116 0.897941i \(-0.645063\pi\)
0.997698 0.0678186i \(-0.0216039\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.73354 4.73463i 0.824193 1.42754i −0.0783409 0.996927i \(-0.524962\pi\)
0.902534 0.430618i \(-0.141704\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.356762 −0.0865274 −0.0432637 0.999064i \(-0.513776\pi\)
−0.0432637 + 0.999064i \(0.513776\pi\)
\(18\) 0 0
\(19\) −1.86325 −0.427460 −0.213730 0.976893i \(-0.568561\pi\)
−0.213730 + 0.976893i \(0.568561\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.23983 2.14744i −0.258521 0.447772i 0.707325 0.706889i \(-0.249902\pi\)
−0.965846 + 0.259117i \(0.916569\pi\)
\(24\) 0 0
\(25\) 2.30300 3.98892i 0.460601 0.797784i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.373800 0.647441i 0.0694129 0.120227i −0.829230 0.558907i \(-0.811221\pi\)
0.898643 + 0.438681i \(0.144554\pi\)
\(30\) 0 0
\(31\) −0.456405 0.790517i −0.0819728 0.141981i 0.822124 0.569308i \(-0.192789\pi\)
−0.904097 + 0.427327i \(0.859455\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.85196 −0.313039
\(36\) 0 0
\(37\) 7.60601 1.25042 0.625210 0.780457i \(-0.285013\pi\)
0.625210 + 0.780457i \(0.285013\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.04590 3.54359i −0.319515 0.553417i 0.660872 0.750499i \(-0.270187\pi\)
−0.980387 + 0.197082i \(0.936853\pi\)
\(42\) 0 0
\(43\) −3.25941 + 5.64546i −0.497055 + 0.860925i −0.999994 0.00339713i \(-0.998919\pi\)
0.502939 + 0.864322i \(0.332252\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.925981 1.60385i 0.135068 0.233945i −0.790555 0.612391i \(-0.790208\pi\)
0.925624 + 0.378446i \(0.123541\pi\)
\(48\) 0 0
\(49\) −0.852559 1.47668i −0.121794 0.210954i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.58401 −0.492302 −0.246151 0.969231i \(-0.579166\pi\)
−0.246151 + 0.969231i \(0.579166\pi\)
\(54\) 0 0
\(55\) −3.43163 −0.462721
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.95782 8.58719i −0.645453 1.11796i −0.984197 0.177078i \(-0.943335\pi\)
0.338744 0.940879i \(-0.389998\pi\)
\(60\) 0 0
\(61\) −3.90685 + 6.76686i −0.500221 + 0.866408i 0.499779 + 0.866153i \(0.333414\pi\)
−1.00000 0.000254929i \(0.999919\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.313845 + 0.543595i −0.0389276 + 0.0674246i
\(66\) 0 0
\(67\) −0.456405 0.790517i −0.0557588 0.0965770i 0.836799 0.547511i \(-0.184424\pi\)
−0.892557 + 0.450934i \(0.851091\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.70691 −0.914642 −0.457321 0.889302i \(-0.651191\pi\)
−0.457321 + 0.889302i \(0.651191\pi\)
\(72\) 0 0
\(73\) 5.20769 0.609514 0.304757 0.952430i \(-0.401425\pi\)
0.304757 + 0.952430i \(0.401425\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.06516 13.9693i −0.919110 1.59194i
\(78\) 0 0
\(79\) −1.30896 + 2.26719i −0.147270 + 0.255079i −0.930218 0.367009i \(-0.880382\pi\)
0.782948 + 0.622088i \(0.213715\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.61363 + 2.79488i −0.177118 + 0.306778i −0.940892 0.338706i \(-0.890011\pi\)
0.763774 + 0.645484i \(0.223344\pi\)
\(84\) 0 0
\(85\) 0.111968 + 0.193934i 0.0121446 + 0.0210351i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2110 1.61237 0.806184 0.591665i \(-0.201529\pi\)
0.806184 + 0.591665i \(0.201529\pi\)
\(90\) 0 0
\(91\) −2.95044 −0.309291
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.584772 + 1.01286i 0.0599964 + 0.103917i
\(96\) 0 0
\(97\) −5.95044 + 10.3065i −0.604176 + 1.04646i 0.388005 + 0.921657i \(0.373164\pi\)
−0.992181 + 0.124806i \(0.960169\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.509264 + 0.882071i −0.0506737 + 0.0877693i −0.890250 0.455473i \(-0.849470\pi\)
0.839576 + 0.543242i \(0.182804\pi\)
\(102\) 0 0
\(103\) 5.66626 + 9.81425i 0.558313 + 0.967026i 0.997638 + 0.0686980i \(0.0218845\pi\)
−0.439325 + 0.898328i \(0.644782\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.5678 −1.50500 −0.752498 0.658594i \(-0.771151\pi\)
−0.752498 + 0.658594i \(0.771151\pi\)
\(108\) 0 0
\(109\) 11.9009 1.13990 0.569949 0.821680i \(-0.306963\pi\)
0.569949 + 0.821680i \(0.306963\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.06293 + 3.57311i 0.194064 + 0.336130i 0.946593 0.322430i \(-0.104500\pi\)
−0.752529 + 0.658559i \(0.771166\pi\)
\(114\) 0 0
\(115\) −0.778225 + 1.34793i −0.0725699 + 0.125695i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.526302 + 0.911583i −0.0482461 + 0.0835646i
\(120\) 0 0
\(121\) −9.44448 16.3583i −0.858589 1.48712i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.02959 −0.539303
\(126\) 0 0
\(127\) −1.90089 −0.168676 −0.0843382 0.996437i \(-0.526878\pi\)
−0.0843382 + 0.996437i \(0.526878\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.15026 5.45641i −0.275239 0.476728i 0.694956 0.719052i \(-0.255424\pi\)
−0.970195 + 0.242324i \(0.922090\pi\)
\(132\) 0 0
\(133\) −2.74871 + 4.76091i −0.238344 + 0.412823i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.25760 + 10.8385i −0.534623 + 0.925994i 0.464559 + 0.885542i \(0.346213\pi\)
−0.999182 + 0.0404513i \(0.987120\pi\)
\(138\) 0 0
\(139\) −6.06241 10.5004i −0.514207 0.890633i −0.999864 0.0164833i \(-0.994753\pi\)
0.485657 0.874149i \(-0.338580\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.46708 −0.457180
\(144\) 0 0
\(145\) −0.469261 −0.0389700
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.63067 + 4.55645i 0.215513 + 0.373279i 0.953431 0.301611i \(-0.0975244\pi\)
−0.737918 + 0.674890i \(0.764191\pi\)
\(150\) 0 0
\(151\) −5.07907 + 8.79720i −0.413329 + 0.715906i −0.995251 0.0973378i \(-0.968967\pi\)
0.581923 + 0.813244i \(0.302301\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.286481 + 0.496199i −0.0230107 + 0.0398557i
\(156\) 0 0
\(157\) −4.13078 7.15473i −0.329672 0.571009i 0.652774 0.757552i \(-0.273605\pi\)
−0.982447 + 0.186543i \(0.940272\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.31607 −0.576587
\(162\) 0 0
\(163\) 20.9385 1.64003 0.820016 0.572341i \(-0.193965\pi\)
0.820016 + 0.572341i \(0.193965\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.80978 11.7949i −0.526956 0.912715i −0.999507 0.0314115i \(-0.990000\pi\)
0.472550 0.881304i \(-0.343334\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.5478 21.7334i 0.953990 1.65236i 0.217329 0.976098i \(-0.430266\pi\)
0.736662 0.676262i \(-0.236401\pi\)
\(174\) 0 0
\(175\) −6.79488 11.7691i −0.513645 0.889659i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.1333 −1.35535 −0.677673 0.735363i \(-0.737011\pi\)
−0.677673 + 0.735363i \(0.737011\pi\)
\(180\) 0 0
\(181\) 21.7641 1.61772 0.808858 0.588004i \(-0.200086\pi\)
0.808858 + 0.588004i \(0.200086\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.38710 4.13459i −0.175503 0.303981i
\(186\) 0 0
\(187\) −0.975222 + 1.68913i −0.0713153 + 0.123522i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.21171 9.02694i 0.377106 0.653166i −0.613534 0.789668i \(-0.710253\pi\)
0.990640 + 0.136502i \(0.0435860\pi\)
\(192\) 0 0
\(193\) −6.25941 10.8416i −0.450562 0.780396i 0.547859 0.836571i \(-0.315443\pi\)
−0.998421 + 0.0561744i \(0.982110\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.0068 −1.63916 −0.819582 0.572962i \(-0.805794\pi\)
−0.819582 + 0.572962i \(0.805794\pi\)
\(198\) 0 0
\(199\) −15.8299 −1.12215 −0.561077 0.827763i \(-0.689613\pi\)
−0.561077 + 0.827763i \(0.689613\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.10288 1.91024i −0.0774067 0.134072i
\(204\) 0 0
\(205\) −1.28419 + 2.22428i −0.0896915 + 0.155350i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.09328 + 8.82182i −0.352310 + 0.610218i
\(210\) 0 0
\(211\) 5.58123 + 9.66697i 0.384228 + 0.665502i 0.991662 0.128868i \(-0.0411345\pi\)
−0.607434 + 0.794370i \(0.707801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.09179 0.279058
\(216\) 0 0
\(217\) −2.69320 −0.182826
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.178381 + 0.308965i 0.0119992 + 0.0207832i
\(222\) 0 0
\(223\) 7.27823 12.6063i 0.487386 0.844177i −0.512509 0.858682i \(-0.671284\pi\)
0.999895 + 0.0145047i \(0.00461714\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.5174 18.2167i 0.698067 1.20909i −0.271068 0.962560i \(-0.587377\pi\)
0.969136 0.246528i \(-0.0792897\pi\)
\(228\) 0 0
\(229\) −8.97738 15.5493i −0.593242 1.02753i −0.993792 0.111251i \(-0.964514\pi\)
0.400550 0.916275i \(-0.368819\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.57442 0.561729 0.280864 0.959747i \(-0.409379\pi\)
0.280864 + 0.959747i \(0.409379\pi\)
\(234\) 0 0
\(235\) −1.16246 −0.0758303
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.13619 7.16410i −0.267548 0.463407i 0.700680 0.713476i \(-0.252880\pi\)
−0.968228 + 0.250069i \(0.919547\pi\)
\(240\) 0 0
\(241\) 0.444482 0.769866i 0.0286316 0.0495914i −0.851355 0.524591i \(-0.824218\pi\)
0.879986 + 0.474999i \(0.157552\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.535142 + 0.926894i −0.0341890 + 0.0592171i
\(246\) 0 0
\(247\) 0.931627 + 1.61363i 0.0592780 + 0.102673i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.2170 1.21297 0.606483 0.795096i \(-0.292580\pi\)
0.606483 + 0.795096i \(0.292580\pi\)
\(252\) 0 0
\(253\) −13.5565 −0.852287
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.46857 11.2039i −0.403498 0.698880i 0.590647 0.806930i \(-0.298873\pi\)
−0.994145 + 0.108050i \(0.965539\pi\)
\(258\) 0 0
\(259\) 11.2205 19.4346i 0.697211 1.20760i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.4108 21.4962i 0.765285 1.32551i −0.174811 0.984602i \(-0.555931\pi\)
0.940096 0.340910i \(-0.110735\pi\)
\(264\) 0 0
\(265\) 1.12482 + 1.94825i 0.0690973 + 0.119680i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.8468 −1.14911 −0.574555 0.818466i \(-0.694825\pi\)
−0.574555 + 0.818466i \(0.694825\pi\)
\(270\) 0 0
\(271\) 30.8770 1.87565 0.937823 0.347113i \(-0.112838\pi\)
0.937823 + 0.347113i \(0.112838\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.5907 21.8077i −0.759248 1.31506i
\(276\) 0 0
\(277\) −10.6107 + 18.3783i −0.637538 + 1.10425i 0.348434 + 0.937333i \(0.386714\pi\)
−0.985971 + 0.166914i \(0.946620\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.221298 + 0.383299i −0.0132015 + 0.0228657i −0.872551 0.488524i \(-0.837536\pi\)
0.859349 + 0.511389i \(0.170869\pi\)
\(282\) 0 0
\(283\) 6.55645 + 11.3561i 0.389741 + 0.675050i 0.992414 0.122937i \(-0.0392314\pi\)
−0.602674 + 0.797988i \(0.705898\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0726 −0.712623
\(288\) 0 0
\(289\) −16.8727 −0.992513
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.61214 + 2.79231i 0.0941822 + 0.163128i 0.909267 0.416213i \(-0.136643\pi\)
−0.815085 + 0.579342i \(0.803310\pi\)
\(294\) 0 0
\(295\) −3.11197 + 5.39009i −0.181186 + 0.313823i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.23983 + 2.14744i −0.0717010 + 0.124190i
\(300\) 0 0
\(301\) 9.61670 + 16.6566i 0.554297 + 0.960071i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.90457 0.280835
\(306\) 0 0
\(307\) 1.13675 0.0648775 0.0324388 0.999474i \(-0.489673\pi\)
0.0324388 + 0.999474i \(0.489673\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.86974 13.6308i −0.446252 0.772931i 0.551887 0.833919i \(-0.313908\pi\)
−0.998138 + 0.0609883i \(0.980575\pi\)
\(312\) 0 0
\(313\) −2.46237 + 4.26494i −0.139181 + 0.241069i −0.927187 0.374599i \(-0.877780\pi\)
0.788006 + 0.615668i \(0.211114\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.71872 + 13.3692i −0.433527 + 0.750890i −0.997174 0.0751254i \(-0.976064\pi\)
0.563648 + 0.826015i \(0.309398\pi\)
\(318\) 0 0
\(319\) −2.04359 3.53961i −0.114419 0.198180i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.664737 0.0369870
\(324\) 0 0
\(325\) −4.60601 −0.255495
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.73205 4.73206i −0.150623 0.260887i
\(330\) 0 0
\(331\) −5.86541 + 10.1592i −0.322392 + 0.558400i −0.980981 0.194103i \(-0.937820\pi\)
0.658589 + 0.752503i \(0.271154\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.286481 + 0.496199i −0.0156521 + 0.0271102i
\(336\) 0 0
\(337\) −7.38423 12.7899i −0.402245 0.696708i 0.591752 0.806120i \(-0.298437\pi\)
−0.993996 + 0.109412i \(0.965103\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.99041 −0.270246
\(342\) 0 0
\(343\) 15.6222 0.843522
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.82682 13.5565i −0.420166 0.727748i 0.575790 0.817598i \(-0.304695\pi\)
−0.995955 + 0.0898495i \(0.971361\pi\)
\(348\) 0 0
\(349\) 0.199157 0.344950i 0.0106606 0.0184648i −0.860646 0.509204i \(-0.829940\pi\)
0.871307 + 0.490739i \(0.163273\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.75941 3.04740i 0.0936442 0.162197i −0.815398 0.578901i \(-0.803482\pi\)
0.909042 + 0.416705i \(0.136815\pi\)
\(354\) 0 0
\(355\) 2.41877 + 4.18944i 0.128375 + 0.222352i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35.1105 1.85306 0.926530 0.376222i \(-0.122777\pi\)
0.926530 + 0.376222i \(0.122777\pi\)
\(360\) 0 0
\(361\) −15.5283 −0.817278
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.63441 2.83087i −0.0855487 0.148175i
\(366\) 0 0
\(367\) −3.46710 + 6.00519i −0.180981 + 0.313469i −0.942215 0.335009i \(-0.891261\pi\)
0.761234 + 0.648478i \(0.224594\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.28721 + 9.15772i −0.274498 + 0.475445i
\(372\) 0 0
\(373\) 11.1684 + 19.3443i 0.578279 + 1.00161i 0.995677 + 0.0928845i \(0.0296087\pi\)
−0.417398 + 0.908724i \(0.637058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.747600 −0.0385034
\(378\) 0 0
\(379\) −28.9009 −1.48454 −0.742269 0.670102i \(-0.766251\pi\)
−0.742269 + 0.670102i \(0.766251\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.59808 4.50000i −0.132755 0.229939i 0.791982 0.610544i \(-0.209049\pi\)
−0.924738 + 0.380605i \(0.875716\pi\)
\(384\) 0 0
\(385\) −5.06241 + 8.76835i −0.258004 + 0.446877i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.34717 + 7.52951i −0.220410 + 0.381761i −0.954933 0.296823i \(-0.904073\pi\)
0.734522 + 0.678584i \(0.237406\pi\)
\(390\) 0 0
\(391\) 0.442322 + 0.766124i 0.0223692 + 0.0387446i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.64325 0.0826807
\(396\) 0 0
\(397\) 30.5941 1.53547 0.767737 0.640766i \(-0.221383\pi\)
0.767737 + 0.640766i \(0.221383\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.02373 + 15.6296i 0.450624 + 0.780503i 0.998425 0.0561056i \(-0.0178684\pi\)
−0.547801 + 0.836608i \(0.684535\pi\)
\(402\) 0 0
\(403\) −0.456405 + 0.790517i −0.0227352 + 0.0393785i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.7913 36.0116i 1.03059 1.78503i
\(408\) 0 0
\(409\) 0.865415 + 1.49894i 0.0427920 + 0.0741179i 0.886628 0.462483i \(-0.153041\pi\)
−0.843836 + 0.536601i \(0.819708\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −29.2555 −1.43957
\(414\) 0 0
\(415\) 2.02571 0.0994382
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.43597 9.41538i −0.265565 0.459972i 0.702147 0.712032i \(-0.252225\pi\)
−0.967711 + 0.252061i \(0.918892\pi\)
\(420\) 0 0
\(421\) −9.56837 + 16.5729i −0.466334 + 0.807714i −0.999261 0.0384473i \(-0.987759\pi\)
0.532927 + 0.846161i \(0.321092\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.821623 + 1.42309i −0.0398546 + 0.0690301i
\(426\) 0 0
\(427\) 11.5269 + 19.9652i 0.557828 + 0.966186i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.4404 0.840075 0.420038 0.907507i \(-0.362017\pi\)
0.420038 + 0.907507i \(0.362017\pi\)
\(432\) 0 0
\(433\) 8.03763 0.386264 0.193132 0.981173i \(-0.438135\pi\)
0.193132 + 0.981173i \(0.438135\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.31011 + 4.00123i 0.110508 + 0.191405i
\(438\) 0 0
\(439\) 12.6791 21.9609i 0.605141 1.04814i −0.386888 0.922127i \(-0.626450\pi\)
0.992029 0.126008i \(-0.0402166\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.4753 + 26.8039i −0.735252 + 1.27349i 0.219361 + 0.975644i \(0.429603\pi\)
−0.954613 + 0.297850i \(0.903731\pi\)
\(444\) 0 0
\(445\) −4.77390 8.26864i −0.226305 0.391971i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.02959 −0.284554 −0.142277 0.989827i \(-0.545442\pi\)
−0.142277 + 0.989827i \(0.545442\pi\)
\(450\) 0 0
\(451\) −22.3701 −1.05337
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.925981 + 1.60385i 0.0434107 + 0.0751895i
\(456\) 0 0
\(457\) 3.95044 6.84237i 0.184794 0.320073i −0.758713 0.651425i \(-0.774172\pi\)
0.943507 + 0.331352i \(0.107505\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.43376 2.48334i 0.0667768 0.115661i −0.830704 0.556714i \(-0.812062\pi\)
0.897481 + 0.441054i \(0.145395\pi\)
\(462\) 0 0
\(463\) −11.6979 20.2614i −0.543649 0.941627i −0.998691 0.0511574i \(-0.983709\pi\)
0.455042 0.890470i \(-0.349624\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.7099 0.541869 0.270935 0.962598i \(-0.412667\pi\)
0.270935 + 0.962598i \(0.412667\pi\)
\(468\) 0 0
\(469\) −2.69320 −0.124360
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.8194 + 30.8642i 0.819339 + 1.41914i
\(474\) 0 0
\(475\) −4.29108 + 7.43237i −0.196888 + 0.341020i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.04441 1.80896i 0.0477201 0.0826537i −0.841179 0.540757i \(-0.818138\pi\)
0.888899 + 0.458104i \(0.151471\pi\)
\(480\) 0 0
\(481\) −3.80300 6.58699i −0.173402 0.300341i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.47006 0.339198
\(486\) 0 0
\(487\) 18.0138 0.816283 0.408141 0.912919i \(-0.366177\pi\)
0.408141 + 0.912919i \(0.366177\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.16878 + 7.22055i 0.188135 + 0.325859i 0.944628 0.328142i \(-0.106423\pi\)
−0.756494 + 0.654001i \(0.773089\pi\)
\(492\) 0 0
\(493\) −0.133357 + 0.230982i −0.00600612 + 0.0104029i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.3694 + 19.6924i −0.509987 + 0.883324i
\(498\) 0 0
\(499\) −12.0650 20.8972i −0.540103 0.935486i −0.998898 0.0469433i \(-0.985052\pi\)
0.458795 0.888542i \(-0.348281\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.6521 0.965420 0.482710 0.875780i \(-0.339652\pi\)
0.482710 + 0.875780i \(0.339652\pi\)
\(504\) 0 0
\(505\) 0.639319 0.0284493
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.68838 9.85256i −0.252133 0.436707i 0.711980 0.702200i \(-0.247799\pi\)
−0.964113 + 0.265493i \(0.914465\pi\)
\(510\) 0 0
\(511\) 7.68250 13.3065i 0.339854 0.588644i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.55665 6.16030i 0.156725 0.271455i
\(516\) 0 0
\(517\) −5.06241 8.76835i −0.222645 0.385632i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.2185 −1.28008 −0.640042 0.768340i \(-0.721083\pi\)
−0.640042 + 0.768340i \(0.721083\pi\)
\(522\) 0 0
\(523\) 9.01379 0.394145 0.197073 0.980389i \(-0.436856\pi\)
0.197073 + 0.980389i \(0.436856\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.162828 + 0.282026i 0.00709289 + 0.0122852i
\(528\) 0 0
\(529\) 8.42567 14.5937i 0.366333 0.634508i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.04590 + 3.54359i −0.0886176 + 0.153490i
\(534\) 0 0
\(535\) 4.88587 + 8.46258i 0.211235 + 0.365869i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.32202 −0.401528
\(540\) 0 0
\(541\) 19.7027 0.847084 0.423542 0.905877i \(-0.360787\pi\)
0.423542 + 0.905877i \(0.360787\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.73503 6.46926i −0.159991 0.277113i
\(546\) 0 0
\(547\) 13.1744 22.8187i 0.563296 0.975657i −0.433910 0.900956i \(-0.642866\pi\)
0.997206 0.0747008i \(-0.0238002\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.696485 + 1.20635i −0.0296712 + 0.0513921i
\(552\) 0 0
\(553\) 3.86203 + 6.68923i 0.164230 + 0.284455i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.40785 0.398624 0.199312 0.979936i \(-0.436129\pi\)
0.199312 + 0.979936i \(0.436129\pi\)
\(558\) 0 0
\(559\) 6.51882 0.275717
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.59295 + 16.6155i 0.404295 + 0.700259i 0.994239 0.107185i \(-0.0341837\pi\)
−0.589945 + 0.807444i \(0.700850\pi\)
\(564\) 0 0
\(565\) 1.29488 2.24280i 0.0544761 0.0943553i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.4338 + 40.5885i −0.982396 + 1.70156i −0.329416 + 0.944185i \(0.606852\pi\)
−0.652980 + 0.757375i \(0.726482\pi\)
\(570\) 0 0
\(571\) 15.2099 + 26.3442i 0.636513 + 1.10247i 0.986193 + 0.165603i \(0.0529570\pi\)
−0.349680 + 0.936869i \(0.613710\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.4213 −0.476301
\(576\) 0 0
\(577\) 20.7685 0.864602 0.432301 0.901729i \(-0.357702\pi\)
0.432301 + 0.901729i \(0.357702\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.76091 + 8.24614i 0.197516 + 0.342108i
\(582\) 0 0
\(583\) −9.79704 + 16.9690i −0.405752 + 0.702783i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.2006 28.0603i 0.668670 1.15817i −0.309606 0.950865i \(-0.600197\pi\)
0.978276 0.207306i \(-0.0664695\pi\)
\(588\) 0 0
\(589\) 0.850399 + 1.47293i 0.0350401 + 0.0606912i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.67282 −0.150825 −0.0754123 0.997152i \(-0.524027\pi\)
−0.0754123 + 0.997152i \(0.524027\pi\)
\(594\) 0 0
\(595\) 0.660709 0.0270864
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.8165 + 25.6629i 0.605384 + 1.04856i 0.991991 + 0.126312i \(0.0403139\pi\)
−0.386606 + 0.922245i \(0.626353\pi\)
\(600\) 0 0
\(601\) 17.1038 29.6247i 0.697680 1.20842i −0.271588 0.962414i \(-0.587549\pi\)
0.969269 0.246004i \(-0.0791178\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.92820 + 10.2679i −0.241016 + 0.417451i
\(606\) 0 0
\(607\) −15.8783 27.5020i −0.644479 1.11627i −0.984422 0.175824i \(-0.943741\pi\)
0.339942 0.940446i \(-0.389592\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.85196 −0.0749224
\(612\) 0 0
\(613\) 8.22394 0.332162 0.166081 0.986112i \(-0.446889\pi\)
0.166081 + 0.986112i \(0.446889\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.5086 + 35.5219i 0.825645 + 1.43006i 0.901426 + 0.432934i \(0.142522\pi\)
−0.0757812 + 0.997124i \(0.524145\pi\)
\(618\) 0 0
\(619\) −2.19104 + 3.79498i −0.0880652 + 0.152533i −0.906693 0.421791i \(-0.861402\pi\)
0.818628 + 0.574324i \(0.194735\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.4397 38.8666i 0.899026 1.55716i
\(624\) 0 0
\(625\) −9.62266 16.6669i −0.384907 0.666678i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.71353 −0.108196
\(630\) 0 0
\(631\) −41.2754 −1.64315 −0.821573 0.570103i \(-0.806903\pi\)
−0.821573 + 0.570103i \(0.806903\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.596583 + 1.03331i 0.0236747 + 0.0410058i
\(636\) 0 0
\(637\) −0.852559 + 1.47668i −0.0337796 + 0.0585080i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.42566 + 12.8616i −0.293296 + 0.508003i −0.974587 0.224009i \(-0.928085\pi\)
0.681291 + 0.732012i \(0.261419\pi\)
\(642\) 0 0
\(643\) 8.17818 + 14.1650i 0.322516 + 0.558614i 0.981006 0.193975i \(-0.0621381\pi\)
−0.658491 + 0.752589i \(0.728805\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.8608 0.938067 0.469033 0.883180i \(-0.344602\pi\)
0.469033 + 0.883180i \(0.344602\pi\)
\(648\) 0 0
\(649\) −54.2096 −2.12791
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.7247 + 20.3077i 0.458822 + 0.794703i 0.998899 0.0469125i \(-0.0149382\pi\)
−0.540077 + 0.841616i \(0.681605\pi\)
\(654\) 0 0
\(655\) −1.97738 + 3.42493i −0.0772627 + 0.133823i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.55665 + 7.89235i −0.177502 + 0.307442i −0.941024 0.338339i \(-0.890135\pi\)
0.763522 + 0.645781i \(0.223468\pi\)
\(660\) 0 0
\(661\) −15.6274 27.0674i −0.607835 1.05280i −0.991596 0.129369i \(-0.958705\pi\)
0.383761 0.923432i \(-0.374629\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.45068 0.133811
\(666\) 0 0
\(667\) −1.85379 −0.0717789
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 21.3591 + 36.9950i 0.824557 + 1.42818i
\(672\) 0 0
\(673\) −8.06837 + 13.9748i −0.311013 + 0.538690i −0.978582 0.205858i \(-0.934002\pi\)
0.667569 + 0.744548i \(0.267335\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.8328 + 36.0834i −0.800668 + 1.38680i 0.118509 + 0.992953i \(0.462188\pi\)
−0.919177 + 0.393844i \(0.871145\pi\)
\(678\) 0 0
\(679\) 17.5565 + 30.4087i 0.673755 + 1.16698i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.1369 −0.426143 −0.213071 0.977037i \(-0.568347\pi\)
−0.213071 + 0.977037i \(0.568347\pi\)
\(684\) 0 0
\(685\) 7.85565 0.300149
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.79201 + 3.10385i 0.0682700 + 0.118247i
\(690\) 0 0
\(691\) 11.4611 19.8513i 0.436002 0.755178i −0.561375 0.827562i \(-0.689727\pi\)
0.997377 + 0.0723837i \(0.0230606\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.80531 + 6.59099i −0.144344 + 0.250011i
\(696\) 0 0
\(697\) 0.729897 + 1.26422i 0.0276468 + 0.0478857i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.1635 0.497180 0.248590 0.968609i \(-0.420033\pi\)
0.248590 + 0.968609i \(0.420033\pi\)
\(702\) 0 0
\(703\) −14.1719 −0.534504
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.50255 + 2.60250i 0.0565094 + 0.0978771i
\(708\) 0 0
\(709\) 3.19916 5.54110i 0.120147 0.208100i −0.799679 0.600428i \(-0.794997\pi\)
0.919825 + 0.392328i \(0.128330\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.13173 + 1.96021i −0.0423835 + 0.0734103i
\(714\) 0 0
\(715\) 1.71581 + 2.97188i 0.0641678 + 0.111142i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.5116 0.802246 0.401123 0.916024i \(-0.368620\pi\)
0.401123 + 0.916024i \(0.368620\pi\)
\(720\) 0 0
\(721\) 33.4359 1.24522
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.72173 2.98212i −0.0639433 0.110753i
\(726\) 0 0
\(727\) −2.01286 + 3.48637i −0.0746527 + 0.129302i −0.900935 0.433954i \(-0.857118\pi\)
0.826283 + 0.563256i \(0.190451\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.16283 2.01408i 0.0430089 0.0744936i
\(732\) 0 0
\(733\) 13.9740 + 24.2037i 0.516141 + 0.893983i 0.999824 + 0.0187397i \(0.00596538\pi\)
−0.483683 + 0.875243i \(0.660701\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.99041 −0.183824
\(738\) 0 0
\(739\) −30.8299 −1.13410 −0.567049 0.823684i \(-0.691915\pi\)
−0.567049 + 0.823684i \(0.691915\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.80978 11.7949i −0.249827 0.432712i 0.713651 0.700501i \(-0.247040\pi\)
−0.963478 + 0.267789i \(0.913707\pi\)
\(744\) 0 0
\(745\) 1.65124 2.86003i 0.0604968 0.104784i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −22.9660 + 39.7782i −0.839158 + 1.45346i
\(750\) 0 0
\(751\) 3.47049 + 6.01106i 0.126640 + 0.219347i 0.922373 0.386301i \(-0.126247\pi\)
−0.795733 + 0.605648i \(0.792914\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6.37615 0.232052
\(756\) 0 0
\(757\) −17.3701 −0.631329 −0.315664 0.948871i \(-0.602227\pi\)
−0.315664 + 0.948871i \(0.602227\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.2798 + 40.3218i 0.843893 + 1.46166i 0.886579 + 0.462576i \(0.153075\pi\)
−0.0426869 + 0.999088i \(0.513592\pi\)
\(762\) 0 0
\(763\) 17.5565 30.4087i 0.635586 1.10087i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.95782 + 8.58719i −0.179016 + 0.310065i
\(768\) 0 0
\(769\) 22.6436 + 39.2199i 0.816551 + 1.41431i 0.908209 + 0.418517i \(0.137450\pi\)
−0.0916587 + 0.995790i \(0.529217\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.6233 1.17338 0.586690 0.809812i \(-0.300431\pi\)
0.586690 + 0.809812i \(0.300431\pi\)
\(774\) 0 0
\(775\) −4.20441 −0.151027
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.81202 + 6.60262i 0.136580 + 0.236563i
\(780\) 0 0
\(781\) −21.0671 + 36.4894i −0.753842 + 1.30569i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.59285 + 4.49095i −0.0925427 + 0.160289i
\(786\) 0 0
\(787\) −3.59788 6.23172i −0.128251 0.222137i 0.794748 0.606939i \(-0.207603\pi\)
−0.922999 + 0.384802i \(0.874270\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.1731 0.432827
\(792\) 0 0
\(793\) 7.81370 0.277473
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.3472 33.5104i −0.685314 1.18700i −0.973338 0.229376i \(-0.926331\pi\)
0.288024 0.957623i \(-0.407002\pi\)
\(798\) 0 0
\(799\) −0.330354 + 0.572190i −0.0116871 + 0.0202426i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 14.2354 24.6565i 0.502358 0.870109i
\(804\) 0 0
\(805\) 2.29611 + 3.97698i 0.0809272 + 0.140170i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.7855 0.836252 0.418126 0.908389i \(-0.362687\pi\)
0.418126 + 0.908389i \(0.362687\pi\)
\(810\) 0 0
\(811\) −36.9266 −1.29667 −0.648334 0.761356i \(-0.724534\pi\)
−0.648334 + 0.761356i \(0.724534\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.57144 11.3821i −0.230188 0.398697i
\(816\) 0 0
\(817\) 6.07311 10.5189i 0.212471 0.368011i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.5108 44.1860i 0.890333 1.54210i 0.0508569 0.998706i \(-0.483805\pi\)
0.839476 0.543396i \(-0.182862\pi\)
\(822\) 0 0
\(823\) 7.28080 + 12.6107i 0.253793 + 0.439582i 0.964567 0.263838i \(-0.0849886\pi\)
−0.710774 + 0.703420i \(0.751655\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.78016 0.305316 0.152658 0.988279i \(-0.451217\pi\)
0.152658 + 0.988279i \(0.451217\pi\)
\(828\) 0 0
\(829\) 9.98808 0.346900 0.173450 0.984843i \(-0.444508\pi\)
0.173450 + 0.984843i \(0.444508\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.304160 + 0.526821i 0.0105385 + 0.0182533i
\(834\) 0 0
\(835\) −4.27442 + 7.40352i −0.147923 + 0.256209i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.72321 4.71675i 0.0940158 0.162840i −0.815182 0.579205i \(-0.803363\pi\)
0.909197 + 0.416365i \(0.136696\pi\)
\(840\) 0 0
\(841\) 14.2205 + 24.6307i 0.490364 + 0.849335i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.627689 0.0215932
\(846\) 0 0
\(847\) −55.7308 −1.91493
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −9.43012 16.3334i −0.323260 0.559903i
\(852\) 0 0
\(853\) −0.333743 + 0.578059i −0.0114271 + 0.0197924i −0.871682 0.490071i \(-0.836971\pi\)
0.860255 + 0.509864i \(0.170304\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.7988 44.6848i 0.881269 1.52640i 0.0313382 0.999509i \(-0.490023\pi\)
0.849931 0.526894i \(-0.176644\pi\)
\(858\) 0 0
\(859\) 11.8739 + 20.5663i 0.405134 + 0.701713i 0.994337 0.106272i \(-0.0338916\pi\)
−0.589203 + 0.807985i \(0.700558\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.41982 −0.0483313 −0.0241656 0.999708i \(-0.507693\pi\)
−0.0241656 + 0.999708i \(0.507693\pi\)
\(864\) 0 0
\(865\) −15.7522 −0.535592
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.15621 + 12.3949i 0.242758 + 0.420469i
\(870\) 0 0
\(871\) −0.456405 + 0.790517i −0.0154647 + 0.0267856i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.89498 + 15.4066i −0.300705 + 0.520837i
\(876\) 0 0
\(877\) 2.61886 + 4.53600i 0.0884327 + 0.153170i 0.906849 0.421456i \(-0.138481\pi\)
−0.818416 + 0.574626i \(0.805148\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.9816 0.976416 0.488208 0.872727i \(-0.337651\pi\)
0.488208 + 0.872727i \(0.337651\pi\)
\(882\) 0 0
\(883\) −47.9095 −1.61228 −0.806142 0.591722i \(-0.798448\pi\)
−0.806142 + 0.591722i \(0.798448\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.5686 20.0373i −0.388434 0.672788i 0.603805 0.797132i \(-0.293651\pi\)
−0.992239 + 0.124344i \(0.960317\pi\)
\(888\) 0 0
\(889\) −2.80423 + 4.85707i −0.0940509 + 0.162901i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.72534 + 2.98837i −0.0577362 + 0.100002i
\(894\) 0 0
\(895\) 5.69104 + 9.85716i 0.190230 + 0.329489i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.682417 −0.0227599
\(900\) 0 0
\(901\) 1.27864 0.0425976
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.83056 11.8309i −0.227055 0.393272i
\(906\) 0 0
\(907\) −11.5671 + 20.0349i −0.384081 + 0.665247i −0.991641 0.129026i \(-0.958815\pi\)
0.607560 + 0.794273i \(0.292148\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.13845 5.43595i 0.103981 0.180101i −0.809340 0.587340i \(-0.800175\pi\)
0.913322 + 0.407239i \(0.133508\pi\)
\(912\) 0 0
\(913\) 8.82182 + 15.2798i 0.291960 + 0.505689i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.5893 −0.613873
\(918\) 0 0
\(919\) −2.14621 −0.0707970 −0.0353985 0.999373i \(-0.511270\pi\)
−0.0353985 + 0.999373i \(0.511270\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.85345 + 6.67438i 0.126838 + 0.219690i
\(924\) 0 0
\(925\) 17.5167 30.3397i 0.575944 0.997564i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.8550 + 49.9783i −0.946702 + 1.63974i −0.194394 + 0.980924i \(0.562274\pi\)
−0.752308 + 0.658812i \(0.771059\pi\)
\(930\) 0 0
\(931\) 1.58853 + 2.75142i 0.0520621 + 0.0901742i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.22427 0.0400380
\(936\) 0 0
\(937\) 54.8822 1.79292 0.896461 0.443122i \(-0.146129\pi\)
0.896461 + 0.443122i \(0.146129\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29.4516 + 51.0116i 0.960094 + 1.66293i 0.722255 + 0.691627i \(0.243106\pi\)
0.237839 + 0.971305i \(0.423561\pi\)
\(942\) 0 0
\(943\) −5.07311 + 8.78688i −0.165203 + 0.286140i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.5456 39.0502i 0.732635 1.26896i −0.223118 0.974791i \(-0.571624\pi\)
0.955753 0.294169i \(-0.0950430\pi\)
\(948\) 0 0
\(949\) −2.60385 4.50999i −0.0845244 0.146401i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.2636 1.69298 0.846491 0.532402i \(-0.178711\pi\)
0.846491 + 0.532402i \(0.178711\pi\)
\(954\) 0 0
\(955\) −6.54266 −0.211716
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.4627 + 31.9783i 0.596191 + 1.03263i
\(960\) 0 0
\(961\) 15.0834 26.1252i 0.486561 0.842748i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.92896 + 6.80516i −0.126478 + 0.219066i
\(966\) 0 0
\(967\) −8.22867 14.2525i −0.264616 0.458329i 0.702847 0.711341i \(-0.251912\pi\)
−0.967463 + 0.253013i \(0.918579\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.8380 1.37474 0.687369 0.726309i \(-0.258766\pi\)
0.687369 + 0.726309i \(0.258766\pi\)
\(972\) 0 0
\(973\) −35.7736 −1.14685
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.1895 + 21.1129i 0.389978 + 0.675462i 0.992446 0.122681i \(-0.0391493\pi\)
−0.602468 + 0.798143i \(0.705816\pi\)
\(978\) 0 0
\(979\) 41.5800 72.0187i 1.32890 2.30173i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.29317 + 16.0962i −0.296406 + 0.513390i −0.975311 0.220836i \(-0.929122\pi\)
0.678905 + 0.734226i \(0.262455\pi\)
\(984\) 0 0
\(985\) 7.22055 + 12.5064i 0.230066 + 0.398486i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.1644 0.513998
\(990\) 0 0
\(991\) 47.2634 1.50137 0.750686 0.660659i \(-0.229723\pi\)
0.750686 + 0.660659i \(0.229723\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.96814 + 8.60507i 0.157501 + 0.272799i
\(996\) 0 0
\(997\) −22.0197 + 38.1393i −0.697372 + 1.20788i 0.272002 + 0.962297i \(0.412314\pi\)
−0.969374 + 0.245588i \(0.921019\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.i.y.2809.3 12
3.2 odd 2 inner 4212.2.i.y.2809.4 12
9.2 odd 6 4212.2.a.l.1.3 6
9.4 even 3 inner 4212.2.i.y.1405.3 12
9.5 odd 6 inner 4212.2.i.y.1405.4 12
9.7 even 3 4212.2.a.l.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4212.2.a.l.1.3 6 9.2 odd 6
4212.2.a.l.1.4 yes 6 9.7 even 3
4212.2.i.y.1405.3 12 9.4 even 3 inner
4212.2.i.y.1405.4 12 9.5 odd 6 inner
4212.2.i.y.2809.3 12 1.1 even 1 trivial
4212.2.i.y.2809.4 12 3.2 odd 2 inner