Properties

Label 4212.2.i
Level $4212$
Weight $2$
Character orbit 4212.i
Rep. character $\chi_{4212}(1405,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $96$
Newform subspaces $25$
Sturm bound $1512$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 25 \)
Sturm bound: \(1512\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4212, [\chi])\).

Total New Old
Modular forms 1584 96 1488
Cusp forms 1440 96 1344
Eisenstein series 144 0 144

Trace form

\( 96 q - 24 q^{19} - 60 q^{25} - 12 q^{31} + 24 q^{37} + 12 q^{43} - 24 q^{49} + 144 q^{55} + 24 q^{61} - 24 q^{73} - 60 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(4212, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4212.2.i.a 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 468.2.a.a \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{5}+(-4+4\zeta_{6})q^{7}+(4-4\zeta_{6})q^{11}+\cdots\)
4212.2.i.b 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 156.2.a.a \(0\) \(0\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(-4+4\zeta_{6})q^{11}+\cdots\)
4212.2.i.c 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 1404.2.a.a \(0\) \(0\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-3\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}-\zeta_{6}q^{13}+\cdots\)
4212.2.i.d 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 52.2.a.a \(0\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(2-2\zeta_{6})q^{11}+\cdots\)
4212.2.i.e 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 1404.2.a.b \(0\) \(0\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(4-4\zeta_{6})q^{11}+\cdots\)
4212.2.i.f 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 156.2.a.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{7}-\zeta_{6}q^{13}-6q^{17}+\cdots\)
4212.2.i.g 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 156.2.a.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{7}-\zeta_{6}q^{13}+6q^{17}+\cdots\)
4212.2.i.h 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 1404.2.a.b \(0\) \(0\) \(1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(-4+4\zeta_{6})q^{11}+\cdots\)
4212.2.i.i 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 52.2.a.a \(0\) \(0\) \(2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(-2+2\zeta_{6})q^{11}+\cdots\)
4212.2.i.j 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 1404.2.a.a \(0\) \(0\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+3\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}-\zeta_{6}q^{13}+\cdots\)
4212.2.i.k 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 468.2.a.a \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{5}+(-4+4\zeta_{6})q^{7}+(-4+4\zeta_{6})q^{11}+\cdots\)
4212.2.i.l 4212.i 9.c $2$ $33.633$ \(\Q(\sqrt{-3}) \) None 156.2.a.a \(0\) \(0\) \(4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(4-4\zeta_{6})q^{11}+\cdots\)
4212.2.i.m 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 1404.2.a.e \(0\) \(0\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{1}-\beta _{2})q^{5}+\beta _{2}q^{7}+(1-\beta _{1}+\cdots)q^{11}+\cdots\)
4212.2.i.n 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 1404.2.a.f \(0\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{5}+(-2+2\beta _{1}-\beta _{2}+2\beta _{3})q^{7}+\cdots\)
4212.2.i.o 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 4212.2.a.c \(0\) \(0\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{5}+(1-\beta _{1}-\beta _{2}-\beta _{3})q^{7}+(-1+\cdots)q^{11}+\cdots\)
4212.2.i.p 4212.i 9.c $4$ $33.633$ \(\Q(\zeta_{12})\) None 4212.2.a.d \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\beta_{2} q^{5}+(-\beta_1+1)q^{7}+(-3\beta_{3}+3\beta_{2})q^{11}+\cdots\)
4212.2.i.q 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 1404.2.a.h \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}-2\beta _{2}q^{7}+(2\beta _{1}+2\beta _{3})q^{11}+\cdots\)
4212.2.i.r 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 1404.2.a.g \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}-2\beta _{2}q^{7}+(-2\beta _{1}-2\beta _{3})q^{11}+\cdots\)
4212.2.i.s 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 1404.2.a.f \(0\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+(-2+2\beta _{1}-\beta _{2}+2\beta _{3})q^{7}+\cdots\)
4212.2.i.t 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 4212.2.a.c \(0\) \(0\) \(1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+(1-\beta _{1}-\beta _{2}-\beta _{3})q^{7}+(1+\cdots)q^{11}+\cdots\)
4212.2.i.u 4212.i 9.c $4$ $33.633$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 1404.2.a.e \(0\) \(0\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{2})q^{5}+\beta _{2}q^{7}+(-1+\beta _{1}+\cdots)q^{11}+\cdots\)
4212.2.i.v 4212.i 9.c $8$ $33.633$ 8.0.\(\cdots\).1 None 4212.2.a.f \(0\) \(0\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{3}+\beta _{4})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
4212.2.i.w 4212.i 9.c $8$ $33.633$ 8.0.49787136.1 None 4212.2.a.g \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{5}-\beta _{4}q^{7}+\beta _{2}q^{11}+(1-\beta _{5}+\cdots)q^{13}+\cdots\)
4212.2.i.x 4212.i 9.c $8$ $33.633$ 8.0.\(\cdots\).1 None 4212.2.a.f \(0\) \(0\) \(3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{3}-\beta _{4})q^{5}+(-1+\beta _{1}-\beta _{3}+\cdots)q^{7}+\cdots\)
4212.2.i.y 4212.i 9.c $12$ $33.633$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 4212.2.a.l \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{5}+(2\beta _{4}+\beta _{6}-\beta _{7})q^{7}+(\beta _{3}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(4212, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4212, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(351, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(702, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1053, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1404, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2106, [\chi])\)\(^{\oplus 2}\)