Properties

Label 4212.2.a.l.1.4
Level $4212$
Weight $2$
Character 4212.1
Self dual yes
Analytic conductor $33.633$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.232742592.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 17x^{4} + 37x^{2} - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.627689\) of defining polynomial
Character \(\chi\) \(=\) 4212.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.627689 q^{5} -2.95044 q^{7} -5.46708 q^{11} +1.00000 q^{13} -0.356762 q^{17} -1.86325 q^{19} +2.47965 q^{23} -4.60601 q^{25} -0.747600 q^{29} +0.912810 q^{31} -1.85196 q^{35} +7.60601 q^{37} +4.09179 q^{41} +6.51882 q^{43} -1.85196 q^{47} +1.70512 q^{49} -3.58401 q^{53} -3.43163 q^{55} +9.91563 q^{59} +7.81370 q^{61} +0.627689 q^{65} +0.912810 q^{67} -7.70691 q^{71} +5.20769 q^{73} +16.1303 q^{77} +2.61793 q^{79} +3.22725 q^{83} -0.223935 q^{85} +15.2110 q^{89} -2.95044 q^{91} -1.16954 q^{95} +11.9009 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{7} + 6 q^{13} + 2 q^{19} + 4 q^{25} + 18 q^{31} + 14 q^{37} + 20 q^{43} + 30 q^{49} - 14 q^{55} + 8 q^{61} + 18 q^{67} + 24 q^{73} + 48 q^{79} - 2 q^{85} + 8 q^{91} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.627689 0.280711 0.140356 0.990101i \(-0.455175\pi\)
0.140356 + 0.990101i \(0.455175\pi\)
\(6\) 0 0
\(7\) −2.95044 −1.11516 −0.557581 0.830122i \(-0.688271\pi\)
−0.557581 + 0.830122i \(0.688271\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.46708 −1.64839 −0.824193 0.566309i \(-0.808371\pi\)
−0.824193 + 0.566309i \(0.808371\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.356762 −0.0865274 −0.0432637 0.999064i \(-0.513776\pi\)
−0.0432637 + 0.999064i \(0.513776\pi\)
\(18\) 0 0
\(19\) −1.86325 −0.427460 −0.213730 0.976893i \(-0.568561\pi\)
−0.213730 + 0.976893i \(0.568561\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.47965 0.517043 0.258521 0.966006i \(-0.416765\pi\)
0.258521 + 0.966006i \(0.416765\pi\)
\(24\) 0 0
\(25\) −4.60601 −0.921201
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.747600 −0.138826 −0.0694129 0.997588i \(-0.522113\pi\)
−0.0694129 + 0.997588i \(0.522113\pi\)
\(30\) 0 0
\(31\) 0.912810 0.163946 0.0819728 0.996635i \(-0.473878\pi\)
0.0819728 + 0.996635i \(0.473878\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.85196 −0.313039
\(36\) 0 0
\(37\) 7.60601 1.25042 0.625210 0.780457i \(-0.285013\pi\)
0.625210 + 0.780457i \(0.285013\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.09179 0.639030 0.319515 0.947581i \(-0.396480\pi\)
0.319515 + 0.947581i \(0.396480\pi\)
\(42\) 0 0
\(43\) 6.51882 0.994110 0.497055 0.867719i \(-0.334415\pi\)
0.497055 + 0.867719i \(0.334415\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.85196 −0.270136 −0.135068 0.990836i \(-0.543125\pi\)
−0.135068 + 0.990836i \(0.543125\pi\)
\(48\) 0 0
\(49\) 1.70512 0.243588
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.58401 −0.492302 −0.246151 0.969231i \(-0.579166\pi\)
−0.246151 + 0.969231i \(0.579166\pi\)
\(54\) 0 0
\(55\) −3.43163 −0.462721
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.91563 1.29091 0.645453 0.763800i \(-0.276669\pi\)
0.645453 + 0.763800i \(0.276669\pi\)
\(60\) 0 0
\(61\) 7.81370 1.00044 0.500221 0.865898i \(-0.333252\pi\)
0.500221 + 0.865898i \(0.333252\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.627689 0.0778553
\(66\) 0 0
\(67\) 0.912810 0.111518 0.0557588 0.998444i \(-0.482242\pi\)
0.0557588 + 0.998444i \(0.482242\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.70691 −0.914642 −0.457321 0.889302i \(-0.651191\pi\)
−0.457321 + 0.889302i \(0.651191\pi\)
\(72\) 0 0
\(73\) 5.20769 0.609514 0.304757 0.952430i \(-0.401425\pi\)
0.304757 + 0.952430i \(0.401425\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.1303 1.83822
\(78\) 0 0
\(79\) 2.61793 0.294540 0.147270 0.989096i \(-0.452951\pi\)
0.147270 + 0.989096i \(0.452951\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.22725 0.354237 0.177118 0.984190i \(-0.443322\pi\)
0.177118 + 0.984190i \(0.443322\pi\)
\(84\) 0 0
\(85\) −0.223935 −0.0242892
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2110 1.61237 0.806184 0.591665i \(-0.201529\pi\)
0.806184 + 0.591665i \(0.201529\pi\)
\(90\) 0 0
\(91\) −2.95044 −0.309291
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.16954 −0.119993
\(96\) 0 0
\(97\) 11.9009 1.20835 0.604176 0.796851i \(-0.293502\pi\)
0.604176 + 0.796851i \(0.293502\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.01853 0.101347 0.0506737 0.998715i \(-0.483863\pi\)
0.0506737 + 0.998715i \(0.483863\pi\)
\(102\) 0 0
\(103\) −11.3325 −1.11663 −0.558313 0.829630i \(-0.688551\pi\)
−0.558313 + 0.829630i \(0.688551\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.5678 −1.50500 −0.752498 0.658594i \(-0.771151\pi\)
−0.752498 + 0.658594i \(0.771151\pi\)
\(108\) 0 0
\(109\) 11.9009 1.13990 0.569949 0.821680i \(-0.306963\pi\)
0.569949 + 0.821680i \(0.306963\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.12587 −0.388129 −0.194064 0.980989i \(-0.562167\pi\)
−0.194064 + 0.980989i \(0.562167\pi\)
\(114\) 0 0
\(115\) 1.55645 0.145140
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.05260 0.0964921
\(120\) 0 0
\(121\) 18.8890 1.71718
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.02959 −0.539303
\(126\) 0 0
\(127\) −1.90089 −0.168676 −0.0843382 0.996437i \(-0.526878\pi\)
−0.0843382 + 0.996437i \(0.526878\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.30051 0.550478 0.275239 0.961376i \(-0.411243\pi\)
0.275239 + 0.961376i \(0.411243\pi\)
\(132\) 0 0
\(133\) 5.49743 0.476687
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.5152 1.06925 0.534623 0.845091i \(-0.320454\pi\)
0.534623 + 0.845091i \(0.320454\pi\)
\(138\) 0 0
\(139\) 12.1248 1.02841 0.514207 0.857666i \(-0.328086\pi\)
0.514207 + 0.857666i \(0.328086\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.46708 −0.457180
\(144\) 0 0
\(145\) −0.469261 −0.0389700
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.26134 −0.431025 −0.215513 0.976501i \(-0.569142\pi\)
−0.215513 + 0.976501i \(0.569142\pi\)
\(150\) 0 0
\(151\) 10.1581 0.826657 0.413329 0.910582i \(-0.364366\pi\)
0.413329 + 0.910582i \(0.364366\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.572961 0.0460214
\(156\) 0 0
\(157\) 8.26157 0.659345 0.329672 0.944095i \(-0.393062\pi\)
0.329672 + 0.944095i \(0.393062\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.31607 −0.576587
\(162\) 0 0
\(163\) 20.9385 1.64003 0.820016 0.572341i \(-0.193965\pi\)
0.820016 + 0.572341i \(0.193965\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.6196 1.05391 0.526956 0.849892i \(-0.323333\pi\)
0.526956 + 0.849892i \(0.323333\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −25.0956 −1.90798 −0.953990 0.299837i \(-0.903068\pi\)
−0.953990 + 0.299837i \(0.903068\pi\)
\(174\) 0 0
\(175\) 13.5898 1.02729
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.1333 −1.35535 −0.677673 0.735363i \(-0.737011\pi\)
−0.677673 + 0.735363i \(0.737011\pi\)
\(180\) 0 0
\(181\) 21.7641 1.61772 0.808858 0.588004i \(-0.200086\pi\)
0.808858 + 0.588004i \(0.200086\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.77421 0.351007
\(186\) 0 0
\(187\) 1.95044 0.142631
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.4234 −0.754212 −0.377106 0.926170i \(-0.623081\pi\)
−0.377106 + 0.926170i \(0.623081\pi\)
\(192\) 0 0
\(193\) 12.5188 0.901124 0.450562 0.892745i \(-0.351224\pi\)
0.450562 + 0.892745i \(0.351224\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.0068 −1.63916 −0.819582 0.572962i \(-0.805794\pi\)
−0.819582 + 0.572962i \(0.805794\pi\)
\(198\) 0 0
\(199\) −15.8299 −1.12215 −0.561077 0.827763i \(-0.689613\pi\)
−0.561077 + 0.827763i \(0.689613\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.20575 0.154813
\(204\) 0 0
\(205\) 2.56837 0.179383
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.1866 0.704619
\(210\) 0 0
\(211\) −11.1625 −0.768455 −0.384228 0.923238i \(-0.625532\pi\)
−0.384228 + 0.923238i \(0.625532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.09179 0.279058
\(216\) 0 0
\(217\) −2.69320 −0.182826
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.356762 −0.0239984
\(222\) 0 0
\(223\) −14.5565 −0.974772 −0.487386 0.873187i \(-0.662050\pi\)
−0.487386 + 0.873187i \(0.662050\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.0349 −1.39613 −0.698067 0.716032i \(-0.745956\pi\)
−0.698067 + 0.716032i \(0.745956\pi\)
\(228\) 0 0
\(229\) 17.9548 1.18648 0.593242 0.805024i \(-0.297848\pi\)
0.593242 + 0.805024i \(0.297848\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.57442 0.561729 0.280864 0.959747i \(-0.409379\pi\)
0.280864 + 0.959747i \(0.409379\pi\)
\(234\) 0 0
\(235\) −1.16246 −0.0758303
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.27239 0.535096 0.267548 0.963545i \(-0.413787\pi\)
0.267548 + 0.963545i \(0.413787\pi\)
\(240\) 0 0
\(241\) −0.888965 −0.0572633 −0.0286316 0.999590i \(-0.509115\pi\)
−0.0286316 + 0.999590i \(0.509115\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.07028 0.0683780
\(246\) 0 0
\(247\) −1.86325 −0.118556
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.2170 1.21297 0.606483 0.795096i \(-0.292580\pi\)
0.606483 + 0.795096i \(0.292580\pi\)
\(252\) 0 0
\(253\) −13.5565 −0.852287
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.9371 0.806997 0.403498 0.914980i \(-0.367794\pi\)
0.403498 + 0.914980i \(0.367794\pi\)
\(258\) 0 0
\(259\) −22.4411 −1.39442
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.8217 −1.53057 −0.765285 0.643692i \(-0.777402\pi\)
−0.765285 + 0.643692i \(0.777402\pi\)
\(264\) 0 0
\(265\) −2.24965 −0.138195
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.8468 −1.14911 −0.574555 0.818466i \(-0.694825\pi\)
−0.574555 + 0.818466i \(0.694825\pi\)
\(270\) 0 0
\(271\) 30.8770 1.87565 0.937823 0.347113i \(-0.112838\pi\)
0.937823 + 0.347113i \(0.112838\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.1814 1.51850
\(276\) 0 0
\(277\) 21.2215 1.27508 0.637538 0.770419i \(-0.279953\pi\)
0.637538 + 0.770419i \(0.279953\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.442595 0.0264030 0.0132015 0.999913i \(-0.495798\pi\)
0.0132015 + 0.999913i \(0.495798\pi\)
\(282\) 0 0
\(283\) −13.1129 −0.779481 −0.389741 0.920925i \(-0.627435\pi\)
−0.389741 + 0.920925i \(0.627435\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0726 −0.712623
\(288\) 0 0
\(289\) −16.8727 −0.992513
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.22428 −0.188364 −0.0941822 0.995555i \(-0.530024\pi\)
−0.0941822 + 0.995555i \(0.530024\pi\)
\(294\) 0 0
\(295\) 6.22394 0.362372
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.47965 0.143402
\(300\) 0 0
\(301\) −19.2334 −1.10859
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.90457 0.280835
\(306\) 0 0
\(307\) 1.13675 0.0648775 0.0324388 0.999474i \(-0.489673\pi\)
0.0324388 + 0.999474i \(0.489673\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.7395 0.892504 0.446252 0.894907i \(-0.352759\pi\)
0.446252 + 0.894907i \(0.352759\pi\)
\(312\) 0 0
\(313\) 4.92473 0.278362 0.139181 0.990267i \(-0.455553\pi\)
0.139181 + 0.990267i \(0.455553\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.4374 0.867053 0.433527 0.901141i \(-0.357269\pi\)
0.433527 + 0.901141i \(0.357269\pi\)
\(318\) 0 0
\(319\) 4.08719 0.228839
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.664737 0.0369870
\(324\) 0 0
\(325\) −4.60601 −0.255495
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.46411 0.301246
\(330\) 0 0
\(331\) 11.7308 0.644785 0.322392 0.946606i \(-0.395513\pi\)
0.322392 + 0.946606i \(0.395513\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.572961 0.0313042
\(336\) 0 0
\(337\) 14.7685 0.804489 0.402245 0.915532i \(-0.368230\pi\)
0.402245 + 0.915532i \(0.368230\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.99041 −0.270246
\(342\) 0 0
\(343\) 15.6222 0.843522
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.6536 0.840331 0.420166 0.907447i \(-0.361972\pi\)
0.420166 + 0.907447i \(0.361972\pi\)
\(348\) 0 0
\(349\) −0.398315 −0.0213213 −0.0106606 0.999943i \(-0.503393\pi\)
−0.0106606 + 0.999943i \(0.503393\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.51883 −0.187288 −0.0936442 0.995606i \(-0.529852\pi\)
−0.0936442 + 0.995606i \(0.529852\pi\)
\(354\) 0 0
\(355\) −4.83754 −0.256750
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35.1105 1.85306 0.926530 0.376222i \(-0.122777\pi\)
0.926530 + 0.376222i \(0.122777\pi\)
\(360\) 0 0
\(361\) −15.5283 −0.817278
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.26881 0.171097
\(366\) 0 0
\(367\) 6.93420 0.361962 0.180981 0.983487i \(-0.442073\pi\)
0.180981 + 0.983487i \(0.442073\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.5744 0.548997
\(372\) 0 0
\(373\) −22.3368 −1.15656 −0.578279 0.815839i \(-0.696275\pi\)
−0.578279 + 0.815839i \(0.696275\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.747600 −0.0385034
\(378\) 0 0
\(379\) −28.9009 −1.48454 −0.742269 0.670102i \(-0.766251\pi\)
−0.742269 + 0.670102i \(0.766251\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.19615 0.265511 0.132755 0.991149i \(-0.457617\pi\)
0.132755 + 0.991149i \(0.457617\pi\)
\(384\) 0 0
\(385\) 10.1248 0.516009
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.69433 0.440820 0.220410 0.975407i \(-0.429260\pi\)
0.220410 + 0.975407i \(0.429260\pi\)
\(390\) 0 0
\(391\) −0.884644 −0.0447384
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.64325 0.0826807
\(396\) 0 0
\(397\) 30.5941 1.53547 0.767737 0.640766i \(-0.221383\pi\)
0.767737 + 0.640766i \(0.221383\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0475 −0.901247 −0.450624 0.892714i \(-0.648798\pi\)
−0.450624 + 0.892714i \(0.648798\pi\)
\(402\) 0 0
\(403\) 0.912810 0.0454703
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −41.5826 −2.06118
\(408\) 0 0
\(409\) −1.73083 −0.0855840 −0.0427920 0.999084i \(-0.513625\pi\)
−0.0427920 + 0.999084i \(0.513625\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −29.2555 −1.43957
\(414\) 0 0
\(415\) 2.02571 0.0994382
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.8719 0.531129 0.265565 0.964093i \(-0.414442\pi\)
0.265565 + 0.964093i \(0.414442\pi\)
\(420\) 0 0
\(421\) 19.1367 0.932668 0.466334 0.884609i \(-0.345575\pi\)
0.466334 + 0.884609i \(0.345575\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.64325 0.0797091
\(426\) 0 0
\(427\) −23.0539 −1.11566
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.4404 0.840075 0.420038 0.907507i \(-0.362017\pi\)
0.420038 + 0.907507i \(0.362017\pi\)
\(432\) 0 0
\(433\) 8.03763 0.386264 0.193132 0.981173i \(-0.438135\pi\)
0.193132 + 0.981173i \(0.438135\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.62022 −0.221015
\(438\) 0 0
\(439\) −25.3582 −1.21028 −0.605141 0.796118i \(-0.706883\pi\)
−0.605141 + 0.796118i \(0.706883\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.9505 1.47050 0.735252 0.677794i \(-0.237064\pi\)
0.735252 + 0.677794i \(0.237064\pi\)
\(444\) 0 0
\(445\) 9.54781 0.452610
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.02959 −0.284554 −0.142277 0.989827i \(-0.545442\pi\)
−0.142277 + 0.989827i \(0.545442\pi\)
\(450\) 0 0
\(451\) −22.3701 −1.05337
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.85196 −0.0868213
\(456\) 0 0
\(457\) −7.90089 −0.369588 −0.184794 0.982777i \(-0.559162\pi\)
−0.184794 + 0.982777i \(0.559162\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.86752 −0.133554 −0.0667768 0.997768i \(-0.521272\pi\)
−0.0667768 + 0.997768i \(0.521272\pi\)
\(462\) 0 0
\(463\) 23.3959 1.08730 0.543649 0.839313i \(-0.317042\pi\)
0.543649 + 0.839313i \(0.317042\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.7099 0.541869 0.270935 0.962598i \(-0.412667\pi\)
0.270935 + 0.962598i \(0.412667\pi\)
\(468\) 0 0
\(469\) −2.69320 −0.124360
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −35.6389 −1.63868
\(474\) 0 0
\(475\) 8.58216 0.393777
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.08881 −0.0954403 −0.0477201 0.998861i \(-0.515196\pi\)
−0.0477201 + 0.998861i \(0.515196\pi\)
\(480\) 0 0
\(481\) 7.60601 0.346804
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.47006 0.339198
\(486\) 0 0
\(487\) 18.0138 0.816283 0.408141 0.912919i \(-0.366177\pi\)
0.408141 + 0.912919i \(0.366177\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.33757 −0.376269 −0.188135 0.982143i \(-0.560244\pi\)
−0.188135 + 0.982143i \(0.560244\pi\)
\(492\) 0 0
\(493\) 0.266715 0.0120122
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.7388 1.01997
\(498\) 0 0
\(499\) 24.1300 1.08021 0.540103 0.841599i \(-0.318385\pi\)
0.540103 + 0.841599i \(0.318385\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.6521 0.965420 0.482710 0.875780i \(-0.339652\pi\)
0.482710 + 0.875780i \(0.339652\pi\)
\(504\) 0 0
\(505\) 0.639319 0.0284493
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.3768 0.504266 0.252133 0.967693i \(-0.418868\pi\)
0.252133 + 0.967693i \(0.418868\pi\)
\(510\) 0 0
\(511\) −15.3650 −0.679708
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.11330 −0.313449
\(516\) 0 0
\(517\) 10.1248 0.445289
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.2185 −1.28008 −0.640042 0.768340i \(-0.721083\pi\)
−0.640042 + 0.768340i \(0.721083\pi\)
\(522\) 0 0
\(523\) 9.01379 0.394145 0.197073 0.980389i \(-0.436856\pi\)
0.197073 + 0.980389i \(0.436856\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.325656 −0.0141858
\(528\) 0 0
\(529\) −16.8513 −0.732667
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.09179 0.177235
\(534\) 0 0
\(535\) −9.77174 −0.422469
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.32202 −0.401528
\(540\) 0 0
\(541\) 19.7027 0.847084 0.423542 0.905877i \(-0.360787\pi\)
0.423542 + 0.905877i \(0.360787\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.47006 0.319982
\(546\) 0 0
\(547\) −26.3488 −1.12659 −0.563296 0.826255i \(-0.690467\pi\)
−0.563296 + 0.826255i \(0.690467\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.39297 0.0593425
\(552\) 0 0
\(553\) −7.72405 −0.328460
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.40785 0.398624 0.199312 0.979936i \(-0.436129\pi\)
0.199312 + 0.979936i \(0.436129\pi\)
\(558\) 0 0
\(559\) 6.51882 0.275717
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.1859 −0.808589 −0.404295 0.914629i \(-0.632483\pi\)
−0.404295 + 0.914629i \(0.632483\pi\)
\(564\) 0 0
\(565\) −2.58976 −0.108952
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.8676 1.96479 0.982396 0.186810i \(-0.0598149\pi\)
0.982396 + 0.186810i \(0.0598149\pi\)
\(570\) 0 0
\(571\) −30.4197 −1.27303 −0.636513 0.771266i \(-0.719624\pi\)
−0.636513 + 0.771266i \(0.719624\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.4213 −0.476301
\(576\) 0 0
\(577\) 20.7685 0.864602 0.432301 0.901729i \(-0.357702\pi\)
0.432301 + 0.901729i \(0.357702\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.52182 −0.395032
\(582\) 0 0
\(583\) 19.5941 0.811504
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.4012 −1.33734 −0.668670 0.743559i \(-0.733136\pi\)
−0.668670 + 0.743559i \(0.733136\pi\)
\(588\) 0 0
\(589\) −1.70080 −0.0700802
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.67282 −0.150825 −0.0754123 0.997152i \(-0.524027\pi\)
−0.0754123 + 0.997152i \(0.524027\pi\)
\(594\) 0 0
\(595\) 0.660709 0.0270864
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −29.6329 −1.21077 −0.605384 0.795933i \(-0.706981\pi\)
−0.605384 + 0.795933i \(0.706981\pi\)
\(600\) 0 0
\(601\) −34.2077 −1.39536 −0.697680 0.716409i \(-0.745784\pi\)
−0.697680 + 0.716409i \(0.745784\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.8564 0.482031
\(606\) 0 0
\(607\) 31.7565 1.28896 0.644479 0.764622i \(-0.277074\pi\)
0.644479 + 0.764622i \(0.277074\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.85196 −0.0749224
\(612\) 0 0
\(613\) 8.22394 0.332162 0.166081 0.986112i \(-0.446889\pi\)
0.166081 + 0.986112i \(0.446889\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −41.0172 −1.65129 −0.825645 0.564191i \(-0.809188\pi\)
−0.825645 + 0.564191i \(0.809188\pi\)
\(618\) 0 0
\(619\) 4.38207 0.176130 0.0880652 0.996115i \(-0.471932\pi\)
0.0880652 + 0.996115i \(0.471932\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −44.8793 −1.79805
\(624\) 0 0
\(625\) 19.2453 0.769813
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.71353 −0.108196
\(630\) 0 0
\(631\) −41.2754 −1.64315 −0.821573 0.570103i \(-0.806903\pi\)
−0.821573 + 0.570103i \(0.806903\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.19317 −0.0473494
\(636\) 0 0
\(637\) 1.70512 0.0675593
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.8513 0.586592 0.293296 0.956022i \(-0.405248\pi\)
0.293296 + 0.956022i \(0.405248\pi\)
\(642\) 0 0
\(643\) −16.3564 −0.645032 −0.322516 0.946564i \(-0.604529\pi\)
−0.322516 + 0.946564i \(0.604529\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.8608 0.938067 0.469033 0.883180i \(-0.344602\pi\)
0.469033 + 0.883180i \(0.344602\pi\)
\(648\) 0 0
\(649\) −54.2096 −2.12791
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.4494 −0.917644 −0.458822 0.888528i \(-0.651728\pi\)
−0.458822 + 0.888528i \(0.651728\pi\)
\(654\) 0 0
\(655\) 3.95476 0.154525
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.11330 0.355004 0.177502 0.984120i \(-0.443198\pi\)
0.177502 + 0.984120i \(0.443198\pi\)
\(660\) 0 0
\(661\) 31.2548 1.21567 0.607835 0.794063i \(-0.292038\pi\)
0.607835 + 0.794063i \(0.292038\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.45068 0.133811
\(666\) 0 0
\(667\) −1.85379 −0.0717789
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −42.7181 −1.64911
\(672\) 0 0
\(673\) 16.1367 0.622026 0.311013 0.950406i \(-0.399332\pi\)
0.311013 + 0.950406i \(0.399332\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 41.6655 1.60134 0.800668 0.599109i \(-0.204478\pi\)
0.800668 + 0.599109i \(0.204478\pi\)
\(678\) 0 0
\(679\) −35.1129 −1.34751
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.1369 −0.426143 −0.213071 0.977037i \(-0.568347\pi\)
−0.213071 + 0.977037i \(0.568347\pi\)
\(684\) 0 0
\(685\) 7.85565 0.300149
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.58401 −0.136540
\(690\) 0 0
\(691\) −22.9223 −0.872005 −0.436002 0.899946i \(-0.643606\pi\)
−0.436002 + 0.899946i \(0.643606\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.61062 0.288687
\(696\) 0 0
\(697\) −1.45979 −0.0552936
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.1635 0.497180 0.248590 0.968609i \(-0.420033\pi\)
0.248590 + 0.968609i \(0.420033\pi\)
\(702\) 0 0
\(703\) −14.1719 −0.534504
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.00511 −0.113019
\(708\) 0 0
\(709\) −6.39831 −0.240294 −0.120147 0.992756i \(-0.538337\pi\)
−0.120147 + 0.992756i \(0.538337\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.26345 0.0847669
\(714\) 0 0
\(715\) −3.43163 −0.128336
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.5116 0.802246 0.401123 0.916024i \(-0.368620\pi\)
0.401123 + 0.916024i \(0.368620\pi\)
\(720\) 0 0
\(721\) 33.4359 1.24522
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.44345 0.127887
\(726\) 0 0
\(727\) 4.02571 0.149305 0.0746527 0.997210i \(-0.476215\pi\)
0.0746527 + 0.997210i \(0.476215\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.32566 −0.0860178
\(732\) 0 0
\(733\) −27.9480 −1.03228 −0.516141 0.856503i \(-0.672632\pi\)
−0.516141 + 0.856503i \(0.672632\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.99041 −0.183824
\(738\) 0 0
\(739\) −30.8299 −1.13410 −0.567049 0.823684i \(-0.691915\pi\)
−0.567049 + 0.823684i \(0.691915\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.6196 0.499653 0.249827 0.968291i \(-0.419626\pi\)
0.249827 + 0.968291i \(0.419626\pi\)
\(744\) 0 0
\(745\) −3.30248 −0.120994
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 45.9319 1.67832
\(750\) 0 0
\(751\) −6.94098 −0.253280 −0.126640 0.991949i \(-0.540419\pi\)
−0.126640 + 0.991949i \(0.540419\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6.37615 0.232052
\(756\) 0 0
\(757\) −17.3701 −0.631329 −0.315664 0.948871i \(-0.602227\pi\)
−0.315664 + 0.948871i \(0.602227\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.5596 −1.68779 −0.843893 0.536512i \(-0.819742\pi\)
−0.843893 + 0.536512i \(0.819742\pi\)
\(762\) 0 0
\(763\) −35.1129 −1.27117
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.91563 0.358033
\(768\) 0 0
\(769\) −45.2873 −1.63310 −0.816551 0.577274i \(-0.804116\pi\)
−0.816551 + 0.577274i \(0.804116\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.6233 1.17338 0.586690 0.809812i \(-0.300431\pi\)
0.586690 + 0.809812i \(0.300431\pi\)
\(774\) 0 0
\(775\) −4.20441 −0.151027
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.62405 −0.273160
\(780\) 0 0
\(781\) 42.1343 1.50768
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.18570 0.185085
\(786\) 0 0
\(787\) 7.19577 0.256501 0.128251 0.991742i \(-0.459064\pi\)
0.128251 + 0.991742i \(0.459064\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.1731 0.432827
\(792\) 0 0
\(793\) 7.81370 0.277473
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 38.6945 1.37063 0.685314 0.728247i \(-0.259665\pi\)
0.685314 + 0.728247i \(0.259665\pi\)
\(798\) 0 0
\(799\) 0.660709 0.0233742
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.4709 −1.00472
\(804\) 0 0
\(805\) −4.59222 −0.161854
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.7855 0.836252 0.418126 0.908389i \(-0.362687\pi\)
0.418126 + 0.908389i \(0.362687\pi\)
\(810\) 0 0
\(811\) −36.9266 −1.29667 −0.648334 0.761356i \(-0.724534\pi\)
−0.648334 + 0.761356i \(0.724534\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.1429 0.460375
\(816\) 0 0
\(817\) −12.1462 −0.424942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −51.0216 −1.78067 −0.890333 0.455310i \(-0.849529\pi\)
−0.890333 + 0.455310i \(0.849529\pi\)
\(822\) 0 0
\(823\) −14.5616 −0.507585 −0.253793 0.967259i \(-0.581678\pi\)
−0.253793 + 0.967259i \(0.581678\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.78016 0.305316 0.152658 0.988279i \(-0.451217\pi\)
0.152658 + 0.988279i \(0.451217\pi\)
\(828\) 0 0
\(829\) 9.98808 0.346900 0.173450 0.984843i \(-0.444508\pi\)
0.173450 + 0.984843i \(0.444508\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.608321 −0.0210771
\(834\) 0 0
\(835\) 8.54885 0.295845
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.44643 −0.188032 −0.0940158 0.995571i \(-0.529970\pi\)
−0.0940158 + 0.995571i \(0.529970\pi\)
\(840\) 0 0
\(841\) −28.4411 −0.980727
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.627689 0.0215932
\(846\) 0 0
\(847\) −55.7308 −1.91493
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 18.8602 0.646521
\(852\) 0 0
\(853\) 0.667485 0.0228543 0.0114271 0.999935i \(-0.496363\pi\)
0.0114271 + 0.999935i \(0.496363\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −51.5975 −1.76254 −0.881269 0.472615i \(-0.843310\pi\)
−0.881269 + 0.472615i \(0.843310\pi\)
\(858\) 0 0
\(859\) −23.7479 −0.810268 −0.405134 0.914257i \(-0.632775\pi\)
−0.405134 + 0.914257i \(0.632775\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.41982 −0.0483313 −0.0241656 0.999708i \(-0.507693\pi\)
−0.0241656 + 0.999708i \(0.507693\pi\)
\(864\) 0 0
\(865\) −15.7522 −0.535592
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.3124 −0.485516
\(870\) 0 0
\(871\) 0.912810 0.0309294
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17.7900 0.601410
\(876\) 0 0
\(877\) −5.23772 −0.176865 −0.0884327 0.996082i \(-0.528186\pi\)
−0.0884327 + 0.996082i \(0.528186\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.9816 0.976416 0.488208 0.872727i \(-0.337651\pi\)
0.488208 + 0.872727i \(0.337651\pi\)
\(882\) 0 0
\(883\) −47.9095 −1.61228 −0.806142 0.591722i \(-0.798448\pi\)
−0.806142 + 0.591722i \(0.798448\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.1371 0.776869 0.388434 0.921476i \(-0.373016\pi\)
0.388434 + 0.921476i \(0.373016\pi\)
\(888\) 0 0
\(889\) 5.60846 0.188102
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.45068 0.115472
\(894\) 0 0
\(895\) −11.3821 −0.380461
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.682417 −0.0227599
\(900\) 0 0
\(901\) 1.27864 0.0425976
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.6611 0.454111
\(906\) 0 0
\(907\) 23.1343 0.768161 0.384081 0.923300i \(-0.374518\pi\)
0.384081 + 0.923300i \(0.374518\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.27689 −0.207963 −0.103981 0.994579i \(-0.533158\pi\)
−0.103981 + 0.994579i \(0.533158\pi\)
\(912\) 0 0
\(913\) −17.6436 −0.583919
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.5893 −0.613873
\(918\) 0 0
\(919\) −2.14621 −0.0707970 −0.0353985 0.999373i \(-0.511270\pi\)
−0.0353985 + 0.999373i \(0.511270\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.70691 −0.253676
\(924\) 0 0
\(925\) −35.0333 −1.15189
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 57.7100 1.89340 0.946702 0.322112i \(-0.104393\pi\)
0.946702 + 0.322112i \(0.104393\pi\)
\(930\) 0 0
\(931\) −3.17707 −0.104124
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.22427 0.0400380
\(936\) 0 0
\(937\) 54.8822 1.79292 0.896461 0.443122i \(-0.146129\pi\)
0.896461 + 0.443122i \(0.146129\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −58.9032 −1.92019 −0.960094 0.279678i \(-0.909772\pi\)
−0.960094 + 0.279678i \(0.909772\pi\)
\(942\) 0 0
\(943\) 10.1462 0.330406
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −45.0913 −1.46527 −0.732635 0.680622i \(-0.761710\pi\)
−0.732635 + 0.680622i \(0.761710\pi\)
\(948\) 0 0
\(949\) 5.20769 0.169049
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.2636 1.69298 0.846491 0.532402i \(-0.178711\pi\)
0.846491 + 0.532402i \(0.178711\pi\)
\(954\) 0 0
\(955\) −6.54266 −0.211716
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.9254 −1.19238
\(960\) 0 0
\(961\) −30.1668 −0.973122
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.85793 0.252956
\(966\) 0 0
\(967\) 16.4573 0.529232 0.264616 0.964354i \(-0.414755\pi\)
0.264616 + 0.964354i \(0.414755\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.8380 1.37474 0.687369 0.726309i \(-0.258766\pi\)
0.687369 + 0.726309i \(0.258766\pi\)
\(972\) 0 0
\(973\) −35.7736 −1.14685
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24.3791 −0.779956 −0.389978 0.920824i \(-0.627517\pi\)
−0.389978 + 0.920824i \(0.627517\pi\)
\(978\) 0 0
\(979\) −83.1600 −2.65781
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.5863 0.592812 0.296406 0.955062i \(-0.404212\pi\)
0.296406 + 0.955062i \(0.404212\pi\)
\(984\) 0 0
\(985\) −14.4411 −0.460132
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.1644 0.513998
\(990\) 0 0
\(991\) 47.2634 1.50137 0.750686 0.660659i \(-0.229723\pi\)
0.750686 + 0.660659i \(0.229723\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.93628 −0.315001
\(996\) 0 0
\(997\) 44.0395 1.39474 0.697372 0.716709i \(-0.254352\pi\)
0.697372 + 0.716709i \(0.254352\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.a.l.1.4 yes 6
3.2 odd 2 inner 4212.2.a.l.1.3 6
9.2 odd 6 4212.2.i.y.1405.4 12
9.4 even 3 4212.2.i.y.2809.3 12
9.5 odd 6 4212.2.i.y.2809.4 12
9.7 even 3 4212.2.i.y.1405.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4212.2.a.l.1.3 6 3.2 odd 2 inner
4212.2.a.l.1.4 yes 6 1.1 even 1 trivial
4212.2.i.y.1405.3 12 9.7 even 3
4212.2.i.y.1405.4 12 9.2 odd 6
4212.2.i.y.2809.3 12 9.4 even 3
4212.2.i.y.2809.4 12 9.5 odd 6