Properties

Label 4212.2.i.w.2809.4
Level $4212$
Weight $2$
Character 4212.2809
Analytic conductor $33.633$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1405,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1405"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2809.4
Root \(1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 4212.2809
Dual form 4212.2.i.w.1405.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09445 + 1.89564i) q^{5} +(1.39564 - 2.41733i) q^{7} +(-1.09445 + 1.89564i) q^{11} +(0.500000 + 0.866025i) q^{13} +1.73205 q^{17} +4.58258 q^{19} +(1.96048 + 3.39564i) q^{23} +(0.104356 - 0.180750i) q^{25} +(-3.74020 + 6.47822i) q^{29} +(-0.895644 - 1.55130i) q^{31} +6.10985 q^{35} +0.791288 q^{37} +(-1.55130 - 2.68693i) q^{41} +(-1.29129 + 2.23658i) q^{43} +(-0.409175 + 0.708712i) q^{47} +(-0.395644 - 0.685275i) q^{49} -6.20520 q^{53} -4.79129 q^{55} +(2.14123 + 3.70871i) q^{59} +(5.18693 - 8.98403i) q^{61} +(-1.09445 + 1.89564i) q^{65} +(6.68693 + 11.5821i) q^{67} +7.02355 q^{71} +0.582576 q^{73} +(3.05493 + 5.29129i) q^{77} +(0.500000 - 0.866025i) q^{79} +(0.504525 - 0.873864i) q^{83} +(1.89564 + 3.28335i) q^{85} +11.7629 q^{89} +2.79129 q^{91} +(5.01540 + 8.68693i) q^{95} +(5.79129 - 10.0308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{7} + 4 q^{13} + 10 q^{25} + 2 q^{31} - 12 q^{37} + 8 q^{43} + 6 q^{49} - 20 q^{55} + 14 q^{61} + 26 q^{67} - 32 q^{73} + 4 q^{79} + 6 q^{85} + 4 q^{91} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.09445 + 1.89564i 0.489453 + 0.847758i 0.999926 0.0121359i \(-0.00386308\pi\)
−0.510473 + 0.859894i \(0.670530\pi\)
\(6\) 0 0
\(7\) 1.39564 2.41733i 0.527504 0.913663i −0.471982 0.881608i \(-0.656461\pi\)
0.999486 0.0320554i \(-0.0102053\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.09445 + 1.89564i −0.329989 + 0.571558i −0.982509 0.186213i \(-0.940378\pi\)
0.652520 + 0.757771i \(0.273712\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.73205 0.420084 0.210042 0.977692i \(-0.432640\pi\)
0.210042 + 0.977692i \(0.432640\pi\)
\(18\) 0 0
\(19\) 4.58258 1.05131 0.525657 0.850696i \(-0.323819\pi\)
0.525657 + 0.850696i \(0.323819\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.96048 + 3.39564i 0.408787 + 0.708041i 0.994754 0.102294i \(-0.0326184\pi\)
−0.585967 + 0.810335i \(0.699285\pi\)
\(24\) 0 0
\(25\) 0.104356 0.180750i 0.0208712 0.0361500i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.74020 + 6.47822i −0.694538 + 1.20298i 0.275798 + 0.961216i \(0.411058\pi\)
−0.970336 + 0.241760i \(0.922275\pi\)
\(30\) 0 0
\(31\) −0.895644 1.55130i −0.160862 0.278622i 0.774316 0.632799i \(-0.218094\pi\)
−0.935178 + 0.354177i \(0.884761\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.10985 1.03275
\(36\) 0 0
\(37\) 0.791288 0.130087 0.0650435 0.997882i \(-0.479281\pi\)
0.0650435 + 0.997882i \(0.479281\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.55130 2.68693i −0.242272 0.419628i 0.719089 0.694918i \(-0.244559\pi\)
−0.961361 + 0.275290i \(0.911226\pi\)
\(42\) 0 0
\(43\) −1.29129 + 2.23658i −0.196920 + 0.341075i −0.947528 0.319672i \(-0.896427\pi\)
0.750609 + 0.660747i \(0.229760\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.409175 + 0.708712i −0.0596843 + 0.103376i −0.894324 0.447421i \(-0.852343\pi\)
0.834639 + 0.550797i \(0.185676\pi\)
\(48\) 0 0
\(49\) −0.395644 0.685275i −0.0565206 0.0978965i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.20520 −0.852350 −0.426175 0.904641i \(-0.640139\pi\)
−0.426175 + 0.904641i \(0.640139\pi\)
\(54\) 0 0
\(55\) −4.79129 −0.646057
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.14123 + 3.70871i 0.278764 + 0.482833i 0.971078 0.238763i \(-0.0767420\pi\)
−0.692314 + 0.721596i \(0.743409\pi\)
\(60\) 0 0
\(61\) 5.18693 8.98403i 0.664119 1.15029i −0.315405 0.948957i \(-0.602140\pi\)
0.979523 0.201330i \(-0.0645263\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.09445 + 1.89564i −0.135750 + 0.235126i
\(66\) 0 0
\(67\) 6.68693 + 11.5821i 0.816939 + 1.41498i 0.907927 + 0.419127i \(0.137664\pi\)
−0.0909887 + 0.995852i \(0.529003\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.02355 0.833542 0.416771 0.909011i \(-0.363162\pi\)
0.416771 + 0.909011i \(0.363162\pi\)
\(72\) 0 0
\(73\) 0.582576 0.0681853 0.0340927 0.999419i \(-0.489146\pi\)
0.0340927 + 0.999419i \(0.489146\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.05493 + 5.29129i 0.348141 + 0.602998i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.504525 0.873864i 0.0553789 0.0959190i −0.837007 0.547192i \(-0.815697\pi\)
0.892386 + 0.451273i \(0.149030\pi\)
\(84\) 0 0
\(85\) 1.89564 + 3.28335i 0.205611 + 0.356129i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.7629 1.24686 0.623430 0.781879i \(-0.285739\pi\)
0.623430 + 0.781879i \(0.285739\pi\)
\(90\) 0 0
\(91\) 2.79129 0.292606
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.01540 + 8.68693i 0.514569 + 0.891260i
\(96\) 0 0
\(97\) 5.79129 10.0308i 0.588016 1.01847i −0.406476 0.913662i \(-0.633242\pi\)
0.994492 0.104812i \(-0.0334242\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.51178 + 6.08258i −0.349435 + 0.605239i −0.986149 0.165861i \(-0.946960\pi\)
0.636714 + 0.771100i \(0.280293\pi\)
\(102\) 0 0
\(103\) 0.604356 + 1.04678i 0.0595490 + 0.103142i 0.894263 0.447542i \(-0.147700\pi\)
−0.834714 + 0.550684i \(0.814367\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.73930 0.458166 0.229083 0.973407i \(-0.426427\pi\)
0.229083 + 0.973407i \(0.426427\pi\)
\(108\) 0 0
\(109\) −18.7477 −1.79571 −0.897853 0.440295i \(-0.854874\pi\)
−0.897853 + 0.440295i \(0.854874\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.55945 6.16515i −0.334845 0.579969i 0.648610 0.761121i \(-0.275351\pi\)
−0.983455 + 0.181152i \(0.942017\pi\)
\(114\) 0 0
\(115\) −4.29129 + 7.43273i −0.400165 + 0.693106i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.41733 4.18693i 0.221596 0.383815i
\(120\) 0 0
\(121\) 3.10436 + 5.37690i 0.282214 + 0.488809i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.4014 1.01977
\(126\) 0 0
\(127\) −9.58258 −0.850316 −0.425158 0.905119i \(-0.639781\pi\)
−0.425158 + 0.905119i \(0.639781\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.02265 + 13.8956i 0.700943 + 1.21407i 0.968136 + 0.250425i \(0.0805704\pi\)
−0.267193 + 0.963643i \(0.586096\pi\)
\(132\) 0 0
\(133\) 6.39564 11.0776i 0.554573 0.960548i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.55130 2.68693i 0.132537 0.229560i −0.792117 0.610369i \(-0.791021\pi\)
0.924654 + 0.380809i \(0.124354\pi\)
\(138\) 0 0
\(139\) 3.68693 + 6.38595i 0.312721 + 0.541649i 0.978951 0.204098i \(-0.0654260\pi\)
−0.666229 + 0.745747i \(0.732093\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.18890 −0.183045
\(144\) 0 0
\(145\) −16.3739 −1.35978
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.46410 + 6.00000i 0.283790 + 0.491539i 0.972315 0.233674i \(-0.0750747\pi\)
−0.688525 + 0.725213i \(0.741741\pi\)
\(150\) 0 0
\(151\) −2.68693 + 4.65390i −0.218659 + 0.378729i −0.954398 0.298536i \(-0.903502\pi\)
0.735739 + 0.677265i \(0.236835\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.96048 3.39564i 0.157469 0.272745i
\(156\) 0 0
\(157\) 6.97822 + 12.0866i 0.556923 + 0.964618i 0.997751 + 0.0670269i \(0.0213513\pi\)
−0.440829 + 0.897591i \(0.645315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.9445 0.862548
\(162\) 0 0
\(163\) −5.58258 −0.437261 −0.218631 0.975808i \(-0.570159\pi\)
−0.218631 + 0.975808i \(0.570159\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.16478 + 15.8739i 0.709192 + 1.22836i 0.965157 + 0.261670i \(0.0842734\pi\)
−0.255965 + 0.966686i \(0.582393\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.8105 20.4564i 0.897938 1.55527i 0.0678122 0.997698i \(-0.478398\pi\)
0.830126 0.557576i \(-0.188269\pi\)
\(174\) 0 0
\(175\) −0.291288 0.504525i −0.0220193 0.0381385i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.7810 −1.03004 −0.515019 0.857179i \(-0.672215\pi\)
−0.515019 + 0.857179i \(0.672215\pi\)
\(180\) 0 0
\(181\) −15.0000 −1.11494 −0.557471 0.830197i \(-0.688228\pi\)
−0.557471 + 0.830197i \(0.688228\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.866025 + 1.50000i 0.0636715 + 0.110282i
\(186\) 0 0
\(187\) −1.89564 + 3.28335i −0.138623 + 0.240102i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.14213 1.97822i 0.0826413 0.143139i −0.821742 0.569859i \(-0.806998\pi\)
0.904384 + 0.426720i \(0.140331\pi\)
\(192\) 0 0
\(193\) −4.87386 8.44178i −0.350828 0.607653i 0.635566 0.772046i \(-0.280767\pi\)
−0.986395 + 0.164394i \(0.947433\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.45505 0.174915 0.0874576 0.996168i \(-0.472126\pi\)
0.0874576 + 0.996168i \(0.472126\pi\)
\(198\) 0 0
\(199\) 15.7477 1.11633 0.558163 0.829731i \(-0.311506\pi\)
0.558163 + 0.829731i \(0.311506\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.4400 + 18.0826i 0.732743 + 1.26915i
\(204\) 0 0
\(205\) 3.39564 5.88143i 0.237162 0.410777i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.01540 + 8.68693i −0.346923 + 0.600888i
\(210\) 0 0
\(211\) −11.2695 19.5194i −0.775825 1.34377i −0.934330 0.356410i \(-0.884001\pi\)
0.158505 0.987358i \(-0.449333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.65300 −0.385532
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.866025 + 1.50000i 0.0582552 + 0.100901i
\(222\) 0 0
\(223\) 11.3739 19.7001i 0.761650 1.31922i −0.180349 0.983603i \(-0.557723\pi\)
0.942000 0.335614i \(-0.108944\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.0308 + 17.3739i −0.665768 + 1.15314i 0.313309 + 0.949651i \(0.398563\pi\)
−0.979077 + 0.203492i \(0.934771\pi\)
\(228\) 0 0
\(229\) 2.60436 + 4.51088i 0.172101 + 0.298087i 0.939154 0.343496i \(-0.111611\pi\)
−0.767053 + 0.641583i \(0.778278\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.9536 −0.783103 −0.391552 0.920156i \(-0.628062\pi\)
−0.391552 + 0.920156i \(0.628062\pi\)
\(234\) 0 0
\(235\) −1.79129 −0.116851
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.40828 + 2.43920i 0.0910938 + 0.157779i 0.907972 0.419032i \(-0.137630\pi\)
−0.816878 + 0.576811i \(0.804297\pi\)
\(240\) 0 0
\(241\) −3.47822 + 6.02445i −0.224052 + 0.388069i −0.956035 0.293254i \(-0.905262\pi\)
0.731983 + 0.681323i \(0.238595\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.866025 1.50000i 0.0553283 0.0958315i
\(246\) 0 0
\(247\) 2.29129 + 3.96863i 0.145791 + 0.252518i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.6374 1.74445 0.872227 0.489100i \(-0.162675\pi\)
0.872227 + 0.489100i \(0.162675\pi\)
\(252\) 0 0
\(253\) −8.58258 −0.539582
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.55130 2.68693i −0.0967675 0.167606i 0.813577 0.581457i \(-0.197517\pi\)
−0.910345 + 0.413850i \(0.864184\pi\)
\(258\) 0 0
\(259\) 1.10436 1.91280i 0.0686213 0.118856i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.98403 + 15.5608i −0.553979 + 0.959520i 0.444003 + 0.896025i \(0.353558\pi\)
−0.997982 + 0.0634945i \(0.979775\pi\)
\(264\) 0 0
\(265\) −6.79129 11.7629i −0.417185 0.722586i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.09355 0.127646 0.0638230 0.997961i \(-0.479671\pi\)
0.0638230 + 0.997961i \(0.479671\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.228425 + 0.395644i 0.0137746 + 0.0238582i
\(276\) 0 0
\(277\) 3.00000 5.19615i 0.180253 0.312207i −0.761714 0.647913i \(-0.775642\pi\)
0.941966 + 0.335707i \(0.108975\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.97678 10.3521i 0.356545 0.617554i −0.630836 0.775916i \(-0.717288\pi\)
0.987381 + 0.158362i \(0.0506214\pi\)
\(282\) 0 0
\(283\) 13.1652 + 22.8027i 0.782587 + 1.35548i 0.930430 + 0.366470i \(0.119434\pi\)
−0.147843 + 0.989011i \(0.547233\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.66025 −0.511199
\(288\) 0 0
\(289\) −14.0000 −0.823529
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.4877 + 18.1652i 0.612695 + 1.06122i 0.990784 + 0.135450i \(0.0432481\pi\)
−0.378089 + 0.925769i \(0.623419\pi\)
\(294\) 0 0
\(295\) −4.68693 + 8.11800i −0.272884 + 0.472648i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.96048 + 3.39564i −0.113377 + 0.196375i
\(300\) 0 0
\(301\) 3.60436 + 6.24293i 0.207752 + 0.359836i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 22.7074 1.30022
\(306\) 0 0
\(307\) 21.5826 1.23178 0.615891 0.787831i \(-0.288796\pi\)
0.615891 + 0.787831i \(0.288796\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.38595 + 11.0608i 0.362114 + 0.627200i 0.988309 0.152467i \(-0.0487217\pi\)
−0.626194 + 0.779667i \(0.715388\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.6847 + 25.4347i −0.824775 + 1.42855i 0.0773156 + 0.997007i \(0.475365\pi\)
−0.902091 + 0.431546i \(0.857968\pi\)
\(318\) 0 0
\(319\) −8.18693 14.1802i −0.458380 0.793938i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.93725 0.441641
\(324\) 0 0
\(325\) 0.208712 0.0115773
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.14213 + 1.97822i 0.0629674 + 0.109063i
\(330\) 0 0
\(331\) −10.0826 + 17.4635i −0.554188 + 0.959883i 0.443778 + 0.896137i \(0.353638\pi\)
−0.997966 + 0.0637457i \(0.979695\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.6370 + 25.3521i −0.799706 + 1.38513i
\(336\) 0 0
\(337\) 14.0826 + 24.3917i 0.767127 + 1.32870i 0.939115 + 0.343604i \(0.111648\pi\)
−0.171988 + 0.985099i \(0.555019\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.92095 0.212331
\(342\) 0 0
\(343\) 17.3303 0.935748
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.4014 + 19.7477i 0.612057 + 1.06011i 0.990893 + 0.134650i \(0.0429910\pi\)
−0.378836 + 0.925464i \(0.623676\pi\)
\(348\) 0 0
\(349\) −2.47822 + 4.29240i −0.132656 + 0.229767i −0.924700 0.380698i \(-0.875684\pi\)
0.792044 + 0.610465i \(0.209017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.77793 6.54356i 0.201079 0.348279i −0.747798 0.663927i \(-0.768889\pi\)
0.948876 + 0.315648i \(0.102222\pi\)
\(354\) 0 0
\(355\) 7.68693 + 13.3142i 0.407980 + 0.706642i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.83465 −0.255163 −0.127582 0.991828i \(-0.540721\pi\)
−0.127582 + 0.991828i \(0.540721\pi\)
\(360\) 0 0
\(361\) 2.00000 0.105263
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.637600 + 1.10436i 0.0333735 + 0.0578046i
\(366\) 0 0
\(367\) 11.8739 20.5661i 0.619811 1.07354i −0.369709 0.929147i \(-0.620543\pi\)
0.989520 0.144396i \(-0.0461239\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.66025 + 15.0000i −0.449618 + 0.778761i
\(372\) 0 0
\(373\) 4.60436 + 7.97498i 0.238405 + 0.412929i 0.960257 0.279119i \(-0.0900423\pi\)
−0.721852 + 0.692047i \(0.756709\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.48040 −0.385260
\(378\) 0 0
\(379\) −6.58258 −0.338124 −0.169062 0.985605i \(-0.554074\pi\)
−0.169062 + 0.985605i \(0.554074\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.5353 18.2477i −0.538330 0.932415i −0.998994 0.0448407i \(-0.985722\pi\)
0.460664 0.887575i \(-0.347611\pi\)
\(384\) 0 0
\(385\) −6.68693 + 11.5821i −0.340798 + 0.590279i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.1711 22.8131i 0.667803 1.15667i −0.310714 0.950503i \(-0.600568\pi\)
0.978517 0.206165i \(-0.0660984\pi\)
\(390\) 0 0
\(391\) 3.39564 + 5.88143i 0.171725 + 0.297437i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.18890 0.110136
\(396\) 0 0
\(397\) −8.58258 −0.430747 −0.215374 0.976532i \(-0.569097\pi\)
−0.215374 + 0.976532i \(0.569097\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.59808 4.50000i −0.129742 0.224719i 0.793835 0.608134i \(-0.208081\pi\)
−0.923576 + 0.383414i \(0.874748\pi\)
\(402\) 0 0
\(403\) 0.895644 1.55130i 0.0446152 0.0772758i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.866025 + 1.50000i −0.0429273 + 0.0743522i
\(408\) 0 0
\(409\) −15.6652 27.1328i −0.774592 1.34163i −0.935024 0.354586i \(-0.884622\pi\)
0.160432 0.987047i \(-0.448711\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.9536 0.588196
\(414\) 0 0
\(415\) 2.20871 0.108421
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.6066 30.4955i −0.860137 1.48980i −0.871796 0.489868i \(-0.837045\pi\)
0.0116597 0.999932i \(-0.496289\pi\)
\(420\) 0 0
\(421\) 10.9564 18.9771i 0.533984 0.924888i −0.465228 0.885191i \(-0.654028\pi\)
0.999212 0.0396966i \(-0.0126391\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.180750 0.313068i 0.00876766 0.0151860i
\(426\) 0 0
\(427\) −14.4782 25.0770i −0.700650 1.21356i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −32.4720 −1.56412 −0.782061 0.623202i \(-0.785831\pi\)
−0.782061 + 0.623202i \(0.785831\pi\)
\(432\) 0 0
\(433\) 22.4955 1.08106 0.540531 0.841324i \(-0.318223\pi\)
0.540531 + 0.841324i \(0.318223\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.98403 + 15.5608i 0.429764 + 0.744374i
\(438\) 0 0
\(439\) 2.87386 4.97768i 0.137162 0.237572i −0.789259 0.614060i \(-0.789535\pi\)
0.926421 + 0.376489i \(0.122869\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.2583 + 19.5000i −0.534899 + 0.926473i 0.464269 + 0.885694i \(0.346317\pi\)
−0.999168 + 0.0407786i \(0.987016\pi\)
\(444\) 0 0
\(445\) 12.8739 + 22.2982i 0.610280 + 1.05704i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.74655 0.365582 0.182791 0.983152i \(-0.441487\pi\)
0.182791 + 0.983152i \(0.441487\pi\)
\(450\) 0 0
\(451\) 6.79129 0.319789
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.05493 + 5.29129i 0.143217 + 0.248059i
\(456\) 0 0
\(457\) 6.20871 10.7538i 0.290431 0.503042i −0.683480 0.729969i \(-0.739535\pi\)
0.973912 + 0.226927i \(0.0728679\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.5353 18.2477i 0.490679 0.849881i −0.509263 0.860611i \(-0.670082\pi\)
0.999942 + 0.0107294i \(0.00341536\pi\)
\(462\) 0 0
\(463\) 7.95644 + 13.7810i 0.369767 + 0.640455i 0.989529 0.144335i \(-0.0461041\pi\)
−0.619762 + 0.784790i \(0.712771\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.4394 1.13092 0.565461 0.824775i \(-0.308698\pi\)
0.565461 + 0.824775i \(0.308698\pi\)
\(468\) 0 0
\(469\) 37.3303 1.72375
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.82650 4.89564i −0.129963 0.225102i
\(474\) 0 0
\(475\) 0.478220 0.828301i 0.0219422 0.0380050i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.4104 21.4955i 0.567046 0.982152i −0.429810 0.902919i \(-0.641420\pi\)
0.996856 0.0792331i \(-0.0252471\pi\)
\(480\) 0 0
\(481\) 0.395644 + 0.685275i 0.0180398 + 0.0312459i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 25.3531 1.15123
\(486\) 0 0
\(487\) −11.7477 −0.532340 −0.266170 0.963926i \(-0.585758\pi\)
−0.266170 + 0.963926i \(0.585758\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.56760 9.64337i −0.251262 0.435199i 0.712611 0.701559i \(-0.247512\pi\)
−0.963874 + 0.266360i \(0.914179\pi\)
\(492\) 0 0
\(493\) −6.47822 + 11.2206i −0.291764 + 0.505351i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.80238 16.9782i 0.439697 0.761577i
\(498\) 0 0
\(499\) −20.5608 35.6123i −0.920428 1.59423i −0.798754 0.601657i \(-0.794507\pi\)
−0.121673 0.992570i \(-0.538826\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.6675 −0.520228 −0.260114 0.965578i \(-0.583760\pi\)
−0.260114 + 0.965578i \(0.583760\pi\)
\(504\) 0 0
\(505\) −15.3739 −0.684128
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.1874 29.7695i −0.761820 1.31951i −0.941912 0.335860i \(-0.890973\pi\)
0.180092 0.983650i \(-0.442360\pi\)
\(510\) 0 0
\(511\) 0.813068 1.40828i 0.0359680 0.0622984i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.32288 + 2.29129i −0.0582929 + 0.100966i
\(516\) 0 0
\(517\) −0.895644 1.55130i −0.0393904 0.0682261i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −33.1950 −1.45430 −0.727150 0.686479i \(-0.759156\pi\)
−0.727150 + 0.686479i \(0.759156\pi\)
\(522\) 0 0
\(523\) −13.9129 −0.608368 −0.304184 0.952613i \(-0.598384\pi\)
−0.304184 + 0.952613i \(0.598384\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.55130 2.68693i −0.0675757 0.117045i
\(528\) 0 0
\(529\) 3.81307 6.60443i 0.165786 0.287149i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.55130 2.68693i 0.0671943 0.116384i
\(534\) 0 0
\(535\) 5.18693 + 8.98403i 0.224251 + 0.388413i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.73205 0.0746047
\(540\) 0 0
\(541\) 33.9129 1.45803 0.729014 0.684499i \(-0.239979\pi\)
0.729014 + 0.684499i \(0.239979\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.5185 35.5390i −0.878914 1.52232i
\(546\) 0 0
\(547\) −9.41742 + 16.3115i −0.402660 + 0.697428i −0.994046 0.108961i \(-0.965248\pi\)
0.591386 + 0.806389i \(0.298581\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −17.1398 + 29.6869i −0.730178 + 1.26471i
\(552\) 0 0
\(553\) −1.39564 2.41733i −0.0593488 0.102795i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.9144 1.14040 0.570199 0.821507i \(-0.306866\pi\)
0.570199 + 0.821507i \(0.306866\pi\)
\(558\) 0 0
\(559\) −2.58258 −0.109231
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.11710 15.7913i −0.384240 0.665523i 0.607423 0.794378i \(-0.292203\pi\)
−0.991663 + 0.128855i \(0.958870\pi\)
\(564\) 0 0
\(565\) 7.79129 13.4949i 0.327782 0.567735i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.3691 28.3521i 0.686228 1.18858i −0.286822 0.957984i \(-0.592599\pi\)
0.973049 0.230597i \(-0.0740680\pi\)
\(570\) 0 0
\(571\) 10.6652 + 18.4726i 0.446323 + 0.773054i 0.998143 0.0609093i \(-0.0194000\pi\)
−0.551821 + 0.833963i \(0.686067\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.818350 0.0341276
\(576\) 0 0
\(577\) 11.8348 0.492691 0.246346 0.969182i \(-0.420770\pi\)
0.246346 + 0.969182i \(0.420770\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.40828 2.43920i −0.0584251 0.101195i
\(582\) 0 0
\(583\) 6.79129 11.7629i 0.281266 0.487168i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.15118 + 3.72595i −0.0887885 + 0.153786i −0.906999 0.421132i \(-0.861633\pi\)
0.818211 + 0.574918i \(0.194966\pi\)
\(588\) 0 0
\(589\) −4.10436 7.10895i −0.169117 0.292919i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.2415 −0.872282 −0.436141 0.899878i \(-0.643655\pi\)
−0.436141 + 0.899878i \(0.643655\pi\)
\(594\) 0 0
\(595\) 10.5826 0.433843
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.3537 + 19.6652i 0.463899 + 0.803496i 0.999151 0.0411959i \(-0.0131168\pi\)
−0.535252 + 0.844692i \(0.679783\pi\)
\(600\) 0 0
\(601\) 3.37386 5.84370i 0.137623 0.238370i −0.788974 0.614427i \(-0.789387\pi\)
0.926596 + 0.376058i \(0.122721\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.79513 + 11.7695i −0.276261 + 0.478499i
\(606\) 0 0
\(607\) −1.18693 2.05583i −0.0481761 0.0834434i 0.840932 0.541141i \(-0.182008\pi\)
−0.889108 + 0.457698i \(0.848674\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.818350 −0.0331069
\(612\) 0 0
\(613\) −24.2087 −0.977781 −0.488890 0.872345i \(-0.662598\pi\)
−0.488890 + 0.872345i \(0.662598\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.24473 + 7.35208i 0.170886 + 0.295984i 0.938730 0.344654i \(-0.112004\pi\)
−0.767844 + 0.640637i \(0.778670\pi\)
\(618\) 0 0
\(619\) −4.83485 + 8.37420i −0.194329 + 0.336588i −0.946680 0.322174i \(-0.895586\pi\)
0.752351 + 0.658762i \(0.228920\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.4168 28.4347i 0.657724 1.13921i
\(624\) 0 0
\(625\) 11.9564 + 20.7092i 0.478258 + 0.828366i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.37055 0.0546474
\(630\) 0 0
\(631\) 1.62614 0.0647355 0.0323677 0.999476i \(-0.489695\pi\)
0.0323677 + 0.999476i \(0.489695\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.4877 18.1652i −0.416190 0.720862i
\(636\) 0 0
\(637\) 0.395644 0.685275i 0.0156760 0.0271516i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.6588 40.9782i 0.934466 1.61854i 0.158882 0.987298i \(-0.449211\pi\)
0.775584 0.631245i \(-0.217456\pi\)
\(642\) 0 0
\(643\) −11.8956 20.6039i −0.469118 0.812537i 0.530258 0.847836i \(-0.322095\pi\)
−0.999377 + 0.0352992i \(0.988762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.2650 −1.11121 −0.555606 0.831446i \(-0.687514\pi\)
−0.555606 + 0.831446i \(0.687514\pi\)
\(648\) 0 0
\(649\) −9.37386 −0.367956
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.20250 15.9392i −0.360122 0.623749i 0.627859 0.778327i \(-0.283932\pi\)
−0.987981 + 0.154578i \(0.950598\pi\)
\(654\) 0 0
\(655\) −17.5608 + 30.4162i −0.686157 + 1.18846i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.18980 + 2.06080i −0.0463481 + 0.0802772i −0.888269 0.459324i \(-0.848092\pi\)
0.841921 + 0.539601i \(0.181425\pi\)
\(660\) 0 0
\(661\) 9.58258 + 16.5975i 0.372719 + 0.645568i 0.989983 0.141188i \(-0.0450922\pi\)
−0.617264 + 0.786756i \(0.711759\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 27.9989 1.08575
\(666\) 0 0
\(667\) −29.3303 −1.13567
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.3537 + 19.6652i 0.438304 + 0.759165i
\(672\) 0 0
\(673\) 9.29129 16.0930i 0.358153 0.620339i −0.629499 0.777001i \(-0.716740\pi\)
0.987652 + 0.156662i \(0.0500733\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.75650 13.4347i 0.298107 0.516336i −0.677596 0.735434i \(-0.736978\pi\)
0.975703 + 0.219098i \(0.0703116\pi\)
\(678\) 0 0
\(679\) −16.1652 27.9989i −0.620362 1.07450i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.2023 −1.38524 −0.692621 0.721302i \(-0.743544\pi\)
−0.692621 + 0.721302i \(0.743544\pi\)
\(684\) 0 0
\(685\) 6.79129 0.259482
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.10260 5.37386i −0.118200 0.204728i
\(690\) 0 0
\(691\) −4.06080 + 7.03350i −0.154480 + 0.267567i −0.932870 0.360214i \(-0.882704\pi\)
0.778390 + 0.627782i \(0.216037\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.07033 + 13.9782i −0.306125 + 0.530224i
\(696\) 0 0
\(697\) −2.68693 4.65390i −0.101775 0.176279i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −21.4322 −0.809482 −0.404741 0.914431i \(-0.632638\pi\)
−0.404741 + 0.914431i \(0.632638\pi\)
\(702\) 0 0
\(703\) 3.62614 0.136762
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.80238 + 16.9782i 0.368656 + 0.638532i
\(708\) 0 0
\(709\) −17.8956 + 30.9962i −0.672085 + 1.16409i 0.305227 + 0.952280i \(0.401268\pi\)
−0.977312 + 0.211806i \(0.932066\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.51178 6.08258i 0.131517 0.227794i
\(714\) 0 0
\(715\) −2.39564 4.14938i −0.0895920 0.155178i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −13.9518 −0.520313 −0.260156 0.965567i \(-0.583774\pi\)
−0.260156 + 0.965567i \(0.583774\pi\)
\(720\) 0 0
\(721\) 3.37386 0.125649
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.780626 + 1.35208i 0.0289917 + 0.0502151i
\(726\) 0 0
\(727\) 22.6434 39.2195i 0.839796 1.45457i −0.0502687 0.998736i \(-0.516008\pi\)
0.890065 0.455834i \(-0.150659\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.23658 + 3.87386i −0.0827228 + 0.143280i
\(732\) 0 0
\(733\) −13.0826 22.6597i −0.483216 0.836955i 0.516598 0.856228i \(-0.327198\pi\)
−0.999814 + 0.0192733i \(0.993865\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −29.2741 −1.07832
\(738\) 0 0
\(739\) 25.5826 0.941070 0.470535 0.882381i \(-0.344061\pi\)
0.470535 + 0.882381i \(0.344061\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.86423 4.96099i −0.105078 0.182001i 0.808692 0.588232i \(-0.200176\pi\)
−0.913770 + 0.406232i \(0.866843\pi\)
\(744\) 0 0
\(745\) −7.58258 + 13.1334i −0.277804 + 0.481171i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.61438 11.4564i 0.241684 0.418609i
\(750\) 0 0
\(751\) −16.1869 28.0366i −0.590670 1.02307i −0.994142 0.108078i \(-0.965530\pi\)
0.403473 0.914992i \(-0.367803\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11.7629 −0.428094
\(756\) 0 0
\(757\) −41.7042 −1.51576 −0.757882 0.652392i \(-0.773766\pi\)
−0.757882 + 0.652392i \(0.773766\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.0148 32.9347i −0.689287 1.19388i −0.972069 0.234696i \(-0.924590\pi\)
0.282782 0.959184i \(-0.408743\pi\)
\(762\) 0 0
\(763\) −26.1652 + 45.3194i −0.947242 + 1.64067i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.14123 + 3.70871i −0.0773152 + 0.133914i
\(768\) 0 0
\(769\) 5.20871 + 9.02175i 0.187831 + 0.325333i 0.944527 0.328434i \(-0.106521\pi\)
−0.756696 + 0.653767i \(0.773188\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13.9518 −0.501810 −0.250905 0.968012i \(-0.580728\pi\)
−0.250905 + 0.968012i \(0.580728\pi\)
\(774\) 0 0
\(775\) −0.373864 −0.0134296
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.10895 12.3131i −0.254705 0.441161i
\(780\) 0 0
\(781\) −7.68693 + 13.3142i −0.275060 + 0.476418i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.2746 + 26.4564i −0.545175 + 0.944271i
\(786\) 0 0
\(787\) −15.6869 27.1706i −0.559179 0.968526i −0.997565 0.0697394i \(-0.977783\pi\)
0.438387 0.898787i \(-0.355550\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −19.8709 −0.706528
\(792\) 0 0
\(793\) 10.3739 0.368387
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.70703 16.8131i −0.343841 0.595549i 0.641302 0.767289i \(-0.278395\pi\)
−0.985142 + 0.171739i \(0.945061\pi\)
\(798\) 0 0
\(799\) −0.708712 + 1.22753i −0.0250724 + 0.0434267i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.637600 + 1.10436i −0.0225004 + 0.0389719i
\(804\) 0 0
\(805\) 11.9782 + 20.7469i 0.422177 + 0.731232i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.1334 0.461746 0.230873 0.972984i \(-0.425842\pi\)
0.230873 + 0.972984i \(0.425842\pi\)
\(810\) 0 0
\(811\) 2.46099 0.0864169 0.0432084 0.999066i \(-0.486242\pi\)
0.0432084 + 0.999066i \(0.486242\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.10985 10.5826i −0.214019 0.370691i
\(816\) 0 0
\(817\) −5.91742 + 10.2493i −0.207024 + 0.358577i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.0284 45.0826i 0.908399 1.57339i 0.0921098 0.995749i \(-0.470639\pi\)
0.816289 0.577644i \(-0.196028\pi\)
\(822\) 0 0
\(823\) 7.33485 + 12.7043i 0.255677 + 0.442845i 0.965079 0.261959i \(-0.0843684\pi\)
−0.709402 + 0.704804i \(0.751035\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.93725 0.276005 0.138003 0.990432i \(-0.455932\pi\)
0.138003 + 0.990432i \(0.455932\pi\)
\(828\) 0 0
\(829\) −17.9564 −0.623653 −0.311826 0.950139i \(-0.600941\pi\)
−0.311826 + 0.950139i \(0.600941\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.685275 1.18693i −0.0237434 0.0411247i
\(834\) 0 0
\(835\) −20.0608 + 34.7463i −0.694232 + 1.20245i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.8486 + 43.0390i −0.857868 + 1.48587i 0.0160896 + 0.999871i \(0.494878\pi\)
−0.873958 + 0.486001i \(0.838455\pi\)
\(840\) 0 0
\(841\) −13.4782 23.3450i −0.464766 0.804999i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.18890 −0.0753005
\(846\) 0 0
\(847\) 17.3303 0.595476
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.55130 + 2.68693i 0.0531779 + 0.0921068i
\(852\) 0 0
\(853\) −26.0998 + 45.2062i −0.893640 + 1.54783i −0.0581623 + 0.998307i \(0.518524\pi\)
−0.835478 + 0.549524i \(0.814809\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.1947 34.9782i 0.689837 1.19483i −0.282053 0.959399i \(-0.591015\pi\)
0.971890 0.235434i \(-0.0756513\pi\)
\(858\) 0 0
\(859\) −10.2305 17.7197i −0.349060 0.604589i 0.637023 0.770845i \(-0.280166\pi\)
−0.986083 + 0.166255i \(0.946832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.9162 −1.22260 −0.611301 0.791398i \(-0.709354\pi\)
−0.611301 + 0.791398i \(0.709354\pi\)
\(864\) 0 0
\(865\) 51.7042 1.75799
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.09445 + 1.89564i 0.0371267 + 0.0643053i
\(870\) 0 0
\(871\) −6.68693 + 11.5821i −0.226578 + 0.392445i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15.9122 27.5608i 0.537932 0.931725i
\(876\) 0 0
\(877\) 5.68693 + 9.85005i 0.192034 + 0.332613i 0.945924 0.324388i \(-0.105158\pi\)
−0.753890 + 0.657000i \(0.771825\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41.1323 −1.38578 −0.692891 0.721043i \(-0.743663\pi\)
−0.692891 + 0.721043i \(0.743663\pi\)
\(882\) 0 0
\(883\) 8.74773 0.294384 0.147192 0.989108i \(-0.452976\pi\)
0.147192 + 0.989108i \(0.452976\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.0067 29.4564i −0.571029 0.989050i −0.996461 0.0840601i \(-0.973211\pi\)
0.425432 0.904990i \(-0.360122\pi\)
\(888\) 0 0
\(889\) −13.3739 + 23.1642i −0.448545 + 0.776903i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.87508 + 3.24773i −0.0627470 + 0.108681i
\(894\) 0 0
\(895\) −15.0826 26.1238i −0.504155 0.873222i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.3996 0.446900
\(900\) 0 0
\(901\) −10.7477 −0.358059
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.4168 28.4347i −0.545711 0.945200i
\(906\) 0 0
\(907\) −11.7695 + 20.3854i −0.390800 + 0.676886i −0.992555 0.121795i \(-0.961135\pi\)
0.601755 + 0.798681i \(0.294468\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.8872 + 41.3739i −0.791419 + 1.37078i 0.133670 + 0.991026i \(0.457324\pi\)
−0.925089 + 0.379751i \(0.876010\pi\)
\(912\) 0 0
\(913\) 1.10436 + 1.91280i 0.0365489 + 0.0633045i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.7871 1.47900
\(918\) 0 0
\(919\) 33.3303 1.09947 0.549733 0.835341i \(-0.314730\pi\)
0.549733 + 0.835341i \(0.314730\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.51178 + 6.08258i 0.115592 + 0.200210i
\(924\) 0 0
\(925\) 0.0825757 0.143025i 0.00271507 0.00470264i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.81233 + 16.9955i −0.321932 + 0.557603i −0.980887 0.194580i \(-0.937666\pi\)
0.658955 + 0.752183i \(0.270999\pi\)
\(930\) 0 0
\(931\) −1.81307 3.14033i −0.0594209 0.102920i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.29875 −0.271398
\(936\) 0 0
\(937\) −4.74773 −0.155101 −0.0775507 0.996988i \(-0.524710\pi\)
−0.0775507 + 0.996988i \(0.524710\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.42548 + 7.66515i 0.144266 + 0.249877i 0.929099 0.369831i \(-0.120584\pi\)
−0.784833 + 0.619708i \(0.787251\pi\)
\(942\) 0 0
\(943\) 6.08258 10.5353i 0.198076 0.343078i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.99308 + 17.3085i −0.324731 + 0.562451i −0.981458 0.191677i \(-0.938607\pi\)
0.656727 + 0.754129i \(0.271941\pi\)
\(948\) 0 0
\(949\) 0.291288 + 0.504525i 0.00945560 + 0.0163776i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −53.6380 −1.73751 −0.868753 0.495246i \(-0.835078\pi\)
−0.868753 + 0.495246i \(0.835078\pi\)
\(954\) 0 0
\(955\) 5.00000 0.161796
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.33013 7.50000i −0.139827 0.242188i
\(960\) 0 0
\(961\) 13.8956 24.0680i 0.448247 0.776386i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.6684 18.4782i 0.343428 0.594835i
\(966\) 0 0
\(967\) −19.0000 32.9090i −0.610999 1.05828i −0.991072 0.133325i \(-0.957435\pi\)
0.380074 0.924956i \(-0.375899\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.2578 0.810560 0.405280 0.914193i \(-0.367174\pi\)
0.405280 + 0.914193i \(0.367174\pi\)
\(972\) 0 0
\(973\) 20.5826 0.659847
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.1153 19.2523i −0.355610 0.615935i 0.631612 0.775285i \(-0.282394\pi\)
−0.987222 + 0.159350i \(0.949060\pi\)
\(978\) 0 0
\(979\) −12.8739 + 22.2982i −0.411450 + 0.712653i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.8800 + 36.1652i −0.665967 + 1.15349i 0.313055 + 0.949735i \(0.398648\pi\)
−0.979022 + 0.203754i \(0.934686\pi\)
\(984\) 0 0
\(985\) 2.68693 + 4.65390i 0.0856128 + 0.148286i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.1262 −0.321993
\(990\) 0 0
\(991\) 3.49545 0.111037 0.0555184 0.998458i \(-0.482319\pi\)
0.0555184 + 0.998458i \(0.482319\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.2351 + 29.8521i 0.546390 + 0.946375i
\(996\) 0 0
\(997\) 21.3521 36.9829i 0.676227 1.17126i −0.299881 0.953977i \(-0.596947\pi\)
0.976109 0.217283i \(-0.0697196\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.i.w.2809.4 8
3.2 odd 2 inner 4212.2.i.w.2809.1 8
9.2 odd 6 4212.2.a.g.1.4 yes 4
9.4 even 3 inner 4212.2.i.w.1405.4 8
9.5 odd 6 inner 4212.2.i.w.1405.1 8
9.7 even 3 4212.2.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4212.2.a.g.1.1 4 9.7 even 3
4212.2.a.g.1.4 yes 4 9.2 odd 6
4212.2.i.w.1405.1 8 9.5 odd 6 inner
4212.2.i.w.1405.4 8 9.4 even 3 inner
4212.2.i.w.2809.1 8 3.2 odd 2 inner
4212.2.i.w.2809.4 8 1.1 even 1 trivial