Properties

Label 4212.2.i.w
Level $4212$
Weight $2$
Character orbit 4212.i
Analytic conductor $33.633$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1405,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1405"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} - \beta_{4} q^{7} + \beta_{2} q^{11} + ( - \beta_{5} + 1) q^{13} + (\beta_{7} + \beta_{3} - \beta_{2} - \beta_1) q^{17} + ( - 2 \beta_{6} - 1) q^{19} + (2 \beta_{3} - \beta_1) q^{23}+ \cdots + (6 \beta_{5} - 2 \beta_{4}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{7} + 4 q^{13} + 10 q^{25} + 2 q^{31} - 12 q^{37} + 8 q^{43} + 6 q^{49} - 20 q^{55} + 14 q^{61} + 26 q^{67} - 32 q^{73} + 4 q^{79} + 6 q^{85} + 4 q^{91} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} + 5\nu^{5} - 5\nu^{3} + 28\nu ) / 40 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 5\nu^{5} + 15\nu^{3} + 22\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{7} - 5\nu^{5} + 5\nu^{3} + 24\nu ) / 40 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 5\nu^{4} + 5\nu^{2} - 2 ) / 10 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} - 5\nu^{4} - 15\nu^{2} - 16 ) / 20 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 3\nu^{4} + \nu^{2} + 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 9\nu^{7} + 15\nu^{5} + 25\nu^{3} + 88\nu ) / 40 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + 2\beta_{3} - \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{6} - 4\beta_{5} + \beta_{4} - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + \beta_{3} + 4\beta_{2} - 4\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -4\beta_{7} - 11\beta_{3} + 7\beta_{2} + 11\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5\beta_{6} - 5\beta_{5} - 10\beta_{4} - 11 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{7} - 4\beta_{3} - 13\beta_{2} - 17\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(-1 + \beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1405.1
−1.09445 + 0.895644i
−0.228425 + 1.39564i
0.228425 1.39564i
1.09445 0.895644i
−1.09445 0.895644i
−0.228425 1.39564i
0.228425 + 1.39564i
1.09445 + 0.895644i
0 0 0 −1.09445 + 1.89564i 0 1.39564 + 2.41733i 0 0 0
1405.2 0 0 0 −0.228425 + 0.395644i 0 −0.895644 1.55130i 0 0 0
1405.3 0 0 0 0.228425 0.395644i 0 −0.895644 1.55130i 0 0 0
1405.4 0 0 0 1.09445 1.89564i 0 1.39564 + 2.41733i 0 0 0
2809.1 0 0 0 −1.09445 1.89564i 0 1.39564 2.41733i 0 0 0
2809.2 0 0 0 −0.228425 0.395644i 0 −0.895644 + 1.55130i 0 0 0
2809.3 0 0 0 0.228425 + 0.395644i 0 −0.895644 + 1.55130i 0 0 0
2809.4 0 0 0 1.09445 + 1.89564i 0 1.39564 2.41733i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1405.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4212.2.i.w 8
3.b odd 2 1 inner 4212.2.i.w 8
9.c even 3 1 4212.2.a.g 4
9.c even 3 1 inner 4212.2.i.w 8
9.d odd 6 1 4212.2.a.g 4
9.d odd 6 1 inner 4212.2.i.w 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4212.2.a.g 4 9.c even 3 1
4212.2.a.g 4 9.d odd 6 1
4212.2.i.w 8 1.a even 1 1 trivial
4212.2.i.w 8 3.b odd 2 1 inner
4212.2.i.w 8 9.c even 3 1 inner
4212.2.i.w 8 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4212, [\chi])\):

\( T_{5}^{8} + 5T_{5}^{6} + 24T_{5}^{4} + 5T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} - T_{7}^{3} + 6T_{7}^{2} + 5T_{7} + 25 \) Copy content Toggle raw display
\( T_{17}^{2} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{4} - T^{3} + 6 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 5 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 21)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + 17 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$29$ \( T^{8} + 89 T^{6} + \cdots + 3418801 \) Copy content Toggle raw display
$31$ \( (T^{4} - T^{3} + 6 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 3 T - 3)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} + 33 T^{6} + \cdots + 50625 \) Copy content Toggle raw display
$43$ \( (T^{4} - 4 T^{3} + \cdots + 289)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 38 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$53$ \( (T^{4} - 132 T^{2} + 3600)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 110 T^{6} + \cdots + 2825761 \) Copy content Toggle raw display
$61$ \( (T^{4} - 7 T^{3} + \cdots + 1225)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 13 T^{3} + \cdots + 25)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 62 T^{2} + 625)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 8 T - 5)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 222 T^{6} + \cdots + 50625 \) Copy content Toggle raw display
$89$ \( (T^{4} - 153 T^{2} + 2025)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 14 T^{3} + \cdots + 784)^{2} \) Copy content Toggle raw display
show more
show less