L(s) = 1 | + (−1.09 − 1.89i)5-s + (1.39 − 2.41i)7-s + (1.09 − 1.89i)11-s + (0.5 + 0.866i)13-s − 1.73·17-s + 4.58·19-s + (−1.96 − 3.39i)23-s + (0.104 − 0.180i)25-s + (3.74 − 6.47i)29-s + (−0.895 − 1.55i)31-s − 6.10·35-s + 0.791·37-s + (1.55 + 2.68i)41-s + (−1.29 + 2.23i)43-s + (0.409 − 0.708i)47-s + ⋯ |
L(s) = 1 | + (−0.489 − 0.847i)5-s + (0.527 − 0.913i)7-s + (0.329 − 0.571i)11-s + (0.138 + 0.240i)13-s − 0.420·17-s + 1.05·19-s + (−0.408 − 0.708i)23-s + (0.0208 − 0.0361i)25-s + (0.694 − 1.20i)29-s + (−0.160 − 0.278i)31-s − 1.03·35-s + 0.130·37-s + (0.242 + 0.419i)41-s + (−0.196 + 0.341i)43-s + (0.0596 − 0.103i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.658171188\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.658171188\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (1.09 + 1.89i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.39 + 2.41i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.09 + 1.89i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 1.73T + 17T^{2} \) |
| 19 | \( 1 - 4.58T + 19T^{2} \) |
| 23 | \( 1 + (1.96 + 3.39i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.74 + 6.47i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.895 + 1.55i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.791T + 37T^{2} \) |
| 41 | \( 1 + (-1.55 - 2.68i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.29 - 2.23i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.409 + 0.708i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6.20T + 53T^{2} \) |
| 59 | \( 1 + (2.14 + 3.70i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.18 + 8.98i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.68 - 11.5i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.02T + 71T^{2} \) |
| 73 | \( 1 - 0.582T + 73T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.504 - 0.873i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 11.7T + 89T^{2} \) |
| 97 | \( 1 + (-5.79 + 10.0i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.208487581671819736708141127325, −7.54726158902060935545256297955, −6.72819771236057758130992708881, −5.93270752111195978942638232825, −4.96830835430926632495155200556, −4.31704834106736036874289556473, −3.79161737491239992968883360596, −2.58822359194294230047400333700, −1.28363240895084219843119465283, −0.52481239350412921613529921101,
1.35747260897659921273548445890, 2.41026903944315915936544695294, 3.22038012264949443392892529015, 4.02086160390143878820446272511, 5.07839859609778301997527312366, 5.60191035874175733240824707147, 6.63024951381278678657078707354, 7.21392374193171318798092412488, 7.84177635686744977673128611264, 8.701777949407006778982191737180