sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4212, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,4,0]))
pari:[g,chi] = znchar(Mod(2809,4212))
\(\chi_{4212}(1405,\cdot)\)
\(\chi_{4212}(2809,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2107,3485,3889)\) → \((1,e\left(\frac{2}{3}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 4212 }(2809, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)