Properties

Label 420.2.bv.c.53.11
Level $420$
Weight $2$
Character 420.53
Analytic conductor $3.354$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(53,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 53.11
Character \(\chi\) \(=\) 420.53
Dual form 420.2.bv.c.317.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.44552 + 0.954190i) q^{3} +(-2.17211 - 0.530994i) q^{5} +(1.78762 - 1.95049i) q^{7} +(1.17904 + 2.75860i) q^{9} +(2.07693 + 1.19911i) q^{11} +(3.37848 + 3.37848i) q^{13} +(-2.63315 - 2.84016i) q^{15} +(4.74353 - 1.27103i) q^{17} +(0.151250 - 0.0873244i) q^{19} +(4.44518 - 1.11374i) q^{21} +(-1.21053 - 0.324361i) q^{23} +(4.43609 + 2.30675i) q^{25} +(-0.927900 + 5.11263i) q^{27} -4.65176 q^{29} +(1.26323 - 2.18799i) q^{31} +(1.85805 + 3.71512i) q^{33} +(-4.91860 + 3.28746i) q^{35} +(-10.9974 - 2.94674i) q^{37} +(1.65994 + 8.10737i) q^{39} -1.78650i q^{41} +(-2.46081 - 2.46081i) q^{43} +(-1.09621 - 6.61803i) q^{45} +(-2.07195 + 7.73263i) q^{47} +(-0.608831 - 6.97347i) q^{49} +(8.06966 + 2.68894i) q^{51} +(-2.92005 - 10.8978i) q^{53} +(-3.87458 - 3.70744i) q^{55} +(0.301959 + 0.0180926i) q^{57} +(2.06606 - 3.57852i) q^{59} +(3.47828 + 6.02455i) q^{61} +(7.48830 + 2.63161i) q^{63} +(-5.54447 - 9.13238i) q^{65} +(3.12231 + 11.6526i) q^{67} +(-1.44034 - 1.62395i) q^{69} -15.9938i q^{71} +(-5.23288 + 1.40215i) q^{73} +(4.21137 + 7.56732i) q^{75} +(6.05161 - 1.90747i) q^{77} +(5.52266 - 3.18851i) q^{79} +(-6.21972 + 6.50501i) q^{81} +(-3.05025 + 3.05025i) q^{83} +(-10.9784 + 0.242015i) q^{85} +(-6.72421 - 4.43867i) q^{87} +(-2.58127 - 4.47089i) q^{89} +(12.6291 - 0.550258i) q^{91} +(3.91378 - 1.95741i) q^{93} +(-0.374900 + 0.109365i) q^{95} +(-2.70738 + 2.70738i) q^{97} +(-0.859088 + 7.14321i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} - 8 q^{7} + 32 q^{13} - 16 q^{21} + 16 q^{25} - 32 q^{27} - 64 q^{31} + 34 q^{33} - 40 q^{37} - 24 q^{43} + 30 q^{45} + 36 q^{51} + 92 q^{57} - 18 q^{63} + 28 q^{67} - 8 q^{73} - 38 q^{75}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44552 + 0.954190i 0.834570 + 0.550902i
\(4\) 0 0
\(5\) −2.17211 0.530994i −0.971395 0.237468i
\(6\) 0 0
\(7\) 1.78762 1.95049i 0.675657 0.737216i
\(8\) 0 0
\(9\) 1.17904 + 2.75860i 0.393014 + 0.919532i
\(10\) 0 0
\(11\) 2.07693 + 1.19911i 0.626217 + 0.361546i 0.779285 0.626669i \(-0.215582\pi\)
−0.153069 + 0.988216i \(0.548916\pi\)
\(12\) 0 0
\(13\) 3.37848 + 3.37848i 0.937023 + 0.937023i 0.998131 0.0611083i \(-0.0194635\pi\)
−0.0611083 + 0.998131i \(0.519464\pi\)
\(14\) 0 0
\(15\) −2.63315 2.84016i −0.679876 0.733327i
\(16\) 0 0
\(17\) 4.74353 1.27103i 1.15048 0.308269i 0.367320 0.930095i \(-0.380275\pi\)
0.783156 + 0.621826i \(0.213609\pi\)
\(18\) 0 0
\(19\) 0.151250 0.0873244i 0.0346992 0.0200336i −0.482550 0.875868i \(-0.660289\pi\)
0.517249 + 0.855835i \(0.326956\pi\)
\(20\) 0 0
\(21\) 4.44518 1.11374i 0.970017 0.243038i
\(22\) 0 0
\(23\) −1.21053 0.324361i −0.252413 0.0676339i 0.130394 0.991462i \(-0.458376\pi\)
−0.382807 + 0.923828i \(0.625043\pi\)
\(24\) 0 0
\(25\) 4.43609 + 2.30675i 0.887218 + 0.461350i
\(26\) 0 0
\(27\) −0.927900 + 5.11263i −0.178574 + 0.983926i
\(28\) 0 0
\(29\) −4.65176 −0.863811 −0.431905 0.901919i \(-0.642159\pi\)
−0.431905 + 0.901919i \(0.642159\pi\)
\(30\) 0 0
\(31\) 1.26323 2.18799i 0.226884 0.392974i −0.729999 0.683448i \(-0.760480\pi\)
0.956883 + 0.290474i \(0.0938130\pi\)
\(32\) 0 0
\(33\) 1.85805 + 3.71512i 0.323445 + 0.646720i
\(34\) 0 0
\(35\) −4.91860 + 3.28746i −0.831395 + 0.555682i
\(36\) 0 0
\(37\) −10.9974 2.94674i −1.80796 0.484441i −0.812783 0.582566i \(-0.802049\pi\)
−0.995174 + 0.0981254i \(0.968715\pi\)
\(38\) 0 0
\(39\) 1.65994 + 8.10737i 0.265803 + 1.29822i
\(40\) 0 0
\(41\) 1.78650i 0.279005i −0.990222 0.139503i \(-0.955450\pi\)
0.990222 0.139503i \(-0.0445504\pi\)
\(42\) 0 0
\(43\) −2.46081 2.46081i −0.375271 0.375271i 0.494122 0.869393i \(-0.335490\pi\)
−0.869393 + 0.494122i \(0.835490\pi\)
\(44\) 0 0
\(45\) −1.09621 6.61803i −0.163413 0.986558i
\(46\) 0 0
\(47\) −2.07195 + 7.73263i −0.302225 + 1.12792i 0.633082 + 0.774084i \(0.281789\pi\)
−0.935308 + 0.353835i \(0.884877\pi\)
\(48\) 0 0
\(49\) −0.608831 6.97347i −0.0869758 0.996210i
\(50\) 0 0
\(51\) 8.06966 + 2.68894i 1.12998 + 0.376527i
\(52\) 0 0
\(53\) −2.92005 10.8978i −0.401100 1.49692i −0.811137 0.584856i \(-0.801151\pi\)
0.410037 0.912069i \(-0.365516\pi\)
\(54\) 0 0
\(55\) −3.87458 3.70744i −0.522448 0.499911i
\(56\) 0 0
\(57\) 0.301959 + 0.0180926i 0.0399954 + 0.00239642i
\(58\) 0 0
\(59\) 2.06606 3.57852i 0.268978 0.465884i −0.699620 0.714515i \(-0.746647\pi\)
0.968598 + 0.248631i \(0.0799807\pi\)
\(60\) 0 0
\(61\) 3.47828 + 6.02455i 0.445348 + 0.771365i 0.998076 0.0619964i \(-0.0197467\pi\)
−0.552729 + 0.833361i \(0.686413\pi\)
\(62\) 0 0
\(63\) 7.48830 + 2.63161i 0.943437 + 0.331552i
\(64\) 0 0
\(65\) −5.54447 9.13238i −0.687707 1.13273i
\(66\) 0 0
\(67\) 3.12231 + 11.6526i 0.381451 + 1.42359i 0.843686 + 0.536837i \(0.180381\pi\)
−0.462235 + 0.886757i \(0.652953\pi\)
\(68\) 0 0
\(69\) −1.44034 1.62395i −0.173397 0.195500i
\(70\) 0 0
\(71\) 15.9938i 1.89811i −0.315111 0.949055i \(-0.602042\pi\)
0.315111 0.949055i \(-0.397958\pi\)
\(72\) 0 0
\(73\) −5.23288 + 1.40215i −0.612462 + 0.164109i −0.551699 0.834043i \(-0.686020\pi\)
−0.0607633 + 0.998152i \(0.519353\pi\)
\(74\) 0 0
\(75\) 4.21137 + 7.56732i 0.486287 + 0.873799i
\(76\) 0 0
\(77\) 6.05161 1.90747i 0.689645 0.217376i
\(78\) 0 0
\(79\) 5.52266 3.18851i 0.621348 0.358735i −0.156046 0.987750i \(-0.549875\pi\)
0.777394 + 0.629014i \(0.216541\pi\)
\(80\) 0 0
\(81\) −6.21972 + 6.50501i −0.691080 + 0.722778i
\(82\) 0 0
\(83\) −3.05025 + 3.05025i −0.334808 + 0.334808i −0.854409 0.519601i \(-0.826081\pi\)
0.519601 + 0.854409i \(0.326081\pi\)
\(84\) 0 0
\(85\) −10.9784 + 0.242015i −1.19077 + 0.0262502i
\(86\) 0 0
\(87\) −6.72421 4.43867i −0.720910 0.475875i
\(88\) 0 0
\(89\) −2.58127 4.47089i −0.273614 0.473914i 0.696170 0.717877i \(-0.254886\pi\)
−0.969785 + 0.243963i \(0.921553\pi\)
\(90\) 0 0
\(91\) 12.6291 0.550258i 1.32389 0.0576827i
\(92\) 0 0
\(93\) 3.91378 1.95741i 0.405840 0.202974i
\(94\) 0 0
\(95\) −0.374900 + 0.109365i −0.0384640 + 0.0112206i
\(96\) 0 0
\(97\) −2.70738 + 2.70738i −0.274893 + 0.274893i −0.831066 0.556173i \(-0.812269\pi\)
0.556173 + 0.831066i \(0.312269\pi\)
\(98\) 0 0
\(99\) −0.859088 + 7.14321i −0.0863416 + 0.717919i
\(100\) 0 0
\(101\) 1.03830 + 0.599462i 0.103315 + 0.0596487i 0.550767 0.834659i \(-0.314335\pi\)
−0.447452 + 0.894308i \(0.647669\pi\)
\(102\) 0 0
\(103\) −1.39827 + 5.21841i −0.137775 + 0.514185i 0.862196 + 0.506575i \(0.169089\pi\)
−0.999971 + 0.00760935i \(0.997578\pi\)
\(104\) 0 0
\(105\) −10.2468 + 0.0587995i −0.999984 + 0.00573824i
\(106\) 0 0
\(107\) −2.56642 + 9.57801i −0.248105 + 0.925941i 0.723692 + 0.690123i \(0.242444\pi\)
−0.971797 + 0.235818i \(0.924223\pi\)
\(108\) 0 0
\(109\) −13.1440 7.58867i −1.25896 0.726863i −0.286090 0.958203i \(-0.592356\pi\)
−0.972873 + 0.231340i \(0.925689\pi\)
\(110\) 0 0
\(111\) −13.0852 14.7531i −1.24199 1.40031i
\(112\) 0 0
\(113\) 11.3407 11.3407i 1.06685 1.06685i 0.0692464 0.997600i \(-0.477941\pi\)
0.997600 0.0692464i \(-0.0220595\pi\)
\(114\) 0 0
\(115\) 2.45717 + 1.34733i 0.229132 + 0.125639i
\(116\) 0 0
\(117\) −5.33650 + 13.3033i −0.493360 + 1.22989i
\(118\) 0 0
\(119\) 6.00051 11.5243i 0.550066 1.05643i
\(120\) 0 0
\(121\) −2.62425 4.54534i −0.238569 0.413213i
\(122\) 0 0
\(123\) 1.70467 2.58242i 0.153705 0.232849i
\(124\) 0 0
\(125\) −8.41079 7.36605i −0.752284 0.658839i
\(126\) 0 0
\(127\) −14.7150 + 14.7150i −1.30574 + 1.30574i −0.381287 + 0.924457i \(0.624519\pi\)
−0.924457 + 0.381287i \(0.875481\pi\)
\(128\) 0 0
\(129\) −1.20907 5.90523i −0.106452 0.519927i
\(130\) 0 0
\(131\) −11.6665 + 6.73566i −1.01931 + 0.588497i −0.913903 0.405932i \(-0.866947\pi\)
−0.105404 + 0.994429i \(0.533614\pi\)
\(132\) 0 0
\(133\) 0.100053 0.451115i 0.00867565 0.0391166i
\(134\) 0 0
\(135\) 4.73027 10.6125i 0.407117 0.913376i
\(136\) 0 0
\(137\) −12.8468 + 3.44229i −1.09758 + 0.294095i −0.761777 0.647839i \(-0.775673\pi\)
−0.335799 + 0.941934i \(0.609006\pi\)
\(138\) 0 0
\(139\) 4.58221i 0.388658i −0.980936 0.194329i \(-0.937747\pi\)
0.980936 0.194329i \(-0.0622530\pi\)
\(140\) 0 0
\(141\) −10.3734 + 9.20061i −0.873601 + 0.774832i
\(142\) 0 0
\(143\) 2.96567 + 11.0680i 0.248002 + 0.925556i
\(144\) 0 0
\(145\) 10.1041 + 2.47006i 0.839102 + 0.205127i
\(146\) 0 0
\(147\) 5.77394 10.6612i 0.476227 0.879322i
\(148\) 0 0
\(149\) −3.58754 6.21379i −0.293902 0.509054i 0.680827 0.732445i \(-0.261621\pi\)
−0.974729 + 0.223391i \(0.928287\pi\)
\(150\) 0 0
\(151\) 2.15084 3.72536i 0.175033 0.303166i −0.765140 0.643864i \(-0.777330\pi\)
0.940173 + 0.340698i \(0.110663\pi\)
\(152\) 0 0
\(153\) 9.09907 + 11.5869i 0.735616 + 0.936745i
\(154\) 0 0
\(155\) −3.90569 + 4.08177i −0.313712 + 0.327855i
\(156\) 0 0
\(157\) −2.30081 8.58676i −0.183625 0.685298i −0.994921 0.100662i \(-0.967904\pi\)
0.811296 0.584636i \(-0.198763\pi\)
\(158\) 0 0
\(159\) 6.17757 18.5392i 0.489913 1.47026i
\(160\) 0 0
\(161\) −2.79663 + 1.78130i −0.220406 + 0.140386i
\(162\) 0 0
\(163\) −1.53272 + 5.72018i −0.120052 + 0.448039i −0.999615 0.0277426i \(-0.991168\pi\)
0.879563 + 0.475782i \(0.157835\pi\)
\(164\) 0 0
\(165\) −2.06317 9.05625i −0.160618 0.705028i
\(166\) 0 0
\(167\) 16.1499 + 16.1499i 1.24972 + 1.24972i 0.955844 + 0.293876i \(0.0949452\pi\)
0.293876 + 0.955844i \(0.405055\pi\)
\(168\) 0 0
\(169\) 9.82831i 0.756024i
\(170\) 0 0
\(171\) 0.419223 + 0.314279i 0.0320588 + 0.0240335i
\(172\) 0 0
\(173\) 24.8433 + 6.65674i 1.88880 + 0.506102i 0.998736 + 0.0502667i \(0.0160071\pi\)
0.890064 + 0.455836i \(0.150660\pi\)
\(174\) 0 0
\(175\) 12.4293 4.52896i 0.939570 0.342357i
\(176\) 0 0
\(177\) 6.40112 3.20140i 0.481137 0.240632i
\(178\) 0 0
\(179\) −9.95927 + 17.2500i −0.744391 + 1.28932i 0.206088 + 0.978533i \(0.433927\pi\)
−0.950479 + 0.310789i \(0.899407\pi\)
\(180\) 0 0
\(181\) 16.4609 1.22353 0.611765 0.791040i \(-0.290460\pi\)
0.611765 + 0.791040i \(0.290460\pi\)
\(182\) 0 0
\(183\) −0.720658 + 12.0275i −0.0532726 + 0.889101i
\(184\) 0 0
\(185\) 22.3228 + 12.2402i 1.64120 + 0.899915i
\(186\) 0 0
\(187\) 11.3761 + 3.04821i 0.831900 + 0.222907i
\(188\) 0 0
\(189\) 8.31341 + 10.9493i 0.604712 + 0.796445i
\(190\) 0 0
\(191\) 1.56368 0.902790i 0.113144 0.0653236i −0.442360 0.896837i \(-0.645859\pi\)
0.555504 + 0.831514i \(0.312525\pi\)
\(192\) 0 0
\(193\) −5.16003 + 1.38263i −0.371427 + 0.0995236i −0.439704 0.898143i \(-0.644917\pi\)
0.0682768 + 0.997666i \(0.478250\pi\)
\(194\) 0 0
\(195\) 0.699398 18.4915i 0.0500849 1.32420i
\(196\) 0 0
\(197\) −15.1248 15.1248i −1.07760 1.07760i −0.996724 0.0808739i \(-0.974229\pi\)
−0.0808739 0.996724i \(-0.525771\pi\)
\(198\) 0 0
\(199\) 2.10884 + 1.21754i 0.149491 + 0.0863090i 0.572880 0.819639i \(-0.305826\pi\)
−0.423388 + 0.905948i \(0.639159\pi\)
\(200\) 0 0
\(201\) −6.60546 + 19.8233i −0.465913 + 1.39823i
\(202\) 0 0
\(203\) −8.31558 + 9.07322i −0.583640 + 0.636815i
\(204\) 0 0
\(205\) −0.948624 + 3.88048i −0.0662547 + 0.271024i
\(206\) 0 0
\(207\) −0.532487 3.72180i −0.0370104 0.258683i
\(208\) 0 0
\(209\) 0.418847 0.0289723
\(210\) 0 0
\(211\) 13.8080 0.950581 0.475291 0.879829i \(-0.342343\pi\)
0.475291 + 0.879829i \(0.342343\pi\)
\(212\) 0 0
\(213\) 15.2611 23.1193i 1.04567 1.58411i
\(214\) 0 0
\(215\) 4.03847 + 6.65183i 0.275421 + 0.453651i
\(216\) 0 0
\(217\) −2.00946 6.37521i −0.136411 0.432778i
\(218\) 0 0
\(219\) −8.90213 2.96633i −0.601550 0.200446i
\(220\) 0 0
\(221\) 20.3201 + 11.7318i 1.36688 + 0.789167i
\(222\) 0 0
\(223\) −17.6103 17.6103i −1.17928 1.17928i −0.979929 0.199347i \(-0.936118\pi\)
−0.199347 0.979929i \(-0.563882\pi\)
\(224\) 0 0
\(225\) −1.13306 + 14.9571i −0.0755373 + 0.997143i
\(226\) 0 0
\(227\) 6.32132 1.69379i 0.419561 0.112421i −0.0428611 0.999081i \(-0.513647\pi\)
0.462422 + 0.886660i \(0.346981\pi\)
\(228\) 0 0
\(229\) 20.8421 12.0332i 1.37729 0.795177i 0.385454 0.922727i \(-0.374045\pi\)
0.991832 + 0.127550i \(0.0407115\pi\)
\(230\) 0 0
\(231\) 10.5678 + 3.01711i 0.695310 + 0.198512i
\(232\) 0 0
\(233\) −1.94292 0.520604i −0.127285 0.0341059i 0.194614 0.980880i \(-0.437655\pi\)
−0.321899 + 0.946774i \(0.604321\pi\)
\(234\) 0 0
\(235\) 8.60648 15.6959i 0.561425 1.02389i
\(236\) 0 0
\(237\) 11.0256 + 0.660622i 0.716187 + 0.0429120i
\(238\) 0 0
\(239\) 10.1453 0.656245 0.328123 0.944635i \(-0.393584\pi\)
0.328123 + 0.944635i \(0.393584\pi\)
\(240\) 0 0
\(241\) 11.1599 19.3295i 0.718871 1.24512i −0.242577 0.970132i \(-0.577993\pi\)
0.961448 0.274988i \(-0.0886740\pi\)
\(242\) 0 0
\(243\) −15.1977 + 3.46831i −0.974935 + 0.222492i
\(244\) 0 0
\(245\) −2.38043 + 15.4704i −0.152080 + 0.988368i
\(246\) 0 0
\(247\) 0.806020 + 0.215973i 0.0512858 + 0.0137420i
\(248\) 0 0
\(249\) −7.31971 + 1.49867i −0.463868 + 0.0949744i
\(250\) 0 0
\(251\) 4.37814i 0.276346i 0.990408 + 0.138173i \(0.0441230\pi\)
−0.990408 + 0.138173i \(0.955877\pi\)
\(252\) 0 0
\(253\) −2.12524 2.12524i −0.133613 0.133613i
\(254\) 0 0
\(255\) −16.1003 10.1256i −1.00824 0.634090i
\(256\) 0 0
\(257\) 0.639388 2.38623i 0.0398839 0.148849i −0.943112 0.332474i \(-0.892117\pi\)
0.982996 + 0.183625i \(0.0587833\pi\)
\(258\) 0 0
\(259\) −25.4067 + 16.1826i −1.57870 + 1.00554i
\(260\) 0 0
\(261\) −5.48463 12.8323i −0.339490 0.794302i
\(262\) 0 0
\(263\) −0.0785232 0.293053i −0.00484195 0.0180704i 0.963463 0.267843i \(-0.0863108\pi\)
−0.968305 + 0.249773i \(0.919644\pi\)
\(264\) 0 0
\(265\) 0.556004 + 25.2217i 0.0341551 + 1.54935i
\(266\) 0 0
\(267\) 0.534809 8.92578i 0.0327298 0.546249i
\(268\) 0 0
\(269\) −8.59823 + 14.8926i −0.524244 + 0.908017i 0.475358 + 0.879792i \(0.342319\pi\)
−0.999602 + 0.0282241i \(0.991015\pi\)
\(270\) 0 0
\(271\) −4.92042 8.52242i −0.298894 0.517700i 0.676989 0.735993i \(-0.263284\pi\)
−0.975883 + 0.218293i \(0.929951\pi\)
\(272\) 0 0
\(273\) 18.7807 + 11.2552i 1.13666 + 0.681196i
\(274\) 0 0
\(275\) 6.44737 + 10.1103i 0.388791 + 0.609676i
\(276\) 0 0
\(277\) 3.48534 + 13.0075i 0.209414 + 0.781543i 0.988059 + 0.154078i \(0.0492407\pi\)
−0.778645 + 0.627465i \(0.784093\pi\)
\(278\) 0 0
\(279\) 7.52518 + 0.905026i 0.450521 + 0.0541825i
\(280\) 0 0
\(281\) 24.4744i 1.46002i −0.683436 0.730011i \(-0.739515\pi\)
0.683436 0.730011i \(-0.260485\pi\)
\(282\) 0 0
\(283\) −6.55682 + 1.75689i −0.389763 + 0.104437i −0.448378 0.893844i \(-0.647998\pi\)
0.0586154 + 0.998281i \(0.481331\pi\)
\(284\) 0 0
\(285\) −0.646280 0.199637i −0.0382823 0.0118255i
\(286\) 0 0
\(287\) −3.48456 3.19359i −0.205687 0.188512i
\(288\) 0 0
\(289\) 6.16315 3.55830i 0.362538 0.209312i
\(290\) 0 0
\(291\) −6.49693 + 1.33021i −0.380857 + 0.0779784i
\(292\) 0 0
\(293\) −19.9960 + 19.9960i −1.16818 + 1.16818i −0.185541 + 0.982637i \(0.559404\pi\)
−0.982637 + 0.185541i \(0.940596\pi\)
\(294\) 0 0
\(295\) −6.38787 + 6.67586i −0.371916 + 0.388684i
\(296\) 0 0
\(297\) −8.05780 + 9.50590i −0.467561 + 0.551588i
\(298\) 0 0
\(299\) −2.99391 5.18561i −0.173142 0.299892i
\(300\) 0 0
\(301\) −9.19879 + 0.400796i −0.530210 + 0.0231015i
\(302\) 0 0
\(303\) 0.928878 + 1.85727i 0.0533626 + 0.106697i
\(304\) 0 0
\(305\) −4.35618 14.9329i −0.249434 0.855056i
\(306\) 0 0
\(307\) −5.61961 + 5.61961i −0.320728 + 0.320728i −0.849046 0.528318i \(-0.822823\pi\)
0.528318 + 0.849046i \(0.322823\pi\)
\(308\) 0 0
\(309\) −7.00057 + 6.20908i −0.398249 + 0.353222i
\(310\) 0 0
\(311\) 26.1827 + 15.1166i 1.48468 + 0.857183i 0.999848 0.0174217i \(-0.00554578\pi\)
0.484836 + 0.874605i \(0.338879\pi\)
\(312\) 0 0
\(313\) 2.77697 10.3638i 0.156964 0.585796i −0.841966 0.539531i \(-0.818602\pi\)
0.998929 0.0462649i \(-0.0147318\pi\)
\(314\) 0 0
\(315\) −14.8680 9.69238i −0.837717 0.546104i
\(316\) 0 0
\(317\) −2.75178 + 10.2698i −0.154555 + 0.576808i 0.844588 + 0.535417i \(0.179846\pi\)
−0.999143 + 0.0413908i \(0.986821\pi\)
\(318\) 0 0
\(319\) −9.66136 5.57799i −0.540933 0.312308i
\(320\) 0 0
\(321\) −12.8490 + 11.3963i −0.717164 + 0.636081i
\(322\) 0 0
\(323\) 0.606469 0.606469i 0.0337448 0.0337448i
\(324\) 0 0
\(325\) 7.19394 + 22.7806i 0.399048 + 1.26364i
\(326\) 0 0
\(327\) −11.7588 23.5114i −0.650263 1.30018i
\(328\) 0 0
\(329\) 11.3786 + 17.8643i 0.627320 + 0.984892i
\(330\) 0 0
\(331\) −0.207490 0.359384i −0.0114047 0.0197535i 0.860267 0.509844i \(-0.170297\pi\)
−0.871671 + 0.490091i \(0.836964\pi\)
\(332\) 0 0
\(333\) −4.83751 33.8117i −0.265094 1.85287i
\(334\) 0 0
\(335\) −0.594516 26.9686i −0.0324819 1.47345i
\(336\) 0 0
\(337\) 12.7807 12.7807i 0.696210 0.696210i −0.267381 0.963591i \(-0.586158\pi\)
0.963591 + 0.267381i \(0.0861582\pi\)
\(338\) 0 0
\(339\) 27.2144 5.57201i 1.47809 0.302630i
\(340\) 0 0
\(341\) 5.24729 3.02952i 0.284156 0.164058i
\(342\) 0 0
\(343\) −14.6901 11.2784i −0.793188 0.608976i
\(344\) 0 0
\(345\) 2.26627 + 4.29220i 0.122012 + 0.231084i
\(346\) 0 0
\(347\) 31.3558 8.40176i 1.68327 0.451030i 0.714629 0.699504i \(-0.246596\pi\)
0.968639 + 0.248473i \(0.0799289\pi\)
\(348\) 0 0
\(349\) 13.1679i 0.704860i −0.935838 0.352430i \(-0.885355\pi\)
0.935838 0.352430i \(-0.114645\pi\)
\(350\) 0 0
\(351\) −20.4078 + 14.1380i −1.08929 + 0.754633i
\(352\) 0 0
\(353\) −2.55758 9.54503i −0.136126 0.508031i −0.999991 0.00430620i \(-0.998629\pi\)
0.863864 0.503725i \(-0.168037\pi\)
\(354\) 0 0
\(355\) −8.49259 + 34.7401i −0.450740 + 1.84381i
\(356\) 0 0
\(357\) 19.6702 10.9330i 1.04106 0.578635i
\(358\) 0 0
\(359\) 5.54047 + 9.59637i 0.292415 + 0.506477i 0.974380 0.224907i \(-0.0722079\pi\)
−0.681966 + 0.731384i \(0.738875\pi\)
\(360\) 0 0
\(361\) −9.48475 + 16.4281i −0.499197 + 0.864635i
\(362\) 0 0
\(363\) 0.543715 9.07441i 0.0285376 0.476283i
\(364\) 0 0
\(365\) 12.1109 0.266981i 0.633913 0.0139744i
\(366\) 0 0
\(367\) −2.03172 7.58247i −0.106055 0.395802i 0.892408 0.451230i \(-0.149014\pi\)
−0.998463 + 0.0554277i \(0.982348\pi\)
\(368\) 0 0
\(369\) 4.92825 2.10636i 0.256554 0.109653i
\(370\) 0 0
\(371\) −26.4760 13.7855i −1.37456 0.715710i
\(372\) 0 0
\(373\) −2.82512 + 10.5435i −0.146279 + 0.545921i 0.853416 + 0.521230i \(0.174527\pi\)
−0.999695 + 0.0246907i \(0.992140\pi\)
\(374\) 0 0
\(375\) −5.12933 18.6732i −0.264878 0.964282i
\(376\) 0 0
\(377\) −15.7159 15.7159i −0.809410 0.809410i
\(378\) 0 0
\(379\) 16.7144i 0.858560i −0.903172 0.429280i \(-0.858767\pi\)
0.903172 0.429280i \(-0.141233\pi\)
\(380\) 0 0
\(381\) −35.3117 + 7.22988i −1.80907 + 0.370398i
\(382\) 0 0
\(383\) 12.3453 + 3.30792i 0.630817 + 0.169027i 0.560040 0.828465i \(-0.310786\pi\)
0.0707764 + 0.997492i \(0.477452\pi\)
\(384\) 0 0
\(385\) −14.1576 + 0.929847i −0.721538 + 0.0473894i
\(386\) 0 0
\(387\) 3.88699 9.68980i 0.197587 0.492560i
\(388\) 0 0
\(389\) −17.5206 + 30.3465i −0.888327 + 1.53863i −0.0464754 + 0.998919i \(0.514799\pi\)
−0.841852 + 0.539709i \(0.818534\pi\)
\(390\) 0 0
\(391\) −6.15447 −0.311245
\(392\) 0 0
\(393\) −23.2912 1.39555i −1.17489 0.0703962i
\(394\) 0 0
\(395\) −13.6889 + 3.99328i −0.688763 + 0.200924i
\(396\) 0 0
\(397\) 1.97792 + 0.529982i 0.0992690 + 0.0265990i 0.308112 0.951350i \(-0.400303\pi\)
−0.208843 + 0.977949i \(0.566970\pi\)
\(398\) 0 0
\(399\) 0.575077 0.556625i 0.0287899 0.0278661i
\(400\) 0 0
\(401\) −13.0417 + 7.52965i −0.651273 + 0.376013i −0.788944 0.614465i \(-0.789372\pi\)
0.137671 + 0.990478i \(0.456038\pi\)
\(402\) 0 0
\(403\) 11.6599 3.12426i 0.580820 0.155630i
\(404\) 0 0
\(405\) 16.9640 10.8269i 0.842948 0.537994i
\(406\) 0 0
\(407\) −19.3073 19.3073i −0.957025 0.957025i
\(408\) 0 0
\(409\) −8.10578 4.67987i −0.400805 0.231405i 0.286026 0.958222i \(-0.407666\pi\)
−0.686831 + 0.726817i \(0.740999\pi\)
\(410\) 0 0
\(411\) −21.8549 7.28240i −1.07802 0.359214i
\(412\) 0 0
\(413\) −3.28654 10.4269i −0.161720 0.513073i
\(414\) 0 0
\(415\) 8.24513 5.00580i 0.404738 0.245725i
\(416\) 0 0
\(417\) 4.37230 6.62367i 0.214113 0.324362i
\(418\) 0 0
\(419\) 20.7118 1.01184 0.505919 0.862581i \(-0.331153\pi\)
0.505919 + 0.862581i \(0.331153\pi\)
\(420\) 0 0
\(421\) 18.3198 0.892851 0.446426 0.894821i \(-0.352697\pi\)
0.446426 + 0.894821i \(0.352697\pi\)
\(422\) 0 0
\(423\) −23.7741 + 3.40142i −1.15594 + 0.165383i
\(424\) 0 0
\(425\) 23.9747 + 5.30376i 1.16294 + 0.257270i
\(426\) 0 0
\(427\) 17.9687 + 3.98526i 0.869565 + 0.192860i
\(428\) 0 0
\(429\) −6.27408 + 18.8289i −0.302916 + 0.909066i
\(430\) 0 0
\(431\) 0.725507 + 0.418872i 0.0349464 + 0.0201763i 0.517371 0.855761i \(-0.326911\pi\)
−0.482425 + 0.875937i \(0.660244\pi\)
\(432\) 0 0
\(433\) 11.5356 + 11.5356i 0.554366 + 0.554366i 0.927698 0.373332i \(-0.121785\pi\)
−0.373332 + 0.927698i \(0.621785\pi\)
\(434\) 0 0
\(435\) 12.2488 + 13.2118i 0.587284 + 0.633456i
\(436\) 0 0
\(437\) −0.211418 + 0.0566492i −0.0101135 + 0.00270990i
\(438\) 0 0
\(439\) −27.5755 + 15.9207i −1.31611 + 0.759855i −0.983100 0.183069i \(-0.941397\pi\)
−0.333008 + 0.942924i \(0.608063\pi\)
\(440\) 0 0
\(441\) 18.5192 9.90154i 0.881865 0.471502i
\(442\) 0 0
\(443\) −32.0596 8.59035i −1.52320 0.408140i −0.602405 0.798191i \(-0.705791\pi\)
−0.920793 + 0.390051i \(0.872457\pi\)
\(444\) 0 0
\(445\) 3.23278 + 11.0819i 0.153248 + 0.525332i
\(446\) 0 0
\(447\) 0.743295 12.4053i 0.0351566 0.586752i
\(448\) 0 0
\(449\) 32.3879 1.52848 0.764239 0.644933i \(-0.223115\pi\)
0.764239 + 0.644933i \(0.223115\pi\)
\(450\) 0 0
\(451\) 2.14222 3.71044i 0.100873 0.174718i
\(452\) 0 0
\(453\) 6.66378 3.33277i 0.313092 0.156587i
\(454\) 0 0
\(455\) −27.7240 5.51078i −1.29972 0.258350i
\(456\) 0 0
\(457\) 18.4000 + 4.93026i 0.860716 + 0.230628i 0.662069 0.749443i \(-0.269679\pi\)
0.198647 + 0.980071i \(0.436345\pi\)
\(458\) 0 0
\(459\) 2.09676 + 25.4313i 0.0978685 + 1.18703i
\(460\) 0 0
\(461\) 24.9156i 1.16044i 0.814461 + 0.580218i \(0.197033\pi\)
−0.814461 + 0.580218i \(0.802967\pi\)
\(462\) 0 0
\(463\) −12.6420 12.6420i −0.587524 0.587524i 0.349436 0.936960i \(-0.386373\pi\)
−0.936960 + 0.349436i \(0.886373\pi\)
\(464\) 0 0
\(465\) −9.54052 + 2.17350i −0.442431 + 0.100794i
\(466\) 0 0
\(467\) 3.14017 11.7193i 0.145310 0.542303i −0.854432 0.519563i \(-0.826095\pi\)
0.999741 0.0227391i \(-0.00723871\pi\)
\(468\) 0 0
\(469\) 28.3098 + 14.7404i 1.30723 + 0.680649i
\(470\) 0 0
\(471\) 4.86753 14.6077i 0.224284 0.673088i
\(472\) 0 0
\(473\) −2.16013 8.06172i −0.0993229 0.370678i
\(474\) 0 0
\(475\) 0.872395 0.0384821i 0.0400282 0.00176568i
\(476\) 0 0
\(477\) 26.6197 20.9042i 1.21883 0.957137i
\(478\) 0 0
\(479\) 3.14571 5.44853i 0.143731 0.248950i −0.785168 0.619283i \(-0.787423\pi\)
0.928899 + 0.370333i \(0.120757\pi\)
\(480\) 0 0
\(481\) −27.1989 47.1100i −1.24017 2.14803i
\(482\) 0 0
\(483\) −5.74228 0.0936239i −0.261283 0.00426004i
\(484\) 0 0
\(485\) 7.31833 4.44312i 0.332308 0.201752i
\(486\) 0 0
\(487\) 5.64485 + 21.0669i 0.255793 + 0.954632i 0.967648 + 0.252305i \(0.0811887\pi\)
−0.711855 + 0.702326i \(0.752145\pi\)
\(488\) 0 0
\(489\) −7.67371 + 6.80612i −0.347017 + 0.307783i
\(490\) 0 0
\(491\) 18.6876i 0.843358i 0.906745 + 0.421679i \(0.138559\pi\)
−0.906745 + 0.421679i \(0.861441\pi\)
\(492\) 0 0
\(493\) −22.0658 + 5.91251i −0.993793 + 0.266286i
\(494\) 0 0
\(495\) 5.65903 15.0596i 0.254355 0.676880i
\(496\) 0 0
\(497\) −31.1957 28.5908i −1.39932 1.28247i
\(498\) 0 0
\(499\) −9.45427 + 5.45843i −0.423231 + 0.244353i −0.696459 0.717597i \(-0.745242\pi\)
0.273228 + 0.961949i \(0.411909\pi\)
\(500\) 0 0
\(501\) 7.93491 + 38.7551i 0.354505 + 1.73145i
\(502\) 0 0
\(503\) 8.52544 8.52544i 0.380131 0.380131i −0.491018 0.871149i \(-0.663375\pi\)
0.871149 + 0.491018i \(0.163375\pi\)
\(504\) 0 0
\(505\) −1.93698 1.85342i −0.0861946 0.0824763i
\(506\) 0 0
\(507\) −9.37807 + 14.2070i −0.416495 + 0.630955i
\(508\) 0 0
\(509\) −16.6925 28.9123i −0.739883 1.28151i −0.952548 0.304389i \(-0.901548\pi\)
0.212665 0.977125i \(-0.431786\pi\)
\(510\) 0 0
\(511\) −6.61952 + 12.7132i −0.292831 + 0.562398i
\(512\) 0 0
\(513\) 0.306112 + 0.854315i 0.0135152 + 0.0377189i
\(514\) 0 0
\(515\) 5.80813 10.5925i 0.255937 0.466760i
\(516\) 0 0
\(517\) −13.5756 + 13.5756i −0.597054 + 0.597054i
\(518\) 0 0
\(519\) 29.5596 + 33.3276i 1.29752 + 1.46292i
\(520\) 0 0
\(521\) −14.3052 8.25910i −0.626722 0.361838i 0.152760 0.988263i \(-0.451184\pi\)
−0.779481 + 0.626425i \(0.784517\pi\)
\(522\) 0 0
\(523\) 0.449698 1.67830i 0.0196639 0.0733868i −0.955397 0.295326i \(-0.904572\pi\)
0.975061 + 0.221939i \(0.0712385\pi\)
\(524\) 0 0
\(525\) 22.2883 + 5.31326i 0.972742 + 0.231890i
\(526\) 0 0
\(527\) 3.21120 11.9844i 0.139882 0.522048i
\(528\) 0 0
\(529\) −18.5584 10.7147i −0.806887 0.465857i
\(530\) 0 0
\(531\) 12.3077 + 1.48020i 0.534107 + 0.0642352i
\(532\) 0 0
\(533\) 6.03568 6.03568i 0.261434 0.261434i
\(534\) 0 0
\(535\) 10.6604 19.4417i 0.460889 0.840538i
\(536\) 0 0
\(537\) −30.8560 + 15.4321i −1.33154 + 0.665944i
\(538\) 0 0
\(539\) 7.09749 15.2134i 0.305710 0.655289i
\(540\) 0 0
\(541\) −1.62294 2.81101i −0.0697756 0.120855i 0.829027 0.559209i \(-0.188895\pi\)
−0.898802 + 0.438354i \(0.855562\pi\)
\(542\) 0 0
\(543\) 23.7945 + 15.7068i 1.02112 + 0.674045i
\(544\) 0 0
\(545\) 24.5205 + 23.4628i 1.05034 + 1.00503i
\(546\) 0 0
\(547\) 17.2003 17.2003i 0.735434 0.735434i −0.236257 0.971691i \(-0.575921\pi\)
0.971691 + 0.236257i \(0.0759207\pi\)
\(548\) 0 0
\(549\) −12.5183 + 16.6984i −0.534267 + 0.712669i
\(550\) 0 0
\(551\) −0.703580 + 0.406212i −0.0299735 + 0.0173052i
\(552\) 0 0
\(553\) 3.65326 16.4717i 0.155352 0.700450i
\(554\) 0 0
\(555\) 20.5885 + 38.9935i 0.873933 + 1.65518i
\(556\) 0 0
\(557\) 19.2930 5.16955i 0.817472 0.219041i 0.174231 0.984705i \(-0.444256\pi\)
0.643241 + 0.765664i \(0.277589\pi\)
\(558\) 0 0
\(559\) 16.6276i 0.703274i
\(560\) 0 0
\(561\) 13.5357 + 15.2612i 0.571479 + 0.644327i
\(562\) 0 0
\(563\) 9.69046 + 36.1653i 0.408404 + 1.52419i 0.797690 + 0.603068i \(0.206055\pi\)
−0.389285 + 0.921117i \(0.627278\pi\)
\(564\) 0 0
\(565\) −30.6551 + 18.6114i −1.28967 + 0.782988i
\(566\) 0 0
\(567\) 1.56946 + 23.7600i 0.0659113 + 0.997825i
\(568\) 0 0
\(569\) −8.83961 15.3107i −0.370576 0.641856i 0.619078 0.785329i \(-0.287506\pi\)
−0.989654 + 0.143473i \(0.954173\pi\)
\(570\) 0 0
\(571\) 9.16309 15.8709i 0.383463 0.664178i −0.608092 0.793867i \(-0.708065\pi\)
0.991555 + 0.129689i \(0.0413980\pi\)
\(572\) 0 0
\(573\) 3.12176 + 0.187047i 0.130413 + 0.00781401i
\(574\) 0 0
\(575\) −4.62181 4.23129i −0.192743 0.176457i
\(576\) 0 0
\(577\) −2.68675 10.0271i −0.111851 0.417433i 0.887181 0.461421i \(-0.152660\pi\)
−0.999032 + 0.0439883i \(0.985994\pi\)
\(578\) 0 0
\(579\) −8.77820 2.92504i −0.364810 0.121560i
\(580\) 0 0
\(581\) 0.496798 + 11.4022i 0.0206107 + 0.473042i
\(582\) 0 0
\(583\) 7.00294 26.1353i 0.290032 1.08242i
\(584\) 0 0
\(585\) 18.6554 26.0624i 0.771306 1.07755i
\(586\) 0 0
\(587\) 16.5786 + 16.5786i 0.684270 + 0.684270i 0.960959 0.276689i \(-0.0892372\pi\)
−0.276689 + 0.960959i \(0.589237\pi\)
\(588\) 0 0
\(589\) 0.441244i 0.0181812i
\(590\) 0 0
\(591\) −7.43124 36.2951i −0.305680 1.49298i
\(592\) 0 0
\(593\) −13.4136 3.59418i −0.550832 0.147595i −0.0273412 0.999626i \(-0.508704\pi\)
−0.523491 + 0.852031i \(0.675371\pi\)
\(594\) 0 0
\(595\) −19.1531 + 21.8458i −0.785200 + 0.895592i
\(596\) 0 0
\(597\) 1.88660 + 3.77220i 0.0772133 + 0.154386i
\(598\) 0 0
\(599\) 1.15232 1.99588i 0.0470827 0.0815496i −0.841524 0.540220i \(-0.818341\pi\)
0.888606 + 0.458671i \(0.151674\pi\)
\(600\) 0 0
\(601\) −7.55165 −0.308038 −0.154019 0.988068i \(-0.549222\pi\)
−0.154019 + 0.988068i \(0.549222\pi\)
\(602\) 0 0
\(603\) −28.4635 + 22.3521i −1.15913 + 0.910249i
\(604\) 0 0
\(605\) 3.28661 + 11.2664i 0.133620 + 0.458045i
\(606\) 0 0
\(607\) −31.7660 8.51167i −1.28934 0.345478i −0.451932 0.892053i \(-0.649265\pi\)
−0.837411 + 0.546574i \(0.815932\pi\)
\(608\) 0 0
\(609\) −20.6779 + 5.18085i −0.837911 + 0.209939i
\(610\) 0 0
\(611\) −33.1246 + 19.1245i −1.34008 + 0.773695i
\(612\) 0 0
\(613\) 19.8867 5.32864i 0.803218 0.215222i 0.166222 0.986088i \(-0.446843\pi\)
0.636996 + 0.770867i \(0.280177\pi\)
\(614\) 0 0
\(615\) −5.07397 + 4.70413i −0.204602 + 0.189689i
\(616\) 0 0
\(617\) 21.0456 + 21.0456i 0.847265 + 0.847265i 0.989791 0.142526i \(-0.0455224\pi\)
−0.142526 + 0.989791i \(0.545522\pi\)
\(618\) 0 0
\(619\) 24.1068 + 13.9181i 0.968933 + 0.559414i 0.898911 0.438132i \(-0.144360\pi\)
0.0700222 + 0.997545i \(0.477693\pi\)
\(620\) 0 0
\(621\) 2.78159 5.88803i 0.111621 0.236278i
\(622\) 0 0
\(623\) −13.3348 2.95751i −0.534246 0.118490i
\(624\) 0 0
\(625\) 14.3578 + 20.4659i 0.574312 + 0.818637i
\(626\) 0 0
\(627\) 0.605451 + 0.399660i 0.0241794 + 0.0159609i
\(628\) 0 0
\(629\) −55.9118 −2.22935
\(630\) 0 0
\(631\) 43.7136 1.74021 0.870105 0.492867i \(-0.164051\pi\)
0.870105 + 0.492867i \(0.164051\pi\)
\(632\) 0 0
\(633\) 19.9597 + 13.1754i 0.793326 + 0.523677i
\(634\) 0 0
\(635\) 39.7761 24.1489i 1.57847 0.958321i
\(636\) 0 0
\(637\) 21.5028 25.6167i 0.851974 1.01497i
\(638\) 0 0
\(639\) 44.1203 18.8573i 1.74537 0.745984i
\(640\) 0 0
\(641\) 3.97235 + 2.29344i 0.156898 + 0.0905854i 0.576394 0.817172i \(-0.304460\pi\)
−0.419495 + 0.907758i \(0.637793\pi\)
\(642\) 0 0
\(643\) 18.3311 + 18.3311i 0.722906 + 0.722906i 0.969196 0.246290i \(-0.0792115\pi\)
−0.246290 + 0.969196i \(0.579212\pi\)
\(644\) 0 0
\(645\) −0.509426 + 13.4688i −0.0200586 + 0.530333i
\(646\) 0 0
\(647\) −42.1467 + 11.2932i −1.65696 + 0.443980i −0.961549 0.274635i \(-0.911443\pi\)
−0.695408 + 0.718615i \(0.744776\pi\)
\(648\) 0 0
\(649\) 8.58210 4.95488i 0.336877 0.194496i
\(650\) 0 0
\(651\) 3.17845 11.1329i 0.124573 0.436332i
\(652\) 0 0
\(653\) −14.0659 3.76895i −0.550442 0.147490i −0.0271304 0.999632i \(-0.508637\pi\)
−0.523312 + 0.852141i \(0.675304\pi\)
\(654\) 0 0
\(655\) 28.9175 8.43572i 1.12990 0.329611i
\(656\) 0 0
\(657\) −10.0377 12.7822i −0.391610 0.498682i
\(658\) 0 0
\(659\) 19.4487 0.757615 0.378808 0.925475i \(-0.376334\pi\)
0.378808 + 0.925475i \(0.376334\pi\)
\(660\) 0 0
\(661\) −15.9402 + 27.6092i −0.620001 + 1.07387i 0.369483 + 0.929237i \(0.379535\pi\)
−0.989485 + 0.144637i \(0.953799\pi\)
\(662\) 0 0
\(663\) 18.1787 + 36.3478i 0.706001 + 1.41163i
\(664\) 0 0
\(665\) −0.456864 + 0.926742i −0.0177164 + 0.0359375i
\(666\) 0 0
\(667\) 5.63111 + 1.50885i 0.218037 + 0.0584229i
\(668\) 0 0
\(669\) −8.65245 42.2597i −0.334523 1.63385i
\(670\) 0 0
\(671\) 16.6834i 0.644055i
\(672\) 0 0
\(673\) 13.2491 + 13.2491i 0.510715 + 0.510715i 0.914745 0.404031i \(-0.132391\pi\)
−0.404031 + 0.914745i \(0.632391\pi\)
\(674\) 0 0
\(675\) −15.9098 + 20.5397i −0.612369 + 0.790572i
\(676\) 0 0
\(677\) 2.45368 9.15724i 0.0943024 0.351941i −0.902610 0.430459i \(-0.858352\pi\)
0.996913 + 0.0785172i \(0.0250185\pi\)
\(678\) 0 0
\(679\) 0.440955 + 10.1205i 0.0169223 + 0.388389i
\(680\) 0 0
\(681\) 10.7538 + 3.58333i 0.412086 + 0.137314i
\(682\) 0 0
\(683\) −0.869046 3.24333i −0.0332531 0.124102i 0.947304 0.320336i \(-0.103796\pi\)
−0.980557 + 0.196233i \(0.937129\pi\)
\(684\) 0 0
\(685\) 29.7325 0.655444i 1.13602 0.0250432i
\(686\) 0 0
\(687\) 41.6096 + 2.49314i 1.58751 + 0.0951192i
\(688\) 0 0
\(689\) 26.9526 46.6833i 1.02681 1.77849i
\(690\) 0 0
\(691\) 0.681637 + 1.18063i 0.0259307 + 0.0449133i 0.878700 0.477375i \(-0.158412\pi\)
−0.852769 + 0.522289i \(0.825078\pi\)
\(692\) 0 0
\(693\) 12.3970 + 14.4450i 0.470924 + 0.548719i
\(694\) 0 0
\(695\) −2.43313 + 9.95305i −0.0922938 + 0.377541i
\(696\) 0 0
\(697\) −2.27069 8.47434i −0.0860086 0.320989i
\(698\) 0 0
\(699\) −2.31177 2.60646i −0.0874391 0.0985852i
\(700\) 0 0
\(701\) 16.8670i 0.637057i −0.947913 0.318528i \(-0.896811\pi\)
0.947913 0.318528i \(-0.103189\pi\)
\(702\) 0 0
\(703\) −1.92068 + 0.514644i −0.0724397 + 0.0194102i
\(704\) 0 0
\(705\) 27.4177 14.4765i 1.03261 0.545216i
\(706\) 0 0
\(707\) 3.02533 0.953582i 0.113779 0.0358631i
\(708\) 0 0
\(709\) −6.24998 + 3.60843i −0.234723 + 0.135517i −0.612749 0.790278i \(-0.709936\pi\)
0.378026 + 0.925795i \(0.376603\pi\)
\(710\) 0 0
\(711\) 15.3073 + 11.4754i 0.574067 + 0.430362i
\(712\) 0 0
\(713\) −2.23888 + 2.23888i −0.0838468 + 0.0838468i
\(714\) 0 0
\(715\) −0.564691 25.6157i −0.0211183 0.957974i
\(716\) 0 0
\(717\) 14.6652 + 9.68055i 0.547683 + 0.361527i
\(718\) 0 0
\(719\) −12.0886 20.9381i −0.450829 0.780858i 0.547609 0.836734i \(-0.315538\pi\)
−0.998438 + 0.0558760i \(0.982205\pi\)
\(720\) 0 0
\(721\) 7.67888 + 12.0558i 0.285977 + 0.448983i
\(722\) 0 0
\(723\) 34.5758 17.2924i 1.28589 0.643113i
\(724\) 0 0
\(725\) −20.6356 10.7305i −0.766388 0.398519i
\(726\) 0 0
\(727\) 20.9329 20.9329i 0.776359 0.776359i −0.202850 0.979210i \(-0.565021\pi\)
0.979210 + 0.202850i \(0.0650205\pi\)
\(728\) 0 0
\(729\) −25.2780 9.48802i −0.936222 0.351408i
\(730\) 0 0
\(731\) −14.8007 8.54519i −0.547424 0.316055i
\(732\) 0 0
\(733\) 4.64570 17.3380i 0.171593 0.640393i −0.825514 0.564381i \(-0.809115\pi\)
0.997107 0.0760117i \(-0.0242186\pi\)
\(734\) 0 0
\(735\) −18.2027 + 20.0914i −0.671415 + 0.741081i
\(736\) 0 0
\(737\) −7.48801 + 27.9456i −0.275824 + 1.02939i
\(738\) 0 0
\(739\) −19.9418 11.5134i −0.733569 0.423526i 0.0861572 0.996282i \(-0.472541\pi\)
−0.819727 + 0.572755i \(0.805875\pi\)
\(740\) 0 0
\(741\) 0.959038 + 1.08129i 0.0352311 + 0.0397221i
\(742\) 0 0
\(743\) −14.5081 + 14.5081i −0.532251 + 0.532251i −0.921242 0.388990i \(-0.872824\pi\)
0.388990 + 0.921242i \(0.372824\pi\)
\(744\) 0 0
\(745\) 4.49302 + 15.4020i 0.164612 + 0.564285i
\(746\) 0 0
\(747\) −12.0108 4.81804i −0.439452 0.176283i
\(748\) 0 0
\(749\) 14.0940 + 22.1276i 0.514985 + 0.808526i
\(750\) 0 0
\(751\) 15.6139 + 27.0440i 0.569758 + 0.986850i 0.996590 + 0.0825187i \(0.0262964\pi\)
−0.426831 + 0.904331i \(0.640370\pi\)
\(752\) 0 0
\(753\) −4.17758 + 6.32868i −0.152239 + 0.230630i
\(754\) 0 0
\(755\) −6.65000 + 6.94980i −0.242018 + 0.252929i
\(756\) 0 0
\(757\) −8.35485 + 8.35485i −0.303662 + 0.303662i −0.842445 0.538783i \(-0.818884\pi\)
0.538783 + 0.842445i \(0.318884\pi\)
\(758\) 0 0
\(759\) −1.04419 5.09995i −0.0379016 0.185116i
\(760\) 0 0
\(761\) 16.1307 9.31307i 0.584738 0.337598i −0.178276 0.983980i \(-0.557052\pi\)
0.763014 + 0.646382i \(0.223719\pi\)
\(762\) 0 0
\(763\) −38.2980 + 12.0715i −1.38648 + 0.437018i
\(764\) 0 0
\(765\) −13.6116 29.9995i −0.492127 1.08464i
\(766\) 0 0
\(767\) 19.0701 5.10982i 0.688582 0.184505i
\(768\) 0 0
\(769\) 6.68431i 0.241042i −0.992711 0.120521i \(-0.961543\pi\)
0.992711 0.120521i \(-0.0384566\pi\)
\(770\) 0 0
\(771\) 3.20116 2.83924i 0.115287 0.102253i
\(772\) 0 0
\(773\) 0.503766 + 1.88008i 0.0181192 + 0.0676217i 0.974393 0.224850i \(-0.0721891\pi\)
−0.956274 + 0.292471i \(0.905522\pi\)
\(774\) 0 0
\(775\) 10.6510 6.79213i 0.382594 0.243981i
\(776\) 0 0
\(777\) −52.1672 0.850550i −1.87149 0.0305133i
\(778\) 0 0
\(779\) −0.156005 0.270209i −0.00558947 0.00968125i
\(780\) 0 0
\(781\) 19.1783 33.2178i 0.686254 1.18863i
\(782\) 0 0
\(783\) 4.31637 23.7828i 0.154255 0.849926i
\(784\) 0 0
\(785\) 0.438096 + 19.8731i 0.0156363 + 0.709300i
\(786\) 0 0
\(787\) 9.08117 + 33.8914i 0.323709 + 1.20810i 0.915604 + 0.402082i \(0.131713\pi\)
−0.591895 + 0.806015i \(0.701620\pi\)
\(788\) 0 0
\(789\) 0.166121 0.498539i 0.00591407 0.0177485i
\(790\) 0 0
\(791\) −1.84708 42.3929i −0.0656746 1.50732i
\(792\) 0 0
\(793\) −8.60255 + 32.1052i −0.305486 + 1.14009i
\(794\) 0 0
\(795\) −23.2625 + 36.9889i −0.825037 + 1.31186i
\(796\) 0 0
\(797\) 9.84195 + 9.84195i 0.348620 + 0.348620i 0.859595 0.510975i \(-0.170716\pi\)
−0.510975 + 0.859595i \(0.670716\pi\)
\(798\) 0 0
\(799\) 39.3135i 1.39081i
\(800\) 0 0
\(801\) 9.28997 12.3921i 0.328245 0.437852i
\(802\) 0 0
\(803\) −12.5496 3.36266i −0.442867 0.118666i
\(804\) 0 0
\(805\) 7.02044 2.38417i 0.247438 0.0840310i
\(806\) 0 0
\(807\) −26.6393 + 13.3231i −0.937746 + 0.468997i
\(808\) 0 0
\(809\) 3.50324 6.06779i 0.123167 0.213332i −0.797848 0.602859i \(-0.794028\pi\)
0.921015 + 0.389527i \(0.127361\pi\)
\(810\) 0 0
\(811\) −49.1753 −1.72678 −0.863390 0.504538i \(-0.831663\pi\)
−0.863390 + 0.504538i \(0.831663\pi\)
\(812\) 0 0
\(813\) 1.01945 17.0143i 0.0357538 0.596718i
\(814\) 0 0
\(815\) 6.36661 11.6110i 0.223013 0.406715i
\(816\) 0 0
\(817\) −0.587087 0.157310i −0.0205396 0.00550357i
\(818\) 0 0
\(819\) 16.4082 + 34.1900i 0.573350 + 1.19469i
\(820\) 0 0
\(821\) −5.37009 + 3.10042i −0.187417 + 0.108206i −0.590773 0.806838i \(-0.701177\pi\)
0.403356 + 0.915043i \(0.367844\pi\)
\(822\) 0 0
\(823\) −11.2275 + 3.00839i −0.391365 + 0.104866i −0.449135 0.893464i \(-0.648268\pi\)
0.0577701 + 0.998330i \(0.481601\pi\)
\(824\) 0 0
\(825\) −0.327383 + 20.7667i −0.0113980 + 0.723003i
\(826\) 0 0
\(827\) −30.1289 30.1289i −1.04769 1.04769i −0.998805 0.0488806i \(-0.984435\pi\)
−0.0488806 0.998805i \(-0.515565\pi\)
\(828\) 0 0
\(829\) 11.1605 + 6.44350i 0.387619 + 0.223792i 0.681128 0.732164i \(-0.261490\pi\)
−0.293509 + 0.955956i \(0.594823\pi\)
\(830\) 0 0
\(831\) −7.37347 + 22.1282i −0.255783 + 0.767619i
\(832\) 0 0
\(833\) −11.7515 32.3050i −0.407164 1.11930i
\(834\) 0 0
\(835\) −26.5039 43.6549i −0.917204 1.51074i
\(836\) 0 0
\(837\) 10.0142 + 8.48868i 0.346142 + 0.293412i
\(838\) 0 0
\(839\) −6.48689 −0.223952 −0.111976 0.993711i \(-0.535718\pi\)
−0.111976 + 0.993711i \(0.535718\pi\)
\(840\) 0 0
\(841\) −7.36110 −0.253831
\(842\) 0 0
\(843\) 23.3533 35.3782i 0.804329 1.21849i
\(844\) 0 0
\(845\) 5.21877 21.3481i 0.179531 0.734398i
\(846\) 0 0
\(847\) −13.5568 3.00676i −0.465818 0.103313i
\(848\) 0 0
\(849\) −11.1544 3.71683i −0.382818 0.127561i
\(850\) 0 0
\(851\) 12.3569 + 7.13424i 0.423588 + 0.244559i
\(852\) 0 0
\(853\) −14.9986 14.9986i −0.513542 0.513542i 0.402068 0.915610i \(-0.368292\pi\)
−0.915610 + 0.402068i \(0.868292\pi\)
\(854\) 0 0
\(855\) −0.743717 0.905253i −0.0254346 0.0309590i
\(856\) 0 0
\(857\) 20.5175 5.49764i 0.700864 0.187796i 0.109246 0.994015i \(-0.465156\pi\)
0.591618 + 0.806219i \(0.298490\pi\)
\(858\) 0 0
\(859\) 29.8226 17.2181i 1.01753 0.587474i 0.104146 0.994562i \(-0.466789\pi\)
0.913389 + 0.407088i \(0.133456\pi\)
\(860\) 0 0
\(861\) −1.98970 7.94133i −0.0678089 0.270640i
\(862\) 0 0
\(863\) 34.2780 + 9.18477i 1.16684 + 0.312653i 0.789694 0.613501i \(-0.210239\pi\)
0.377144 + 0.926155i \(0.376906\pi\)
\(864\) 0 0
\(865\) −50.4276 27.6508i −1.71459 0.940155i
\(866\) 0 0
\(867\) 12.3042 + 0.737237i 0.417874 + 0.0250379i
\(868\) 0 0
\(869\) 15.2935 0.518798
\(870\) 0 0
\(871\) −28.8195 + 49.9168i −0.976512 + 1.69137i
\(872\) 0 0
\(873\) −10.6607 4.27646i −0.360810 0.144736i
\(874\) 0 0
\(875\) −29.4027 + 3.23748i −0.993993 + 0.109447i
\(876\) 0 0
\(877\) −45.5843 12.2143i −1.53927 0.412446i −0.613241 0.789896i \(-0.710134\pi\)
−0.926030 + 0.377450i \(0.876801\pi\)
\(878\) 0 0
\(879\) −47.9845 + 9.82457i −1.61848 + 0.331375i
\(880\) 0 0
\(881\) 24.3717i 0.821105i −0.911837 0.410552i \(-0.865336\pi\)
0.911837 0.410552i \(-0.134664\pi\)
\(882\) 0 0
\(883\) 7.59214 + 7.59214i 0.255496 + 0.255496i 0.823219 0.567723i \(-0.192176\pi\)
−0.567723 + 0.823219i \(0.692176\pi\)
\(884\) 0 0
\(885\) −15.6038 + 3.55483i −0.524517 + 0.119494i
\(886\) 0 0
\(887\) −10.8301 + 40.4184i −0.363638 + 1.35712i 0.505619 + 0.862757i \(0.331264\pi\)
−0.869258 + 0.494360i \(0.835403\pi\)
\(888\) 0 0
\(889\) 2.39665 + 55.0062i 0.0803810 + 1.84485i
\(890\) 0 0
\(891\) −20.7181 + 6.05226i −0.694083 + 0.202758i
\(892\) 0 0
\(893\) 0.361864 + 1.35049i 0.0121093 + 0.0451925i
\(894\) 0 0
\(895\) 30.7922 32.1804i 1.02927 1.07567i
\(896\) 0 0
\(897\) 0.620304 10.3527i 0.0207113 0.345665i
\(898\) 0 0
\(899\) −5.87627 + 10.1780i −0.195984 + 0.339455i
\(900\) 0 0
\(901\) −27.7027 47.9825i −0.922911 1.59853i
\(902\) 0 0
\(903\) −13.6795 8.19804i −0.455224 0.272814i
\(904\) 0 0
\(905\) −35.7548 8.74064i −1.18853 0.290549i
\(906\) 0 0
\(907\) 8.06620 + 30.1035i 0.267834 + 0.999570i 0.960493 + 0.278304i \(0.0897724\pi\)
−0.692659 + 0.721265i \(0.743561\pi\)
\(908\) 0 0
\(909\) −0.429476 + 3.57104i −0.0142448 + 0.118444i
\(910\) 0 0
\(911\) 3.16590i 0.104891i −0.998624 0.0524454i \(-0.983298\pi\)
0.998624 0.0524454i \(-0.0167016\pi\)
\(912\) 0 0
\(913\) −9.99274 + 2.67755i −0.330711 + 0.0886138i
\(914\) 0 0
\(915\) 7.95190 25.7424i 0.262882 0.851018i
\(916\) 0 0
\(917\) −7.71743 + 34.7962i −0.254852 + 1.14907i
\(918\) 0 0
\(919\) 20.7512 11.9807i 0.684520 0.395208i −0.117036 0.993128i \(-0.537339\pi\)
0.801556 + 0.597920i \(0.204006\pi\)
\(920\) 0 0
\(921\) −13.4854 + 2.76107i −0.444360 + 0.0909803i
\(922\) 0 0
\(923\) 54.0346 54.0346i 1.77857 1.77857i
\(924\) 0 0
\(925\) −41.9880 38.4402i −1.38056 1.26391i
\(926\) 0 0
\(927\) −16.0441 + 2.29546i −0.526957 + 0.0753929i
\(928\) 0 0
\(929\) −2.59475 4.49423i −0.0851309 0.147451i 0.820316 0.571910i \(-0.193798\pi\)
−0.905447 + 0.424459i \(0.860464\pi\)
\(930\) 0 0
\(931\) −0.701040 1.00157i −0.0229757 0.0328252i
\(932\) 0 0
\(933\) 23.4235 + 46.8346i 0.766849 + 1.53329i
\(934\) 0 0
\(935\) −23.0914 12.6617i −0.755171 0.414080i
\(936\) 0 0
\(937\) −22.7185 + 22.7185i −0.742180 + 0.742180i −0.972997 0.230817i \(-0.925860\pi\)
0.230817 + 0.972997i \(0.425860\pi\)
\(938\) 0 0
\(939\) 13.9032 12.3313i 0.453713 0.402416i
\(940\) 0 0
\(941\) −14.4705 8.35457i −0.471726 0.272351i 0.245236 0.969463i \(-0.421135\pi\)
−0.716962 + 0.697112i \(0.754468\pi\)
\(942\) 0 0
\(943\) −0.579473 + 2.16262i −0.0188702 + 0.0704246i
\(944\) 0 0
\(945\) −12.2436 28.1974i −0.398284 0.917262i
\(946\) 0 0
\(947\) 7.67673 28.6499i 0.249460 0.930998i −0.721629 0.692280i \(-0.756606\pi\)
0.971089 0.238718i \(-0.0767271\pi\)
\(948\) 0 0
\(949\) −22.4163 12.9421i −0.727665 0.420117i
\(950\) 0 0
\(951\) −13.7771 + 12.2194i −0.446752 + 0.396242i
\(952\) 0 0
\(953\) −2.59553 + 2.59553i −0.0840774 + 0.0840774i −0.747895 0.663817i \(-0.768935\pi\)
0.663817 + 0.747895i \(0.268935\pi\)
\(954\) 0 0
\(955\) −3.87585 + 1.13065i −0.125420 + 0.0365870i
\(956\) 0 0
\(957\) −8.64321 17.2819i −0.279395 0.558643i
\(958\) 0 0
\(959\) −16.2510 + 31.2111i −0.524774 + 1.00786i
\(960\) 0 0
\(961\) 12.3085 + 21.3189i 0.397048 + 0.687707i
\(962\) 0 0
\(963\) −29.4478 + 4.21316i −0.948942 + 0.135767i
\(964\) 0 0
\(965\) 11.9423 0.263264i 0.384436 0.00847478i
\(966\) 0 0
\(967\) −25.3567 + 25.3567i −0.815418 + 0.815418i −0.985440 0.170022i \(-0.945616\pi\)
0.170022 + 0.985440i \(0.445616\pi\)
\(968\) 0 0
\(969\) 1.45535 0.297975i 0.0467525 0.00957233i
\(970\) 0 0
\(971\) 11.9980 6.92703i 0.385033 0.222299i −0.294973 0.955506i \(-0.595311\pi\)
0.680006 + 0.733207i \(0.261977\pi\)
\(972\) 0 0
\(973\) −8.93756 8.19125i −0.286525 0.262600i
\(974\) 0 0
\(975\) −11.3380 + 39.7941i −0.363108 + 1.27443i
\(976\) 0 0
\(977\) 12.0931 3.24035i 0.386894 0.103668i −0.0601286 0.998191i \(-0.519151\pi\)
0.447022 + 0.894523i \(0.352484\pi\)
\(978\) 0 0
\(979\) 12.3810i 0.395697i
\(980\) 0 0
\(981\) 5.43680 45.2063i 0.173584 1.44332i
\(982\) 0 0
\(983\) −0.827204 3.08717i −0.0263837 0.0984653i 0.951478 0.307715i \(-0.0995644\pi\)
−0.977862 + 0.209250i \(0.932898\pi\)
\(984\) 0 0
\(985\) 24.8215 + 40.8839i 0.790879 + 1.30267i
\(986\) 0 0
\(987\) −0.598050 + 36.6805i −0.0190362 + 1.16755i
\(988\) 0 0
\(989\) 2.18070 + 3.77708i 0.0693422 + 0.120104i
\(990\) 0 0
\(991\) −18.1183 + 31.3818i −0.575547 + 0.996877i 0.420435 + 0.907323i \(0.361878\pi\)
−0.995982 + 0.0895543i \(0.971456\pi\)
\(992\) 0 0
\(993\) 0.0429895 0.717480i 0.00136423 0.0227685i
\(994\) 0 0
\(995\) −3.93411 3.76440i −0.124720 0.119340i
\(996\) 0 0
\(997\) −3.42696 12.7896i −0.108533 0.405051i 0.890189 0.455591i \(-0.150572\pi\)
−0.998722 + 0.0505407i \(0.983906\pi\)
\(998\) 0 0
\(999\) 25.2700 53.4913i 0.799509 1.69239i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bv.c.53.11 yes 48
3.2 odd 2 inner 420.2.bv.c.53.9 48
5.2 odd 4 inner 420.2.bv.c.137.9 yes 48
7.2 even 3 inner 420.2.bv.c.233.2 yes 48
15.2 even 4 inner 420.2.bv.c.137.2 yes 48
21.2 odd 6 inner 420.2.bv.c.233.9 yes 48
35.2 odd 12 inner 420.2.bv.c.317.9 yes 48
105.2 even 12 inner 420.2.bv.c.317.11 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bv.c.53.9 48 3.2 odd 2 inner
420.2.bv.c.53.11 yes 48 1.1 even 1 trivial
420.2.bv.c.137.2 yes 48 15.2 even 4 inner
420.2.bv.c.137.9 yes 48 5.2 odd 4 inner
420.2.bv.c.233.2 yes 48 7.2 even 3 inner
420.2.bv.c.233.9 yes 48 21.2 odd 6 inner
420.2.bv.c.317.9 yes 48 35.2 odd 12 inner
420.2.bv.c.317.11 yes 48 105.2 even 12 inner