Properties

Label 420.2.bv.c.317.9
Level $420$
Weight $2$
Character 420.317
Analytic conductor $3.354$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(53,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 317.9
Character \(\chi\) \(=\) 420.317
Dual form 420.2.bv.c.53.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.774760 + 1.54911i) q^{3} +(2.17211 - 0.530994i) q^{5} +(1.78762 + 1.95049i) q^{7} +(-1.79949 + 2.40038i) q^{9} +(-2.07693 + 1.19911i) q^{11} +(3.37848 - 3.37848i) q^{13} +(2.50543 + 2.95344i) q^{15} +(-4.74353 - 1.27103i) q^{17} +(0.151250 + 0.0873244i) q^{19} +(-1.63655 + 4.28039i) q^{21} +(1.21053 - 0.324361i) q^{23} +(4.43609 - 2.30675i) q^{25} +(-5.11263 - 0.927900i) q^{27} +4.65176 q^{29} +(1.26323 + 2.18799i) q^{31} +(-3.46668 - 2.28836i) q^{33} +(4.91860 + 3.28746i) q^{35} +(-10.9974 + 2.94674i) q^{37} +(7.85116 + 2.61614i) q^{39} -1.78650i q^{41} +(-2.46081 + 2.46081i) q^{43} +(-2.63411 + 6.16940i) q^{45} +(2.07195 + 7.73263i) q^{47} +(-0.608831 + 6.97347i) q^{49} +(-1.70614 - 8.33300i) q^{51} +(2.92005 - 10.8978i) q^{53} +(-3.87458 + 3.70744i) q^{55} +(-0.0180926 + 0.301959i) q^{57} +(-2.06606 - 3.57852i) q^{59} +(3.47828 - 6.02455i) q^{61} +(-7.89873 + 0.781068i) q^{63} +(5.54447 - 9.13238i) q^{65} +(3.12231 - 11.6526i) q^{67} +(1.44034 + 1.62395i) q^{69} -15.9938i q^{71} +(-5.23288 - 1.40215i) q^{73} +(7.01032 + 5.08482i) q^{75} +(-6.05161 - 1.90747i) q^{77} +(5.52266 + 3.18851i) q^{79} +(-2.52364 - 8.63894i) q^{81} +(3.05025 + 3.05025i) q^{83} +(-10.9784 - 0.242015i) q^{85} +(3.60400 + 7.20610i) q^{87} +(2.58127 - 4.47089i) q^{89} +(12.6291 + 0.550258i) q^{91} +(-2.41073 + 3.65205i) q^{93} +(0.374900 + 0.109365i) q^{95} +(-2.70738 - 2.70738i) q^{97} +(0.859088 - 7.14321i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} - 8 q^{7} + 32 q^{13} - 16 q^{21} + 16 q^{25} - 32 q^{27} - 64 q^{31} + 34 q^{33} - 40 q^{37} - 24 q^{43} + 30 q^{45} + 36 q^{51} + 92 q^{57} - 18 q^{63} + 28 q^{67} - 8 q^{73} - 38 q^{75}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.774760 + 1.54911i 0.447308 + 0.894380i
\(4\) 0 0
\(5\) 2.17211 0.530994i 0.971395 0.237468i
\(6\) 0 0
\(7\) 1.78762 + 1.95049i 0.675657 + 0.737216i
\(8\) 0 0
\(9\) −1.79949 + 2.40038i −0.599831 + 0.800126i
\(10\) 0 0
\(11\) −2.07693 + 1.19911i −0.626217 + 0.361546i −0.779285 0.626669i \(-0.784418\pi\)
0.153069 + 0.988216i \(0.451084\pi\)
\(12\) 0 0
\(13\) 3.37848 3.37848i 0.937023 0.937023i −0.0611083 0.998131i \(-0.519464\pi\)
0.998131 + 0.0611083i \(0.0194635\pi\)
\(14\) 0 0
\(15\) 2.50543 + 2.95344i 0.646899 + 0.762575i
\(16\) 0 0
\(17\) −4.74353 1.27103i −1.15048 0.308269i −0.367320 0.930095i \(-0.619725\pi\)
−0.783156 + 0.621826i \(0.786391\pi\)
\(18\) 0 0
\(19\) 0.151250 + 0.0873244i 0.0346992 + 0.0200336i 0.517249 0.855835i \(-0.326956\pi\)
−0.482550 + 0.875868i \(0.660289\pi\)
\(20\) 0 0
\(21\) −1.63655 + 4.28039i −0.357125 + 0.934057i
\(22\) 0 0
\(23\) 1.21053 0.324361i 0.252413 0.0676339i −0.130394 0.991462i \(-0.541624\pi\)
0.382807 + 0.923828i \(0.374957\pi\)
\(24\) 0 0
\(25\) 4.43609 2.30675i 0.887218 0.461350i
\(26\) 0 0
\(27\) −5.11263 0.927900i −0.983926 0.178574i
\(28\) 0 0
\(29\) 4.65176 0.863811 0.431905 0.901919i \(-0.357841\pi\)
0.431905 + 0.901919i \(0.357841\pi\)
\(30\) 0 0
\(31\) 1.26323 + 2.18799i 0.226884 + 0.392974i 0.956883 0.290474i \(-0.0938130\pi\)
−0.729999 + 0.683448i \(0.760480\pi\)
\(32\) 0 0
\(33\) −3.46668 2.28836i −0.603471 0.398353i
\(34\) 0 0
\(35\) 4.91860 + 3.28746i 0.831395 + 0.555682i
\(36\) 0 0
\(37\) −10.9974 + 2.94674i −1.80796 + 0.484441i −0.995174 0.0981254i \(-0.968715\pi\)
−0.812783 + 0.582566i \(0.802049\pi\)
\(38\) 0 0
\(39\) 7.85116 + 2.61614i 1.25719 + 0.418917i
\(40\) 0 0
\(41\) 1.78650i 0.279005i −0.990222 0.139503i \(-0.955450\pi\)
0.990222 0.139503i \(-0.0445504\pi\)
\(42\) 0 0
\(43\) −2.46081 + 2.46081i −0.375271 + 0.375271i −0.869393 0.494122i \(-0.835490\pi\)
0.494122 + 0.869393i \(0.335490\pi\)
\(44\) 0 0
\(45\) −2.63411 + 6.16940i −0.392669 + 0.919680i
\(46\) 0 0
\(47\) 2.07195 + 7.73263i 0.302225 + 1.12792i 0.935308 + 0.353835i \(0.115123\pi\)
−0.633082 + 0.774084i \(0.718211\pi\)
\(48\) 0 0
\(49\) −0.608831 + 6.97347i −0.0869758 + 0.996210i
\(50\) 0 0
\(51\) −1.70614 8.33300i −0.238907 1.16685i
\(52\) 0 0
\(53\) 2.92005 10.8978i 0.401100 1.49692i −0.410037 0.912069i \(-0.634484\pi\)
0.811137 0.584856i \(-0.198849\pi\)
\(54\) 0 0
\(55\) −3.87458 + 3.70744i −0.522448 + 0.499911i
\(56\) 0 0
\(57\) −0.0180926 + 0.301959i −0.00239642 + 0.0399954i
\(58\) 0 0
\(59\) −2.06606 3.57852i −0.268978 0.465884i 0.699620 0.714515i \(-0.253353\pi\)
−0.968598 + 0.248631i \(0.920019\pi\)
\(60\) 0 0
\(61\) 3.47828 6.02455i 0.445348 0.771365i −0.552729 0.833361i \(-0.686413\pi\)
0.998076 + 0.0619964i \(0.0197467\pi\)
\(62\) 0 0
\(63\) −7.89873 + 0.781068i −0.995146 + 0.0984053i
\(64\) 0 0
\(65\) 5.54447 9.13238i 0.687707 1.13273i
\(66\) 0 0
\(67\) 3.12231 11.6526i 0.381451 1.42359i −0.462235 0.886757i \(-0.652953\pi\)
0.843686 0.536837i \(-0.180381\pi\)
\(68\) 0 0
\(69\) 1.44034 + 1.62395i 0.173397 + 0.195500i
\(70\) 0 0
\(71\) 15.9938i 1.89811i −0.315111 0.949055i \(-0.602042\pi\)
0.315111 0.949055i \(-0.397958\pi\)
\(72\) 0 0
\(73\) −5.23288 1.40215i −0.612462 0.164109i −0.0607633 0.998152i \(-0.519353\pi\)
−0.551699 + 0.834043i \(0.686020\pi\)
\(74\) 0 0
\(75\) 7.01032 + 5.08482i 0.809482 + 0.587145i
\(76\) 0 0
\(77\) −6.05161 1.90747i −0.689645 0.217376i
\(78\) 0 0
\(79\) 5.52266 + 3.18851i 0.621348 + 0.358735i 0.777394 0.629014i \(-0.216541\pi\)
−0.156046 + 0.987750i \(0.549875\pi\)
\(80\) 0 0
\(81\) −2.52364 8.63894i −0.280405 0.959882i
\(82\) 0 0
\(83\) 3.05025 + 3.05025i 0.334808 + 0.334808i 0.854409 0.519601i \(-0.173919\pi\)
−0.519601 + 0.854409i \(0.673919\pi\)
\(84\) 0 0
\(85\) −10.9784 0.242015i −1.19077 0.0262502i
\(86\) 0 0
\(87\) 3.60400 + 7.20610i 0.386389 + 0.772575i
\(88\) 0 0
\(89\) 2.58127 4.47089i 0.273614 0.473914i −0.696170 0.717877i \(-0.745114\pi\)
0.969785 + 0.243963i \(0.0784475\pi\)
\(90\) 0 0
\(91\) 12.6291 + 0.550258i 1.32389 + 0.0576827i
\(92\) 0 0
\(93\) −2.41073 + 3.65205i −0.249981 + 0.378700i
\(94\) 0 0
\(95\) 0.374900 + 0.109365i 0.0384640 + 0.0112206i
\(96\) 0 0
\(97\) −2.70738 2.70738i −0.274893 0.274893i 0.556173 0.831066i \(-0.312269\pi\)
−0.831066 + 0.556173i \(0.812269\pi\)
\(98\) 0 0
\(99\) 0.859088 7.14321i 0.0863416 0.717919i
\(100\) 0 0
\(101\) −1.03830 + 0.599462i −0.103315 + 0.0596487i −0.550767 0.834659i \(-0.685665\pi\)
0.447452 + 0.894308i \(0.352331\pi\)
\(102\) 0 0
\(103\) −1.39827 5.21841i −0.137775 0.514185i −0.999971 0.00760935i \(-0.997578\pi\)
0.862196 0.506575i \(-0.169089\pi\)
\(104\) 0 0
\(105\) −1.28191 + 10.1665i −0.125101 + 0.992144i
\(106\) 0 0
\(107\) 2.56642 + 9.57801i 0.248105 + 0.925941i 0.971797 + 0.235818i \(0.0757769\pi\)
−0.723692 + 0.690123i \(0.757556\pi\)
\(108\) 0 0
\(109\) −13.1440 + 7.58867i −1.25896 + 0.726863i −0.972873 0.231340i \(-0.925689\pi\)
−0.286090 + 0.958203i \(0.592356\pi\)
\(110\) 0 0
\(111\) −13.0852 14.7531i −1.24199 1.40031i
\(112\) 0 0
\(113\) −11.3407 11.3407i −1.06685 1.06685i −0.997600 0.0692464i \(-0.977941\pi\)
−0.0692464 0.997600i \(-0.522059\pi\)
\(114\) 0 0
\(115\) 2.45717 1.34733i 0.229132 0.125639i
\(116\) 0 0
\(117\) 2.03008 + 14.1892i 0.187681 + 1.31179i
\(118\) 0 0
\(119\) −6.00051 11.5243i −0.550066 1.05643i
\(120\) 0 0
\(121\) −2.62425 + 4.54534i −0.238569 + 0.413213i
\(122\) 0 0
\(123\) 2.76750 1.38411i 0.249537 0.124801i
\(124\) 0 0
\(125\) 8.41079 7.36605i 0.752284 0.658839i
\(126\) 0 0
\(127\) −14.7150 14.7150i −1.30574 1.30574i −0.924457 0.381287i \(-0.875481\pi\)
−0.381287 0.924457i \(-0.624519\pi\)
\(128\) 0 0
\(129\) −5.71861 1.90554i −0.503496 0.167773i
\(130\) 0 0
\(131\) 11.6665 + 6.73566i 1.01931 + 0.588497i 0.913903 0.405932i \(-0.133053\pi\)
0.105404 + 0.994429i \(0.466386\pi\)
\(132\) 0 0
\(133\) 0.100053 + 0.451115i 0.00867565 + 0.0391166i
\(134\) 0 0
\(135\) −11.5979 + 0.699280i −0.998187 + 0.0601845i
\(136\) 0 0
\(137\) 12.8468 + 3.44229i 1.09758 + 0.294095i 0.761777 0.647839i \(-0.224327\pi\)
0.335799 + 0.941934i \(0.390994\pi\)
\(138\) 0 0
\(139\) 4.58221i 0.388658i 0.980936 + 0.194329i \(0.0622530\pi\)
−0.980936 + 0.194329i \(0.937747\pi\)
\(140\) 0 0
\(141\) −10.3734 + 9.20061i −0.873601 + 0.774832i
\(142\) 0 0
\(143\) −2.96567 + 11.0680i −0.248002 + 0.925556i
\(144\) 0 0
\(145\) 10.1041 2.47006i 0.839102 0.205127i
\(146\) 0 0
\(147\) −11.2744 + 4.45962i −0.929896 + 0.367823i
\(148\) 0 0
\(149\) 3.58754 6.21379i 0.293902 0.509054i −0.680827 0.732445i \(-0.738379\pi\)
0.974729 + 0.223391i \(0.0717126\pi\)
\(150\) 0 0
\(151\) 2.15084 + 3.72536i 0.175033 + 0.303166i 0.940173 0.340698i \(-0.110663\pi\)
−0.765140 + 0.643864i \(0.777330\pi\)
\(152\) 0 0
\(153\) 11.5869 9.09907i 0.936745 0.735616i
\(154\) 0 0
\(155\) 3.90569 + 4.08177i 0.313712 + 0.327855i
\(156\) 0 0
\(157\) −2.30081 + 8.58676i −0.183625 + 0.685298i 0.811296 + 0.584636i \(0.198763\pi\)
−0.994921 + 0.100662i \(0.967904\pi\)
\(158\) 0 0
\(159\) 19.1442 3.91968i 1.51823 0.310851i
\(160\) 0 0
\(161\) 2.79663 + 1.78130i 0.220406 + 0.140386i
\(162\) 0 0
\(163\) −1.53272 5.72018i −0.120052 0.448039i 0.879563 0.475782i \(-0.157835\pi\)
−0.999615 + 0.0277426i \(0.991168\pi\)
\(164\) 0 0
\(165\) −8.74510 3.12978i −0.680805 0.243653i
\(166\) 0 0
\(167\) −16.1499 + 16.1499i −1.24972 + 1.24972i −0.293876 + 0.955844i \(0.594945\pi\)
−0.955844 + 0.293876i \(0.905055\pi\)
\(168\) 0 0
\(169\) 9.82831i 0.756024i
\(170\) 0 0
\(171\) −0.481785 + 0.205918i −0.0368431 + 0.0157470i
\(172\) 0 0
\(173\) −24.8433 + 6.65674i −1.88880 + 0.506102i −0.890064 + 0.455836i \(0.849340\pi\)
−0.998736 + 0.0502667i \(0.983993\pi\)
\(174\) 0 0
\(175\) 12.4293 + 4.52896i 0.939570 + 0.342357i
\(176\) 0 0
\(177\) 3.94283 5.97305i 0.296361 0.448962i
\(178\) 0 0
\(179\) 9.95927 + 17.2500i 0.744391 + 1.28932i 0.950479 + 0.310789i \(0.100593\pi\)
−0.206088 + 0.978533i \(0.566073\pi\)
\(180\) 0 0
\(181\) 16.4609 1.22353 0.611765 0.791040i \(-0.290460\pi\)
0.611765 + 0.791040i \(0.290460\pi\)
\(182\) 0 0
\(183\) 12.0275 + 0.720658i 0.889101 + 0.0532726i
\(184\) 0 0
\(185\) −22.3228 + 12.2402i −1.64120 + 0.899915i
\(186\) 0 0
\(187\) 11.3761 3.04821i 0.831900 0.222907i
\(188\) 0 0
\(189\) −7.32958 11.6309i −0.533149 0.846022i
\(190\) 0 0
\(191\) −1.56368 0.902790i −0.113144 0.0653236i 0.442360 0.896837i \(-0.354141\pi\)
−0.555504 + 0.831514i \(0.687475\pi\)
\(192\) 0 0
\(193\) −5.16003 1.38263i −0.371427 0.0995236i 0.0682768 0.997666i \(-0.478250\pi\)
−0.439704 + 0.898143i \(0.644917\pi\)
\(194\) 0 0
\(195\) 18.4427 + 1.51360i 1.32071 + 0.108391i
\(196\) 0 0
\(197\) 15.1248 15.1248i 1.07760 1.07760i 0.0808739 0.996724i \(-0.474229\pi\)
0.996724 0.0808739i \(-0.0257711\pi\)
\(198\) 0 0
\(199\) 2.10884 1.21754i 0.149491 0.0863090i −0.423388 0.905948i \(-0.639159\pi\)
0.572880 + 0.819639i \(0.305826\pi\)
\(200\) 0 0
\(201\) 20.4702 4.19117i 1.44386 0.295623i
\(202\) 0 0
\(203\) 8.31558 + 9.07322i 0.583640 + 0.636815i
\(204\) 0 0
\(205\) −0.948624 3.88048i −0.0662547 0.271024i
\(206\) 0 0
\(207\) −1.39976 + 3.48942i −0.0972897 + 0.242532i
\(208\) 0 0
\(209\) −0.418847 −0.0289723
\(210\) 0 0
\(211\) 13.8080 0.950581 0.475291 0.879829i \(-0.342343\pi\)
0.475291 + 0.879829i \(0.342343\pi\)
\(212\) 0 0
\(213\) 24.7761 12.3913i 1.69763 0.849039i
\(214\) 0 0
\(215\) −4.03847 + 6.65183i −0.275421 + 0.453651i
\(216\) 0 0
\(217\) −2.00946 + 6.37521i −0.136411 + 0.432778i
\(218\) 0 0
\(219\) −1.88214 9.19264i −0.127184 0.621181i
\(220\) 0 0
\(221\) −20.3201 + 11.7318i −1.36688 + 0.789167i
\(222\) 0 0
\(223\) −17.6103 + 17.6103i −1.17928 + 1.17928i −0.199347 + 0.979929i \(0.563882\pi\)
−0.979929 + 0.199347i \(0.936118\pi\)
\(224\) 0 0
\(225\) −2.44564 + 14.7993i −0.163043 + 0.986619i
\(226\) 0 0
\(227\) −6.32132 1.69379i −0.419561 0.112421i 0.0428611 0.999081i \(-0.486353\pi\)
−0.462422 + 0.886660i \(0.653019\pi\)
\(228\) 0 0
\(229\) 20.8421 + 12.0332i 1.37729 + 0.795177i 0.991832 0.127550i \(-0.0407115\pi\)
0.385454 + 0.922727i \(0.374045\pi\)
\(230\) 0 0
\(231\) −1.73367 10.8525i −0.114067 0.714039i
\(232\) 0 0
\(233\) 1.94292 0.520604i 0.127285 0.0341059i −0.194614 0.980880i \(-0.562345\pi\)
0.321899 + 0.946774i \(0.395679\pi\)
\(234\) 0 0
\(235\) 8.60648 + 15.6959i 0.561425 + 1.02389i
\(236\) 0 0
\(237\) −0.660622 + 11.0256i −0.0429120 + 0.716187i
\(238\) 0 0
\(239\) −10.1453 −0.656245 −0.328123 0.944635i \(-0.606416\pi\)
−0.328123 + 0.944635i \(0.606416\pi\)
\(240\) 0 0
\(241\) 11.1599 + 19.3295i 0.718871 + 1.24512i 0.961448 + 0.274988i \(0.0886740\pi\)
−0.242577 + 0.970132i \(0.577993\pi\)
\(242\) 0 0
\(243\) 11.4275 10.6025i 0.733072 0.680151i
\(244\) 0 0
\(245\) 2.38043 + 15.4704i 0.152080 + 0.988368i
\(246\) 0 0
\(247\) 0.806020 0.215973i 0.0512858 0.0137420i
\(248\) 0 0
\(249\) −2.36197 + 7.08839i −0.149684 + 0.449208i
\(250\) 0 0
\(251\) 4.37814i 0.276346i 0.990408 + 0.138173i \(0.0441230\pi\)
−0.990408 + 0.138173i \(0.955877\pi\)
\(252\) 0 0
\(253\) −2.12524 + 2.12524i −0.133613 + 0.133613i
\(254\) 0 0
\(255\) −8.13069 17.1942i −0.509163 1.07674i
\(256\) 0 0
\(257\) −0.639388 2.38623i −0.0398839 0.148849i 0.943112 0.332474i \(-0.107883\pi\)
−0.982996 + 0.183625i \(0.941217\pi\)
\(258\) 0 0
\(259\) −25.4067 16.1826i −1.57870 1.00554i
\(260\) 0 0
\(261\) −8.37082 + 11.1660i −0.518141 + 0.691158i
\(262\) 0 0
\(263\) 0.0785232 0.293053i 0.00484195 0.0180704i −0.963463 0.267843i \(-0.913689\pi\)
0.968305 + 0.249773i \(0.0803558\pi\)
\(264\) 0 0
\(265\) 0.556004 25.2217i 0.0341551 1.54935i
\(266\) 0 0
\(267\) 8.92578 + 0.534809i 0.546249 + 0.0327298i
\(268\) 0 0
\(269\) 8.59823 + 14.8926i 0.524244 + 0.908017i 0.999602 + 0.0282241i \(0.00898522\pi\)
−0.475358 + 0.879792i \(0.657681\pi\)
\(270\) 0 0
\(271\) −4.92042 + 8.52242i −0.298894 + 0.517700i −0.975883 0.218293i \(-0.929951\pi\)
0.676989 + 0.735993i \(0.263284\pi\)
\(272\) 0 0
\(273\) 8.93215 + 19.9903i 0.540598 + 1.20987i
\(274\) 0 0
\(275\) −6.44737 + 10.1103i −0.388791 + 0.609676i
\(276\) 0 0
\(277\) 3.48534 13.0075i 0.209414 0.781543i −0.778645 0.627465i \(-0.784093\pi\)
0.988059 0.154078i \(-0.0492407\pi\)
\(278\) 0 0
\(279\) −7.52518 0.905026i −0.450521 0.0541825i
\(280\) 0 0
\(281\) 24.4744i 1.46002i −0.683436 0.730011i \(-0.739515\pi\)
0.683436 0.730011i \(-0.260485\pi\)
\(282\) 0 0
\(283\) −6.55682 1.75689i −0.389763 0.104437i 0.0586154 0.998281i \(-0.481331\pi\)
−0.448378 + 0.893844i \(0.647998\pi\)
\(284\) 0 0
\(285\) 0.121039 + 0.665494i 0.00716976 + 0.0394205i
\(286\) 0 0
\(287\) 3.48456 3.19359i 0.205687 0.188512i
\(288\) 0 0
\(289\) 6.16315 + 3.55830i 0.362538 + 0.209312i
\(290\) 0 0
\(291\) 2.09647 6.29161i 0.122897 0.368821i
\(292\) 0 0
\(293\) 19.9960 + 19.9960i 1.16818 + 1.16818i 0.982637 + 0.185541i \(0.0594037\pi\)
0.185541 + 0.982637i \(0.440596\pi\)
\(294\) 0 0
\(295\) −6.38787 6.67586i −0.371916 0.388684i
\(296\) 0 0
\(297\) 11.7312 4.20345i 0.680714 0.243909i
\(298\) 0 0
\(299\) 2.99391 5.18561i 0.173142 0.299892i
\(300\) 0 0
\(301\) −9.19879 0.400796i −0.530210 0.0231015i
\(302\) 0 0
\(303\) −1.73307 1.14400i −0.0995620 0.0657211i
\(304\) 0 0
\(305\) 4.35618 14.9329i 0.249434 0.855056i
\(306\) 0 0
\(307\) −5.61961 5.61961i −0.320728 0.320728i 0.528318 0.849046i \(-0.322823\pi\)
−0.849046 + 0.528318i \(0.822823\pi\)
\(308\) 0 0
\(309\) 7.00057 6.20908i 0.398249 0.353222i
\(310\) 0 0
\(311\) −26.1827 + 15.1166i −1.48468 + 0.857183i −0.999848 0.0174217i \(-0.994454\pi\)
−0.484836 + 0.874605i \(0.661121\pi\)
\(312\) 0 0
\(313\) 2.77697 + 10.3638i 0.156964 + 0.585796i 0.998929 + 0.0462649i \(0.0147318\pi\)
−0.841966 + 0.539531i \(0.818602\pi\)
\(314\) 0 0
\(315\) −16.7421 + 5.89074i −0.943313 + 0.331906i
\(316\) 0 0
\(317\) 2.75178 + 10.2698i 0.154555 + 0.576808i 0.999143 + 0.0413908i \(0.0131789\pi\)
−0.844588 + 0.535417i \(0.820154\pi\)
\(318\) 0 0
\(319\) −9.66136 + 5.57799i −0.540933 + 0.312308i
\(320\) 0 0
\(321\) −12.8490 + 11.3963i −0.717164 + 0.636081i
\(322\) 0 0
\(323\) −0.606469 0.606469i −0.0337448 0.0337448i
\(324\) 0 0
\(325\) 7.19394 22.7806i 0.399048 1.26364i
\(326\) 0 0
\(327\) −21.9391 14.4821i −1.21324 0.800860i
\(328\) 0 0
\(329\) −11.3786 + 17.8643i −0.627320 + 0.984892i
\(330\) 0 0
\(331\) −0.207490 + 0.359384i −0.0114047 + 0.0197535i −0.871671 0.490091i \(-0.836964\pi\)
0.860267 + 0.509844i \(0.170297\pi\)
\(332\) 0 0
\(333\) 12.7164 31.7005i 0.696856 1.73718i
\(334\) 0 0
\(335\) 0.594516 26.9686i 0.0324819 1.47345i
\(336\) 0 0
\(337\) 12.7807 + 12.7807i 0.696210 + 0.696210i 0.963591 0.267381i \(-0.0861582\pi\)
−0.267381 + 0.963591i \(0.586158\pi\)
\(338\) 0 0
\(339\) 8.78171 26.3544i 0.476957 1.43137i
\(340\) 0 0
\(341\) −5.24729 3.02952i −0.284156 0.164058i
\(342\) 0 0
\(343\) −14.6901 + 11.2784i −0.793188 + 0.608976i
\(344\) 0 0
\(345\) 3.99088 + 2.76257i 0.214862 + 0.148732i
\(346\) 0 0
\(347\) −31.3558 8.40176i −1.68327 0.451030i −0.714629 0.699504i \(-0.753404\pi\)
−0.968639 + 0.248473i \(0.920071\pi\)
\(348\) 0 0
\(349\) 13.1679i 0.704860i 0.935838 + 0.352430i \(0.114645\pi\)
−0.935838 + 0.352430i \(0.885355\pi\)
\(350\) 0 0
\(351\) −20.4078 + 14.1380i −1.08929 + 0.754633i
\(352\) 0 0
\(353\) 2.55758 9.54503i 0.136126 0.508031i −0.863864 0.503725i \(-0.831963\pi\)
0.999991 0.00430620i \(-0.00137071\pi\)
\(354\) 0 0
\(355\) −8.49259 34.7401i −0.450740 1.84381i
\(356\) 0 0
\(357\) 13.2035 18.2240i 0.698804 0.964519i
\(358\) 0 0
\(359\) −5.54047 + 9.59637i −0.292415 + 0.506477i −0.974380 0.224907i \(-0.927792\pi\)
0.681966 + 0.731384i \(0.261125\pi\)
\(360\) 0 0
\(361\) −9.48475 16.4281i −0.499197 0.864635i
\(362\) 0 0
\(363\) −9.07441 0.543715i −0.476283 0.0285376i
\(364\) 0 0
\(365\) −12.1109 0.266981i −0.633913 0.0139744i
\(366\) 0 0
\(367\) −2.03172 + 7.58247i −0.106055 + 0.395802i −0.998463 0.0554277i \(-0.982348\pi\)
0.892408 + 0.451230i \(0.149014\pi\)
\(368\) 0 0
\(369\) 4.28829 + 3.21481i 0.223239 + 0.167356i
\(370\) 0 0
\(371\) 26.4760 13.7855i 1.37456 0.715710i
\(372\) 0 0
\(373\) −2.82512 10.5435i −0.146279 0.545921i −0.999695 0.0246907i \(-0.992140\pi\)
0.853416 0.521230i \(-0.174527\pi\)
\(374\) 0 0
\(375\) 17.9272 + 7.32233i 0.925755 + 0.378124i
\(376\) 0 0
\(377\) 15.7159 15.7159i 0.809410 0.809410i
\(378\) 0 0
\(379\) 16.7144i 0.858560i 0.903172 + 0.429280i \(0.141233\pi\)
−0.903172 + 0.429280i \(0.858767\pi\)
\(380\) 0 0
\(381\) 11.3946 34.1957i 0.583762 1.75190i
\(382\) 0 0
\(383\) −12.3453 + 3.30792i −0.630817 + 0.169027i −0.560040 0.828465i \(-0.689214\pi\)
−0.0707764 + 0.997492i \(0.522548\pi\)
\(384\) 0 0
\(385\) −14.1576 0.929847i −0.721538 0.0473894i
\(386\) 0 0
\(387\) −1.47867 10.3351i −0.0751648 0.525363i
\(388\) 0 0
\(389\) 17.5206 + 30.3465i 0.888327 + 1.53863i 0.841852 + 0.539709i \(0.181466\pi\)
0.0464754 + 0.998919i \(0.485201\pi\)
\(390\) 0 0
\(391\) −6.15447 −0.311245
\(392\) 0 0
\(393\) −1.39555 + 23.2912i −0.0703962 + 1.17489i
\(394\) 0 0
\(395\) 13.6889 + 3.99328i 0.688763 + 0.200924i
\(396\) 0 0
\(397\) 1.97792 0.529982i 0.0992690 0.0265990i −0.208843 0.977949i \(-0.566970\pi\)
0.308112 + 0.951350i \(0.400303\pi\)
\(398\) 0 0
\(399\) −0.621311 + 0.504498i −0.0311044 + 0.0252565i
\(400\) 0 0
\(401\) 13.0417 + 7.52965i 0.651273 + 0.376013i 0.788944 0.614465i \(-0.210628\pi\)
−0.137671 + 0.990478i \(0.543962\pi\)
\(402\) 0 0
\(403\) 11.6599 + 3.12426i 0.580820 + 0.155630i
\(404\) 0 0
\(405\) −10.0688 17.4247i −0.500325 0.865838i
\(406\) 0 0
\(407\) 19.3073 19.3073i 0.957025 0.957025i
\(408\) 0 0
\(409\) −8.10578 + 4.67987i −0.400805 + 0.231405i −0.686831 0.726817i \(-0.740999\pi\)
0.286026 + 0.958222i \(0.407666\pi\)
\(410\) 0 0
\(411\) 4.62070 + 22.5681i 0.227922 + 1.11320i
\(412\) 0 0
\(413\) 3.28654 10.4269i 0.161720 0.513073i
\(414\) 0 0
\(415\) 8.24513 + 5.00580i 0.404738 + 0.245725i
\(416\) 0 0
\(417\) −7.09836 + 3.55011i −0.347608 + 0.173850i
\(418\) 0 0
\(419\) −20.7118 −1.01184 −0.505919 0.862581i \(-0.668847\pi\)
−0.505919 + 0.862581i \(0.668847\pi\)
\(420\) 0 0
\(421\) 18.3198 0.892851 0.446426 0.894821i \(-0.352697\pi\)
0.446426 + 0.894821i \(0.352697\pi\)
\(422\) 0 0
\(423\) −22.2897 8.94135i −1.08376 0.434743i
\(424\) 0 0
\(425\) −23.9747 + 5.30376i −1.16294 + 0.257270i
\(426\) 0 0
\(427\) 17.9687 3.98526i 0.869565 0.192860i
\(428\) 0 0
\(429\) −19.4433 + 3.98092i −0.938732 + 0.192200i
\(430\) 0 0
\(431\) −0.725507 + 0.418872i −0.0349464 + 0.0201763i −0.517371 0.855761i \(-0.673089\pi\)
0.482425 + 0.875937i \(0.339756\pi\)
\(432\) 0 0
\(433\) 11.5356 11.5356i 0.554366 0.554366i −0.373332 0.927698i \(-0.621785\pi\)
0.927698 + 0.373332i \(0.121785\pi\)
\(434\) 0 0
\(435\) 11.6547 + 13.7387i 0.558798 + 0.658721i
\(436\) 0 0
\(437\) 0.211418 + 0.0566492i 0.0101135 + 0.00270990i
\(438\) 0 0
\(439\) −27.5755 15.9207i −1.31611 0.759855i −0.333008 0.942924i \(-0.608063\pi\)
−0.983100 + 0.183069i \(0.941397\pi\)
\(440\) 0 0
\(441\) −15.6434 14.0101i −0.744923 0.667150i
\(442\) 0 0
\(443\) 32.0596 8.59035i 1.52320 0.408140i 0.602405 0.798191i \(-0.294209\pi\)
0.920793 + 0.390051i \(0.127543\pi\)
\(444\) 0 0
\(445\) 3.23278 11.0819i 0.153248 0.525332i
\(446\) 0 0
\(447\) 12.4053 + 0.743295i 0.586752 + 0.0351566i
\(448\) 0 0
\(449\) −32.3879 −1.52848 −0.764239 0.644933i \(-0.776885\pi\)
−0.764239 + 0.644933i \(0.776885\pi\)
\(450\) 0 0
\(451\) 2.14222 + 3.71044i 0.100873 + 0.174718i
\(452\) 0 0
\(453\) −4.10462 + 6.21815i −0.192852 + 0.292154i
\(454\) 0 0
\(455\) 27.7240 5.51078i 1.29972 0.258350i
\(456\) 0 0
\(457\) 18.4000 4.93026i 0.860716 0.230628i 0.198647 0.980071i \(-0.436345\pi\)
0.662069 + 0.749443i \(0.269679\pi\)
\(458\) 0 0
\(459\) 23.0725 + 10.8998i 1.07693 + 0.508759i
\(460\) 0 0
\(461\) 24.9156i 1.16044i 0.814461 + 0.580218i \(0.197033\pi\)
−0.814461 + 0.580218i \(0.802967\pi\)
\(462\) 0 0
\(463\) −12.6420 + 12.6420i −0.587524 + 0.587524i −0.936960 0.349436i \(-0.886373\pi\)
0.349436 + 0.936960i \(0.386373\pi\)
\(464\) 0 0
\(465\) −3.29714 + 9.21273i −0.152901 + 0.427230i
\(466\) 0 0
\(467\) −3.14017 11.7193i −0.145310 0.542303i −0.999741 0.0227391i \(-0.992761\pi\)
0.854432 0.519563i \(-0.173905\pi\)
\(468\) 0 0
\(469\) 28.3098 14.7404i 1.30723 0.680649i
\(470\) 0 0
\(471\) −15.0844 + 3.08846i −0.695053 + 0.142309i
\(472\) 0 0
\(473\) 2.16013 8.06172i 0.0993229 0.370678i
\(474\) 0 0
\(475\) 0.872395 + 0.0384821i 0.0400282 + 0.00176568i
\(476\) 0 0
\(477\) 20.9042 + 26.6197i 0.957137 + 1.21883i
\(478\) 0 0
\(479\) −3.14571 5.44853i −0.143731 0.248950i 0.785168 0.619283i \(-0.212577\pi\)
−0.928899 + 0.370333i \(0.879243\pi\)
\(480\) 0 0
\(481\) −27.1989 + 47.1100i −1.24017 + 2.14803i
\(482\) 0 0
\(483\) −0.592709 + 5.71238i −0.0269692 + 0.259922i
\(484\) 0 0
\(485\) −7.31833 4.44312i −0.332308 0.201752i
\(486\) 0 0
\(487\) 5.64485 21.0669i 0.255793 0.954632i −0.711855 0.702326i \(-0.752145\pi\)
0.967648 0.252305i \(-0.0811887\pi\)
\(488\) 0 0
\(489\) 7.67371 6.80612i 0.347017 0.307783i
\(490\) 0 0
\(491\) 18.6876i 0.843358i 0.906745 + 0.421679i \(0.138559\pi\)
−0.906745 + 0.421679i \(0.861441\pi\)
\(492\) 0 0
\(493\) −22.0658 5.91251i −0.993793 0.266286i
\(494\) 0 0
\(495\) −1.92697 15.9720i −0.0866108 0.717887i
\(496\) 0 0
\(497\) 31.1957 28.5908i 1.39932 1.28247i
\(498\) 0 0
\(499\) −9.45427 5.45843i −0.423231 0.244353i 0.273228 0.961949i \(-0.411909\pi\)
−0.696459 + 0.717597i \(0.745242\pi\)
\(500\) 0 0
\(501\) −37.5304 12.5057i −1.67673 0.558715i
\(502\) 0 0
\(503\) −8.52544 8.52544i −0.380131 0.380131i 0.491018 0.871149i \(-0.336625\pi\)
−0.871149 + 0.491018i \(0.836625\pi\)
\(504\) 0 0
\(505\) −1.93698 + 1.85342i −0.0861946 + 0.0824763i
\(506\) 0 0
\(507\) 15.2251 7.61458i 0.676172 0.338175i
\(508\) 0 0
\(509\) 16.6925 28.9123i 0.739883 1.28151i −0.212665 0.977125i \(-0.568214\pi\)
0.952548 0.304389i \(-0.0984524\pi\)
\(510\) 0 0
\(511\) −6.61952 12.7132i −0.292831 0.562398i
\(512\) 0 0
\(513\) −0.692258 0.586802i −0.0305640 0.0259080i
\(514\) 0 0
\(515\) −5.80813 10.5925i −0.255937 0.466760i
\(516\) 0 0
\(517\) −13.5756 13.5756i −0.597054 0.597054i
\(518\) 0 0
\(519\) −29.5596 33.3276i −1.29752 1.46292i
\(520\) 0 0
\(521\) 14.3052 8.25910i 0.626722 0.361838i −0.152760 0.988263i \(-0.548816\pi\)
0.779481 + 0.626425i \(0.215483\pi\)
\(522\) 0 0
\(523\) 0.449698 + 1.67830i 0.0196639 + 0.0733868i 0.975061 0.221939i \(-0.0712385\pi\)
−0.955397 + 0.295326i \(0.904572\pi\)
\(524\) 0 0
\(525\) 2.61389 + 22.7633i 0.114079 + 0.993472i
\(526\) 0 0
\(527\) −3.21120 11.9844i −0.139882 0.522048i
\(528\) 0 0
\(529\) −18.5584 + 10.7147i −0.806887 + 0.465857i
\(530\) 0 0
\(531\) 12.3077 + 1.48020i 0.534107 + 0.0642352i
\(532\) 0 0
\(533\) −6.03568 6.03568i −0.261434 0.261434i
\(534\) 0 0
\(535\) 10.6604 + 19.4417i 0.460889 + 0.840538i
\(536\) 0 0
\(537\) −19.0061 + 28.7926i −0.820173 + 1.24249i
\(538\) 0 0
\(539\) −7.09749 15.2134i −0.305710 0.655289i
\(540\) 0 0
\(541\) −1.62294 + 2.81101i −0.0697756 + 0.120855i −0.898802 0.438354i \(-0.855562\pi\)
0.829027 + 0.559209i \(0.188895\pi\)
\(542\) 0 0
\(543\) 12.7532 + 25.4998i 0.547294 + 1.09430i
\(544\) 0 0
\(545\) −24.5205 + 23.4628i −1.05034 + 1.00503i
\(546\) 0 0
\(547\) 17.2003 + 17.2003i 0.735434 + 0.735434i 0.971691 0.236257i \(-0.0759207\pi\)
−0.236257 + 0.971691i \(0.575921\pi\)
\(548\) 0 0
\(549\) 8.20207 + 19.1903i 0.350056 + 0.819023i
\(550\) 0 0
\(551\) 0.703580 + 0.406212i 0.0299735 + 0.0173052i
\(552\) 0 0
\(553\) 3.65326 + 16.4717i 0.155352 + 0.700450i
\(554\) 0 0
\(555\) −36.2562 25.0973i −1.53899 1.06532i
\(556\) 0 0
\(557\) −19.2930 5.16955i −0.817472 0.219041i −0.174231 0.984705i \(-0.555744\pi\)
−0.643241 + 0.765664i \(0.722411\pi\)
\(558\) 0 0
\(559\) 16.6276i 0.703274i
\(560\) 0 0
\(561\) 13.5357 + 15.2612i 0.571479 + 0.644327i
\(562\) 0 0
\(563\) −9.69046 + 36.1653i −0.408404 + 1.52419i 0.389285 + 0.921117i \(0.372722\pi\)
−0.797690 + 0.603068i \(0.793945\pi\)
\(564\) 0 0
\(565\) −30.6551 18.6114i −1.28967 0.782988i
\(566\) 0 0
\(567\) 12.3389 20.3655i 0.518183 0.855270i
\(568\) 0 0
\(569\) 8.83961 15.3107i 0.370576 0.641856i −0.619078 0.785329i \(-0.712494\pi\)
0.989654 + 0.143473i \(0.0458270\pi\)
\(570\) 0 0
\(571\) 9.16309 + 15.8709i 0.383463 + 0.664178i 0.991555 0.129689i \(-0.0413980\pi\)
−0.608092 + 0.793867i \(0.708065\pi\)
\(572\) 0 0
\(573\) 0.187047 3.12176i 0.00781401 0.130413i
\(574\) 0 0
\(575\) 4.62181 4.23129i 0.192743 0.176457i
\(576\) 0 0
\(577\) −2.68675 + 10.0271i −0.111851 + 0.417433i −0.999032 0.0439883i \(-0.985994\pi\)
0.887181 + 0.461421i \(0.152660\pi\)
\(578\) 0 0
\(579\) −1.85594 9.06466i −0.0771303 0.376715i
\(580\) 0 0
\(581\) −0.496798 + 11.4022i −0.0206107 + 0.473042i
\(582\) 0 0
\(583\) 7.00294 + 26.1353i 0.290032 + 1.08242i
\(584\) 0 0
\(585\) 11.9439 + 29.7425i 0.493821 + 1.22970i
\(586\) 0 0
\(587\) −16.5786 + 16.5786i −0.684270 + 0.684270i −0.960959 0.276689i \(-0.910763\pi\)
0.276689 + 0.960959i \(0.410763\pi\)
\(588\) 0 0
\(589\) 0.441244i 0.0181812i
\(590\) 0 0
\(591\) 35.1481 + 11.7119i 1.44580 + 0.481764i
\(592\) 0 0
\(593\) 13.4136 3.59418i 0.550832 0.147595i 0.0273412 0.999626i \(-0.491296\pi\)
0.523491 + 0.852031i \(0.324629\pi\)
\(594\) 0 0
\(595\) −19.1531 21.8458i −0.785200 0.895592i
\(596\) 0 0
\(597\) 3.51994 + 2.32352i 0.144062 + 0.0950955i
\(598\) 0 0
\(599\) −1.15232 1.99588i −0.0470827 0.0815496i 0.841524 0.540220i \(-0.181659\pi\)
−0.888606 + 0.458671i \(0.848326\pi\)
\(600\) 0 0
\(601\) −7.55165 −0.308038 −0.154019 0.988068i \(-0.549222\pi\)
−0.154019 + 0.988068i \(0.549222\pi\)
\(602\) 0 0
\(603\) 22.3521 + 28.4635i 0.910249 + 1.15913i
\(604\) 0 0
\(605\) −3.28661 + 11.2664i −0.133620 + 0.458045i
\(606\) 0 0
\(607\) −31.7660 + 8.51167i −1.28934 + 0.345478i −0.837411 0.546574i \(-0.815932\pi\)
−0.451932 + 0.892053i \(0.649265\pi\)
\(608\) 0 0
\(609\) −7.61285 + 19.9113i −0.308488 + 0.806848i
\(610\) 0 0
\(611\) 33.1246 + 19.1245i 1.34008 + 0.773695i
\(612\) 0 0
\(613\) 19.8867 + 5.32864i 0.803218 + 0.215222i 0.636996 0.770867i \(-0.280177\pi\)
0.166222 + 0.986088i \(0.446843\pi\)
\(614\) 0 0
\(615\) 5.27634 4.47596i 0.212763 0.180488i
\(616\) 0 0
\(617\) −21.0456 + 21.0456i −0.847265 + 0.847265i −0.989791 0.142526i \(-0.954478\pi\)
0.142526 + 0.989791i \(0.454478\pi\)
\(618\) 0 0
\(619\) 24.1068 13.9181i 0.968933 0.559414i 0.0700222 0.997545i \(-0.477693\pi\)
0.898911 + 0.438132i \(0.144360\pi\)
\(620\) 0 0
\(621\) −6.48998 + 0.535086i −0.260434 + 0.0214723i
\(622\) 0 0
\(623\) 13.3348 2.95751i 0.534246 0.118490i
\(624\) 0 0
\(625\) 14.3578 20.4659i 0.574312 0.818637i
\(626\) 0 0
\(627\) −0.324506 0.648841i −0.0129595 0.0259122i
\(628\) 0 0
\(629\) 55.9118 2.22935
\(630\) 0 0
\(631\) 43.7136 1.74021 0.870105 0.492867i \(-0.164051\pi\)
0.870105 + 0.492867i \(0.164051\pi\)
\(632\) 0 0
\(633\) 10.6979 + 21.3901i 0.425202 + 0.850181i
\(634\) 0 0
\(635\) −39.7761 24.1489i −1.57847 0.958321i
\(636\) 0 0
\(637\) 21.5028 + 25.6167i 0.851974 + 1.01497i
\(638\) 0 0
\(639\) 38.3911 + 28.7807i 1.51873 + 1.13855i
\(640\) 0 0
\(641\) −3.97235 + 2.29344i −0.156898 + 0.0905854i −0.576394 0.817172i \(-0.695540\pi\)
0.419495 + 0.907758i \(0.362207\pi\)
\(642\) 0 0
\(643\) 18.3311 18.3311i 0.722906 0.722906i −0.246290 0.969196i \(-0.579212\pi\)
0.969196 + 0.246290i \(0.0792115\pi\)
\(644\) 0 0
\(645\) −13.4333 1.10247i −0.528934 0.0434099i
\(646\) 0 0
\(647\) 42.1467 + 11.2932i 1.65696 + 0.443980i 0.961549 0.274635i \(-0.0885569\pi\)
0.695408 + 0.718615i \(0.255224\pi\)
\(648\) 0 0
\(649\) 8.58210 + 4.95488i 0.336877 + 0.194496i
\(650\) 0 0
\(651\) −11.4328 + 1.82637i −0.448086 + 0.0715813i
\(652\) 0 0
\(653\) 14.0659 3.76895i 0.550442 0.147490i 0.0271304 0.999632i \(-0.491363\pi\)
0.523312 + 0.852141i \(0.324696\pi\)
\(654\) 0 0
\(655\) 28.9175 + 8.43572i 1.12990 + 0.329611i
\(656\) 0 0
\(657\) 12.7822 10.0377i 0.498682 0.391610i
\(658\) 0 0
\(659\) −19.4487 −0.757615 −0.378808 0.925475i \(-0.623666\pi\)
−0.378808 + 0.925475i \(0.623666\pi\)
\(660\) 0 0
\(661\) −15.9402 27.6092i −0.620001 1.07387i −0.989485 0.144637i \(-0.953799\pi\)
0.369483 0.929237i \(-0.379535\pi\)
\(662\) 0 0
\(663\) −33.9171 22.3887i −1.31723 0.869507i
\(664\) 0 0
\(665\) 0.456864 + 0.926742i 0.0177164 + 0.0359375i
\(666\) 0 0
\(667\) 5.63111 1.50885i 0.218037 0.0584229i
\(668\) 0 0
\(669\) −40.9242 13.6366i −1.58222 0.527222i
\(670\) 0 0
\(671\) 16.6834i 0.644055i
\(672\) 0 0
\(673\) 13.2491 13.2491i 0.510715 0.510715i −0.404031 0.914745i \(-0.632391\pi\)
0.914745 + 0.404031i \(0.132391\pi\)
\(674\) 0 0
\(675\) −24.8205 + 7.67732i −0.955343 + 0.295500i
\(676\) 0 0
\(677\) −2.45368 9.15724i −0.0943024 0.351941i 0.902610 0.430459i \(-0.141648\pi\)
−0.996913 + 0.0785172i \(0.974981\pi\)
\(678\) 0 0
\(679\) 0.440955 10.1205i 0.0169223 0.388389i
\(680\) 0 0
\(681\) −2.27363 11.1047i −0.0871257 0.425533i
\(682\) 0 0
\(683\) 0.869046 3.24333i 0.0332531 0.124102i −0.947304 0.320336i \(-0.896204\pi\)
0.980557 + 0.196233i \(0.0628710\pi\)
\(684\) 0 0
\(685\) 29.7325 + 0.655444i 1.13602 + 0.0250432i
\(686\) 0 0
\(687\) −2.49314 + 41.6096i −0.0951192 + 1.58751i
\(688\) 0 0
\(689\) −26.9526 46.6833i −1.02681 1.77849i
\(690\) 0 0
\(691\) 0.681637 1.18063i 0.0259307 0.0449133i −0.852769 0.522289i \(-0.825078\pi\)
0.878700 + 0.477375i \(0.158412\pi\)
\(692\) 0 0
\(693\) 15.4685 11.0937i 0.587599 0.421415i
\(694\) 0 0
\(695\) 2.43313 + 9.95305i 0.0922938 + 0.377541i
\(696\) 0 0
\(697\) −2.27069 + 8.47434i −0.0860086 + 0.320989i
\(698\) 0 0
\(699\) 2.31177 + 2.60646i 0.0874391 + 0.0985852i
\(700\) 0 0
\(701\) 16.8670i 0.637057i −0.947913 0.318528i \(-0.896811\pi\)
0.947913 0.318528i \(-0.103189\pi\)
\(702\) 0 0
\(703\) −1.92068 0.514644i −0.0724397 0.0194102i
\(704\) 0 0
\(705\) −17.6467 + 25.4929i −0.664615 + 0.960120i
\(706\) 0 0
\(707\) −3.02533 0.953582i −0.113779 0.0358631i
\(708\) 0 0
\(709\) −6.24998 3.60843i −0.234723 0.135517i 0.378026 0.925795i \(-0.376603\pi\)
−0.612749 + 0.790278i \(0.709936\pi\)
\(710\) 0 0
\(711\) −17.5916 + 7.51878i −0.659738 + 0.281976i
\(712\) 0 0
\(713\) 2.23888 + 2.23888i 0.0838468 + 0.0838468i
\(714\) 0 0
\(715\) −0.564691 + 25.6157i −0.0211183 + 0.957974i
\(716\) 0 0
\(717\) −7.86018 15.7162i −0.293544 0.586933i
\(718\) 0 0
\(719\) 12.0886 20.9381i 0.450829 0.780858i −0.547609 0.836734i \(-0.684462\pi\)
0.998438 + 0.0558760i \(0.0177952\pi\)
\(720\) 0 0
\(721\) 7.67888 12.0558i 0.285977 0.448983i
\(722\) 0 0
\(723\) −21.2973 + 32.2636i −0.792055 + 1.19990i
\(724\) 0 0
\(725\) 20.6356 10.7305i 0.766388 0.398519i
\(726\) 0 0
\(727\) 20.9329 + 20.9329i 0.776359 + 0.776359i 0.979210 0.202850i \(-0.0650205\pi\)
−0.202850 + 0.979210i \(0.565021\pi\)
\(728\) 0 0
\(729\) 25.2780 + 9.48802i 0.936222 + 0.351408i
\(730\) 0 0
\(731\) 14.8007 8.54519i 0.547424 0.316055i
\(732\) 0 0
\(733\) 4.64570 + 17.3380i 0.171593 + 0.640393i 0.997107 + 0.0760117i \(0.0242186\pi\)
−0.825514 + 0.564381i \(0.809115\pi\)
\(734\) 0 0
\(735\) −22.1211 + 15.6734i −0.815950 + 0.578122i
\(736\) 0 0
\(737\) 7.48801 + 27.9456i 0.275824 + 1.02939i
\(738\) 0 0
\(739\) −19.9418 + 11.5134i −0.733569 + 0.423526i −0.819727 0.572755i \(-0.805875\pi\)
0.0861572 + 0.996282i \(0.472541\pi\)
\(740\) 0 0
\(741\) 0.959038 + 1.08129i 0.0352311 + 0.0397221i
\(742\) 0 0
\(743\) 14.5081 + 14.5081i 0.532251 + 0.532251i 0.921242 0.388990i \(-0.127176\pi\)
−0.388990 + 0.921242i \(0.627176\pi\)
\(744\) 0 0
\(745\) 4.49302 15.4020i 0.164612 0.564285i
\(746\) 0 0
\(747\) −12.8107 + 1.83285i −0.468718 + 0.0670605i
\(748\) 0 0
\(749\) −14.0940 + 22.1276i −0.514985 + 0.808526i
\(750\) 0 0
\(751\) 15.6139 27.0440i 0.569758 0.986850i −0.426831 0.904331i \(-0.640370\pi\)
0.996590 0.0825187i \(-0.0262964\pi\)
\(752\) 0 0
\(753\) −6.78223 + 3.39201i −0.247158 + 0.123612i
\(754\) 0 0
\(755\) 6.65000 + 6.94980i 0.242018 + 0.252929i
\(756\) 0 0
\(757\) −8.35485 8.35485i −0.303662 0.303662i 0.538783 0.842445i \(-0.318884\pi\)
−0.842445 + 0.538783i \(0.818884\pi\)
\(758\) 0 0
\(759\) −4.93878 1.64568i −0.179266 0.0597345i
\(760\) 0 0
\(761\) −16.1307 9.31307i −0.584738 0.337598i 0.178276 0.983980i \(-0.442948\pi\)
−0.763014 + 0.646382i \(0.776281\pi\)
\(762\) 0 0
\(763\) −38.2980 12.0715i −1.38648 0.437018i
\(764\) 0 0
\(765\) 20.3364 25.9167i 0.735265 0.937021i
\(766\) 0 0
\(767\) −19.0701 5.10982i −0.688582 0.184505i
\(768\) 0 0
\(769\) 6.68431i 0.241042i 0.992711 + 0.120521i \(0.0384566\pi\)
−0.992711 + 0.120521i \(0.961543\pi\)
\(770\) 0 0
\(771\) 3.20116 2.83924i 0.115287 0.102253i
\(772\) 0 0
\(773\) −0.503766 + 1.88008i −0.0181192 + 0.0676217i −0.974393 0.224850i \(-0.927811\pi\)
0.956274 + 0.292471i \(0.0944776\pi\)
\(774\) 0 0
\(775\) 10.6510 + 6.79213i 0.382594 + 0.243981i
\(776\) 0 0
\(777\) 5.38461 51.8955i 0.193172 1.86174i
\(778\) 0 0
\(779\) 0.156005 0.270209i 0.00558947 0.00968125i
\(780\) 0 0
\(781\) 19.1783 + 33.2178i 0.686254 + 1.18863i
\(782\) 0 0
\(783\) −23.7828 4.31637i −0.849926 0.154255i
\(784\) 0 0
\(785\) −0.438096 + 19.8731i −0.0156363 + 0.709300i
\(786\) 0 0
\(787\) 9.08117 33.8914i 0.323709 1.20810i −0.591895 0.806015i \(-0.701620\pi\)
0.915604 0.402082i \(-0.131713\pi\)
\(788\) 0 0
\(789\) 0.514808 0.105404i 0.0183277 0.00375249i
\(790\) 0 0
\(791\) 1.84708 42.3929i 0.0656746 1.50732i
\(792\) 0 0
\(793\) −8.60255 32.1052i −0.305486 1.14009i
\(794\) 0 0
\(795\) 39.5019 18.6794i 1.40099 0.662491i
\(796\) 0 0
\(797\) −9.84195 + 9.84195i −0.348620 + 0.348620i −0.859595 0.510975i \(-0.829284\pi\)
0.510975 + 0.859595i \(0.329284\pi\)
\(798\) 0 0
\(799\) 39.3135i 1.39081i
\(800\) 0 0
\(801\) 6.08686 + 14.2414i 0.215069 + 0.503194i
\(802\) 0 0
\(803\) 12.5496 3.36266i 0.442867 0.118666i
\(804\) 0 0
\(805\) 7.02044 + 2.38417i 0.247438 + 0.0840310i
\(806\) 0 0
\(807\) −16.4087 + 24.8578i −0.577614 + 0.875036i
\(808\) 0 0
\(809\) −3.50324 6.06779i −0.123167 0.213332i 0.797848 0.602859i \(-0.205972\pi\)
−0.921015 + 0.389527i \(0.872639\pi\)
\(810\) 0 0
\(811\) −49.1753 −1.72678 −0.863390 0.504538i \(-0.831663\pi\)
−0.863390 + 0.504538i \(0.831663\pi\)
\(812\) 0 0
\(813\) −17.0143 1.01945i −0.596718 0.0357538i
\(814\) 0 0
\(815\) −6.36661 11.6110i −0.223013 0.406715i
\(816\) 0 0
\(817\) −0.587087 + 0.157310i −0.0205396 + 0.00550357i
\(818\) 0 0
\(819\) −24.0469 + 29.3246i −0.840267 + 1.02468i
\(820\) 0 0
\(821\) 5.37009 + 3.10042i 0.187417 + 0.108206i 0.590773 0.806838i \(-0.298823\pi\)
−0.403356 + 0.915043i \(0.632156\pi\)
\(822\) 0 0
\(823\) −11.2275 3.00839i −0.391365 0.104866i 0.0577701 0.998330i \(-0.481601\pi\)
−0.449135 + 0.893464i \(0.648268\pi\)
\(824\) 0 0
\(825\) −20.6572 2.15462i −0.719191 0.0750144i
\(826\) 0 0
\(827\) 30.1289 30.1289i 1.04769 1.04769i 0.0488806 0.998805i \(-0.484435\pi\)
0.998805 0.0488806i \(-0.0155654\pi\)
\(828\) 0 0
\(829\) 11.1605 6.44350i 0.387619 0.223792i −0.293509 0.955956i \(-0.594823\pi\)
0.681128 + 0.732164i \(0.261490\pi\)
\(830\) 0 0
\(831\) 22.8503 4.67848i 0.792669 0.162295i
\(832\) 0 0
\(833\) 11.7515 32.3050i 0.407164 1.11930i
\(834\) 0 0
\(835\) −26.5039 + 43.6549i −0.917204 + 1.51074i
\(836\) 0 0
\(837\) −4.42822 12.3585i −0.153062 0.427173i
\(838\) 0 0
\(839\) 6.48689 0.223952 0.111976 0.993711i \(-0.464282\pi\)
0.111976 + 0.993711i \(0.464282\pi\)
\(840\) 0 0
\(841\) −7.36110 −0.253831
\(842\) 0 0
\(843\) 37.9136 18.9618i 1.30581 0.653079i
\(844\) 0 0
\(845\) −5.21877 21.3481i −0.179531 0.734398i
\(846\) 0 0
\(847\) −13.5568 + 3.00676i −0.465818 + 0.103313i
\(848\) 0 0
\(849\) −2.35834 11.5184i −0.0809379 0.395311i
\(850\) 0 0
\(851\) −12.3569 + 7.13424i −0.423588 + 0.244559i
\(852\) 0 0
\(853\) −14.9986 + 14.9986i −0.513542 + 0.513542i −0.915610 0.402068i \(-0.868292\pi\)
0.402068 + 0.915610i \(0.368292\pi\)
\(854\) 0 0
\(855\) −0.937148 + 0.703101i −0.0320498 + 0.0240456i
\(856\) 0 0
\(857\) −20.5175 5.49764i −0.700864 0.187796i −0.109246 0.994015i \(-0.534844\pi\)
−0.591618 + 0.806219i \(0.701510\pi\)
\(858\) 0 0
\(859\) 29.8226 + 17.2181i 1.01753 + 0.587474i 0.913389 0.407088i \(-0.133456\pi\)
0.104146 + 0.994562i \(0.466789\pi\)
\(860\) 0 0
\(861\) 7.64693 + 2.92371i 0.260607 + 0.0996397i
\(862\) 0 0
\(863\) −34.2780 + 9.18477i −1.16684 + 0.312653i −0.789694 0.613501i \(-0.789761\pi\)
−0.377144 + 0.926155i \(0.623094\pi\)
\(864\) 0 0
\(865\) −50.4276 + 27.6508i −1.71459 + 0.940155i
\(866\) 0 0
\(867\) −0.737237 + 12.3042i −0.0250379 + 0.417874i
\(868\) 0 0
\(869\) −15.2935 −0.518798
\(870\) 0 0
\(871\) −28.8195 49.9168i −0.976512 1.69137i
\(872\) 0 0
\(873\) 11.3707 1.62683i 0.384839 0.0550597i
\(874\) 0 0
\(875\) 29.4027 + 3.23748i 0.993993 + 0.109447i
\(876\) 0 0
\(877\) −45.5843 + 12.2143i −1.53927 + 0.412446i −0.926030 0.377450i \(-0.876801\pi\)
−0.613241 + 0.789896i \(0.710134\pi\)
\(878\) 0 0
\(879\) −15.4839 + 46.4681i −0.522260 + 1.56733i
\(880\) 0 0
\(881\) 24.3717i 0.821105i −0.911837 0.410552i \(-0.865336\pi\)
0.911837 0.410552i \(-0.134664\pi\)
\(882\) 0 0
\(883\) 7.59214 7.59214i 0.255496 0.255496i −0.567723 0.823219i \(-0.692176\pi\)
0.823219 + 0.567723i \(0.192176\pi\)
\(884\) 0 0
\(885\) 5.39259 15.0677i 0.181270 0.506496i
\(886\) 0 0
\(887\) 10.8301 + 40.4184i 0.363638 + 1.35712i 0.869258 + 0.494360i \(0.164597\pi\)
−0.505619 + 0.862757i \(0.668736\pi\)
\(888\) 0 0
\(889\) 2.39665 55.0062i 0.0803810 1.84485i
\(890\) 0 0
\(891\) 15.6005 + 14.9163i 0.522636 + 0.499715i
\(892\) 0 0
\(893\) −0.361864 + 1.35049i −0.0121093 + 0.0451925i
\(894\) 0 0
\(895\) 30.7922 + 32.1804i 1.02927 + 1.07567i
\(896\) 0 0
\(897\) 10.3527 + 0.620304i 0.345665 + 0.0207113i
\(898\) 0 0
\(899\) 5.87627 + 10.1780i 0.195984 + 0.339455i
\(900\) 0 0
\(901\) −27.7027 + 47.9825i −0.922911 + 1.59853i
\(902\) 0 0
\(903\) −6.50598 14.5605i −0.216505 0.484542i
\(904\) 0 0
\(905\) 35.7548 8.74064i 1.18853 0.290549i
\(906\) 0 0
\(907\) 8.06620 30.1035i 0.267834 0.999570i −0.692659 0.721265i \(-0.743561\pi\)
0.960493 0.278304i \(-0.0897724\pi\)
\(908\) 0 0
\(909\) 0.429476 3.57104i 0.0142448 0.118444i
\(910\) 0 0
\(911\) 3.16590i 0.104891i −0.998624 0.0524454i \(-0.983298\pi\)
0.998624 0.0524454i \(-0.0167016\pi\)
\(912\) 0 0
\(913\) −9.99274 2.67755i −0.330711 0.0886138i
\(914\) 0 0
\(915\) 26.5077 4.82120i 0.876319 0.159384i
\(916\) 0 0
\(917\) 7.71743 + 34.7962i 0.254852 + 1.14907i
\(918\) 0 0
\(919\) 20.7512 + 11.9807i 0.684520 + 0.395208i 0.801556 0.597920i \(-0.204006\pi\)
−0.117036 + 0.993128i \(0.537339\pi\)
\(920\) 0 0
\(921\) 4.35155 13.0593i 0.143389 0.430317i
\(922\) 0 0
\(923\) −54.0346 54.0346i −1.77857 1.77857i
\(924\) 0 0
\(925\) −41.9880 + 38.4402i −1.38056 + 1.26391i
\(926\) 0 0
\(927\) 15.0423 + 6.03412i 0.494055 + 0.198186i
\(928\) 0 0
\(929\) 2.59475 4.49423i 0.0851309 0.147451i −0.820316 0.571910i \(-0.806202\pi\)
0.905447 + 0.424459i \(0.139536\pi\)
\(930\) 0 0
\(931\) −0.701040 + 1.00157i −0.0229757 + 0.0328252i
\(932\) 0 0
\(933\) −43.7026 28.8482i −1.43076 0.944448i
\(934\) 0 0
\(935\) 23.0914 12.6617i 0.755171 0.414080i
\(936\) 0 0
\(937\) −22.7185 22.7185i −0.742180 0.742180i 0.230817 0.972997i \(-0.425860\pi\)
−0.972997 + 0.230817i \(0.925860\pi\)
\(938\) 0 0
\(939\) −13.9032 + 12.3313i −0.453713 + 0.402416i
\(940\) 0 0
\(941\) 14.4705 8.35457i 0.471726 0.272351i −0.245236 0.969463i \(-0.578865\pi\)
0.716962 + 0.697112i \(0.245532\pi\)
\(942\) 0 0
\(943\) −0.579473 2.16262i −0.0188702 0.0704246i
\(944\) 0 0
\(945\) −22.0966 21.3715i −0.718801 0.695216i
\(946\) 0 0
\(947\) −7.67673 28.6499i −0.249460 0.930998i −0.971089 0.238718i \(-0.923273\pi\)
0.721629 0.692280i \(-0.243394\pi\)
\(948\) 0 0
\(949\) −22.4163 + 12.9421i −0.727665 + 0.420117i
\(950\) 0 0
\(951\) −13.7771 + 12.2194i −0.446752 + 0.396242i
\(952\) 0 0
\(953\) 2.59553 + 2.59553i 0.0840774 + 0.0840774i 0.747895 0.663817i \(-0.231065\pi\)
−0.663817 + 0.747895i \(0.731065\pi\)
\(954\) 0 0
\(955\) −3.87585 1.13065i −0.125420 0.0365870i
\(956\) 0 0
\(957\) −16.1262 10.6449i −0.521285 0.344102i
\(958\) 0 0
\(959\) 16.2510 + 31.2111i 0.524774 + 1.00786i
\(960\) 0 0
\(961\) 12.3085 21.3189i 0.397048 0.687707i
\(962\) 0 0
\(963\) −27.6091 11.0752i −0.889691 0.356893i
\(964\) 0 0
\(965\) −11.9423 0.263264i −0.384436 0.00847478i
\(966\) 0 0
\(967\) −25.3567 25.3567i −0.815418 0.815418i 0.170022 0.985440i \(-0.445616\pi\)
−0.985440 + 0.170022i \(0.945616\pi\)
\(968\) 0 0
\(969\) 0.469620 1.40936i 0.0150864 0.0452750i
\(970\) 0 0
\(971\) −11.9980 6.92703i −0.385033 0.222299i 0.294973 0.955506i \(-0.404689\pi\)
−0.680006 + 0.733207i \(0.738023\pi\)
\(972\) 0 0
\(973\) −8.93756 + 8.19125i −0.286525 + 0.262600i
\(974\) 0 0
\(975\) 40.8632 6.50527i 1.30867 0.208335i
\(976\) 0 0
\(977\) −12.0931 3.24035i −0.386894 0.103668i 0.0601286 0.998191i \(-0.480849\pi\)
−0.447022 + 0.894523i \(0.647516\pi\)
\(978\) 0 0
\(979\) 12.3810i 0.395697i
\(980\) 0 0
\(981\) 5.43680 45.2063i 0.173584 1.44332i
\(982\) 0 0
\(983\) 0.827204 3.08717i 0.0263837 0.0984653i −0.951478 0.307715i \(-0.900436\pi\)
0.977862 + 0.209250i \(0.0671022\pi\)
\(984\) 0 0
\(985\) 24.8215 40.8839i 0.790879 1.30267i
\(986\) 0 0
\(987\) −36.4895 3.78610i −1.16147 0.120513i
\(988\) 0 0
\(989\) −2.18070 + 3.77708i −0.0693422 + 0.120104i
\(990\) 0 0
\(991\) −18.1183 31.3818i −0.575547 0.996877i −0.995982 0.0895543i \(-0.971456\pi\)
0.420435 0.907323i \(-0.361878\pi\)
\(992\) 0 0
\(993\) −0.717480 0.0429895i −0.0227685 0.00136423i
\(994\) 0 0
\(995\) 3.93411 3.76440i 0.124720 0.119340i
\(996\) 0 0
\(997\) −3.42696 + 12.7896i −0.108533 + 0.405051i −0.998722 0.0505407i \(-0.983906\pi\)
0.890189 + 0.455591i \(0.150572\pi\)
\(998\) 0 0
\(999\) 58.9598 4.86112i 1.86541 0.153799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bv.c.317.9 yes 48
3.2 odd 2 inner 420.2.bv.c.317.11 yes 48
5.3 odd 4 inner 420.2.bv.c.233.2 yes 48
7.4 even 3 inner 420.2.bv.c.137.9 yes 48
15.8 even 4 inner 420.2.bv.c.233.9 yes 48
21.11 odd 6 inner 420.2.bv.c.137.2 yes 48
35.18 odd 12 inner 420.2.bv.c.53.11 yes 48
105.53 even 12 inner 420.2.bv.c.53.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bv.c.53.9 48 105.53 even 12 inner
420.2.bv.c.53.11 yes 48 35.18 odd 12 inner
420.2.bv.c.137.2 yes 48 21.11 odd 6 inner
420.2.bv.c.137.9 yes 48 7.4 even 3 inner
420.2.bv.c.233.2 yes 48 5.3 odd 4 inner
420.2.bv.c.233.9 yes 48 15.8 even 4 inner
420.2.bv.c.317.9 yes 48 1.1 even 1 trivial
420.2.bv.c.317.11 yes 48 3.2 odd 2 inner