Properties

Label 4114.2.a.o.1.3
Level $4114$
Weight $2$
Character 4114.1
Self dual yes
Analytic conductor $32.850$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4114,2,Mod(1,4114)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4114.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4114, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4114 = 2 \cdot 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4114.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1,3,-3,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.8504553916\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.69963\) of defining polynomial
Character \(\chi\) \(=\) 4114.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.69963 q^{3} +1.00000 q^{4} -1.11126 q^{5} -1.69963 q^{6} +1.58836 q^{7} -1.00000 q^{8} -0.111264 q^{9} +1.11126 q^{10} +1.69963 q^{12} +0.300372 q^{13} -1.58836 q^{14} -1.88874 q^{15} +1.00000 q^{16} -1.00000 q^{17} +0.111264 q^{18} +6.98762 q^{19} -1.11126 q^{20} +2.69963 q^{21} -3.17673 q^{23} -1.69963 q^{24} -3.76509 q^{25} -0.300372 q^{26} -5.28799 q^{27} +1.58836 q^{28} -8.57598 q^{29} +1.88874 q^{30} -10.5760 q^{31} -1.00000 q^{32} +1.00000 q^{34} -1.76509 q^{35} -0.111264 q^{36} -4.18911 q^{37} -6.98762 q^{38} +0.510520 q^{39} +1.11126 q^{40} +4.28799 q^{41} -2.69963 q^{42} -2.06546 q^{43} +0.123644 q^{45} +3.17673 q^{46} +1.11126 q^{47} +1.69963 q^{48} -4.47710 q^{49} +3.76509 q^{50} -1.69963 q^{51} +0.300372 q^{52} -7.62178 q^{53} +5.28799 q^{54} -1.58836 q^{56} +11.8764 q^{57} +8.57598 q^{58} +7.97524 q^{59} -1.88874 q^{60} -6.35346 q^{61} +10.5760 q^{62} -0.176728 q^{63} +1.00000 q^{64} -0.333792 q^{65} +12.5760 q^{67} -1.00000 q^{68} -5.39926 q^{69} +1.76509 q^{70} +2.57598 q^{71} +0.111264 q^{72} +9.47710 q^{73} +4.18911 q^{74} -6.39926 q^{75} +6.98762 q^{76} -0.510520 q^{78} +2.52290 q^{79} -1.11126 q^{80} -8.65383 q^{81} -4.28799 q^{82} -8.18911 q^{83} +2.69963 q^{84} +1.11126 q^{85} +2.06546 q^{86} -14.5760 q^{87} -1.58836 q^{89} -0.123644 q^{90} +0.477100 q^{91} -3.17673 q^{92} -17.9752 q^{93} -1.11126 q^{94} -7.76509 q^{95} -1.69963 q^{96} +2.00000 q^{97} +4.47710 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} - 3 q^{5} + q^{6} - q^{7} - 3 q^{8} + 3 q^{10} - q^{12} + 7 q^{13} + q^{14} - 6 q^{15} + 3 q^{16} - 3 q^{17} + 3 q^{19} - 3 q^{20} + 2 q^{21} + 2 q^{23} + q^{24} + 6 q^{25}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.69963 0.981281 0.490640 0.871362i \(-0.336763\pi\)
0.490640 + 0.871362i \(0.336763\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.11126 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(6\) −1.69963 −0.693870
\(7\) 1.58836 0.600345 0.300173 0.953885i \(-0.402956\pi\)
0.300173 + 0.953885i \(0.402956\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.111264 −0.0370881
\(10\) 1.11126 0.351413
\(11\) 0 0
\(12\) 1.69963 0.490640
\(13\) 0.300372 0.0833082 0.0416541 0.999132i \(-0.486737\pi\)
0.0416541 + 0.999132i \(0.486737\pi\)
\(14\) −1.58836 −0.424508
\(15\) −1.88874 −0.487669
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0.111264 0.0262252
\(19\) 6.98762 1.60307 0.801535 0.597948i \(-0.204017\pi\)
0.801535 + 0.597948i \(0.204017\pi\)
\(20\) −1.11126 −0.248486
\(21\) 2.69963 0.589107
\(22\) 0 0
\(23\) −3.17673 −0.662394 −0.331197 0.943562i \(-0.607452\pi\)
−0.331197 + 0.943562i \(0.607452\pi\)
\(24\) −1.69963 −0.346935
\(25\) −3.76509 −0.753018
\(26\) −0.300372 −0.0589078
\(27\) −5.28799 −1.01767
\(28\) 1.58836 0.300173
\(29\) −8.57598 −1.59252 −0.796260 0.604954i \(-0.793191\pi\)
−0.796260 + 0.604954i \(0.793191\pi\)
\(30\) 1.88874 0.344834
\(31\) −10.5760 −1.89950 −0.949751 0.313005i \(-0.898664\pi\)
−0.949751 + 0.313005i \(0.898664\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) −1.76509 −0.298355
\(36\) −0.111264 −0.0185440
\(37\) −4.18911 −0.688685 −0.344343 0.938844i \(-0.611898\pi\)
−0.344343 + 0.938844i \(0.611898\pi\)
\(38\) −6.98762 −1.13354
\(39\) 0.510520 0.0817487
\(40\) 1.11126 0.175706
\(41\) 4.28799 0.669672 0.334836 0.942276i \(-0.391319\pi\)
0.334836 + 0.942276i \(0.391319\pi\)
\(42\) −2.69963 −0.416562
\(43\) −2.06546 −0.314980 −0.157490 0.987521i \(-0.550340\pi\)
−0.157490 + 0.987521i \(0.550340\pi\)
\(44\) 0 0
\(45\) 0.123644 0.0184317
\(46\) 3.17673 0.468383
\(47\) 1.11126 0.162095 0.0810473 0.996710i \(-0.474174\pi\)
0.0810473 + 0.996710i \(0.474174\pi\)
\(48\) 1.69963 0.245320
\(49\) −4.47710 −0.639586
\(50\) 3.76509 0.532464
\(51\) −1.69963 −0.237996
\(52\) 0.300372 0.0416541
\(53\) −7.62178 −1.04693 −0.523466 0.852046i \(-0.675361\pi\)
−0.523466 + 0.852046i \(0.675361\pi\)
\(54\) 5.28799 0.719605
\(55\) 0 0
\(56\) −1.58836 −0.212254
\(57\) 11.8764 1.57306
\(58\) 8.57598 1.12608
\(59\) 7.97524 1.03829 0.519144 0.854687i \(-0.326251\pi\)
0.519144 + 0.854687i \(0.326251\pi\)
\(60\) −1.88874 −0.243835
\(61\) −6.35346 −0.813477 −0.406738 0.913545i \(-0.633334\pi\)
−0.406738 + 0.913545i \(0.633334\pi\)
\(62\) 10.5760 1.34315
\(63\) −0.176728 −0.0222656
\(64\) 1.00000 0.125000
\(65\) −0.333792 −0.0414019
\(66\) 0 0
\(67\) 12.5760 1.53640 0.768201 0.640209i \(-0.221152\pi\)
0.768201 + 0.640209i \(0.221152\pi\)
\(68\) −1.00000 −0.121268
\(69\) −5.39926 −0.649994
\(70\) 1.76509 0.210969
\(71\) 2.57598 0.305713 0.152857 0.988248i \(-0.451153\pi\)
0.152857 + 0.988248i \(0.451153\pi\)
\(72\) 0.111264 0.0131126
\(73\) 9.47710 1.10921 0.554605 0.832114i \(-0.312869\pi\)
0.554605 + 0.832114i \(0.312869\pi\)
\(74\) 4.18911 0.486974
\(75\) −6.39926 −0.738922
\(76\) 6.98762 0.801535
\(77\) 0 0
\(78\) −0.510520 −0.0578051
\(79\) 2.52290 0.283848 0.141924 0.989878i \(-0.454671\pi\)
0.141924 + 0.989878i \(0.454671\pi\)
\(80\) −1.11126 −0.124243
\(81\) −8.65383 −0.961536
\(82\) −4.28799 −0.473530
\(83\) −8.18911 −0.898871 −0.449436 0.893313i \(-0.648375\pi\)
−0.449436 + 0.893313i \(0.648375\pi\)
\(84\) 2.69963 0.294554
\(85\) 1.11126 0.120534
\(86\) 2.06546 0.222725
\(87\) −14.5760 −1.56271
\(88\) 0 0
\(89\) −1.58836 −0.168366 −0.0841831 0.996450i \(-0.526828\pi\)
−0.0841831 + 0.996450i \(0.526828\pi\)
\(90\) −0.123644 −0.0130332
\(91\) 0.477100 0.0500137
\(92\) −3.17673 −0.331197
\(93\) −17.9752 −1.86395
\(94\) −1.11126 −0.114618
\(95\) −7.76509 −0.796682
\(96\) −1.69963 −0.173468
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 4.47710 0.452255
\(99\) 0 0
\(100\) −3.76509 −0.376509
\(101\) −6.86398 −0.682991 −0.341496 0.939883i \(-0.610933\pi\)
−0.341496 + 0.939883i \(0.610933\pi\)
\(102\) 1.69963 0.168288
\(103\) −0.522900 −0.0515229 −0.0257614 0.999668i \(-0.508201\pi\)
−0.0257614 + 0.999668i \(0.508201\pi\)
\(104\) −0.300372 −0.0294539
\(105\) −3.00000 −0.292770
\(106\) 7.62178 0.740293
\(107\) 0.667585 0.0645379 0.0322689 0.999479i \(-0.489727\pi\)
0.0322689 + 0.999479i \(0.489727\pi\)
\(108\) −5.28799 −0.508837
\(109\) 9.53018 0.912826 0.456413 0.889768i \(-0.349134\pi\)
0.456413 + 0.889768i \(0.349134\pi\)
\(110\) 0 0
\(111\) −7.11993 −0.675793
\(112\) 1.58836 0.150086
\(113\) −13.6218 −1.28143 −0.640715 0.767779i \(-0.721362\pi\)
−0.640715 + 0.767779i \(0.721362\pi\)
\(114\) −11.8764 −1.11232
\(115\) 3.53018 0.329191
\(116\) −8.57598 −0.796260
\(117\) −0.0334206 −0.00308974
\(118\) −7.97524 −0.734180
\(119\) −1.58836 −0.145605
\(120\) 1.88874 0.172417
\(121\) 0 0
\(122\) 6.35346 0.575215
\(123\) 7.28799 0.657136
\(124\) −10.5760 −0.949751
\(125\) 9.74033 0.871202
\(126\) 0.176728 0.0157442
\(127\) −3.84431 −0.341128 −0.170564 0.985347i \(-0.554559\pi\)
−0.170564 + 0.985347i \(0.554559\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.51052 −0.309084
\(130\) 0.333792 0.0292755
\(131\) −19.7280 −1.72364 −0.861820 0.507215i \(-0.830675\pi\)
−0.861820 + 0.507215i \(0.830675\pi\)
\(132\) 0 0
\(133\) 11.0989 0.962395
\(134\) −12.5760 −1.08640
\(135\) 5.87636 0.505756
\(136\) 1.00000 0.0857493
\(137\) −7.32141 −0.625511 −0.312755 0.949834i \(-0.601252\pi\)
−0.312755 + 0.949834i \(0.601252\pi\)
\(138\) 5.39926 0.459615
\(139\) 10.1309 0.859294 0.429647 0.902997i \(-0.358638\pi\)
0.429647 + 0.902997i \(0.358638\pi\)
\(140\) −1.76509 −0.149177
\(141\) 1.88874 0.159060
\(142\) −2.57598 −0.216172
\(143\) 0 0
\(144\) −0.111264 −0.00927201
\(145\) 9.53018 0.791439
\(146\) −9.47710 −0.784330
\(147\) −7.60940 −0.627613
\(148\) −4.18911 −0.344343
\(149\) −4.14468 −0.339546 −0.169773 0.985483i \(-0.554303\pi\)
−0.169773 + 0.985483i \(0.554303\pi\)
\(150\) 6.39926 0.522497
\(151\) 13.9752 1.13729 0.568644 0.822583i \(-0.307468\pi\)
0.568644 + 0.822583i \(0.307468\pi\)
\(152\) −6.98762 −0.566771
\(153\) 0.111264 0.00899517
\(154\) 0 0
\(155\) 11.7527 0.944001
\(156\) 0.510520 0.0408743
\(157\) −16.5760 −1.32291 −0.661454 0.749986i \(-0.730060\pi\)
−0.661454 + 0.749986i \(0.730060\pi\)
\(158\) −2.52290 −0.200711
\(159\) −12.9542 −1.02733
\(160\) 1.11126 0.0878531
\(161\) −5.04580 −0.397665
\(162\) 8.65383 0.679909
\(163\) 13.9098 1.08950 0.544749 0.838599i \(-0.316625\pi\)
0.544749 + 0.838599i \(0.316625\pi\)
\(164\) 4.28799 0.334836
\(165\) 0 0
\(166\) 8.18911 0.635598
\(167\) 13.5316 1.04710 0.523552 0.851994i \(-0.324607\pi\)
0.523552 + 0.851994i \(0.324607\pi\)
\(168\) −2.69963 −0.208281
\(169\) −12.9098 −0.993060
\(170\) −1.11126 −0.0852301
\(171\) −0.777472 −0.0594547
\(172\) −2.06546 −0.157490
\(173\) −15.2436 −1.15895 −0.579474 0.814991i \(-0.696742\pi\)
−0.579474 + 0.814991i \(0.696742\pi\)
\(174\) 14.5760 1.10500
\(175\) −5.98034 −0.452071
\(176\) 0 0
\(177\) 13.5549 1.01885
\(178\) 1.58836 0.119053
\(179\) −20.2225 −1.51150 −0.755751 0.654859i \(-0.772728\pi\)
−0.755751 + 0.654859i \(0.772728\pi\)
\(180\) 0.123644 0.00921587
\(181\) −11.0073 −0.818165 −0.409082 0.912497i \(-0.634151\pi\)
−0.409082 + 0.912497i \(0.634151\pi\)
\(182\) −0.477100 −0.0353650
\(183\) −10.7985 −0.798249
\(184\) 3.17673 0.234191
\(185\) 4.65521 0.342257
\(186\) 17.9752 1.31801
\(187\) 0 0
\(188\) 1.11126 0.0810473
\(189\) −8.39926 −0.610956
\(190\) 7.76509 0.563339
\(191\) −20.6291 −1.49267 −0.746334 0.665572i \(-0.768188\pi\)
−0.746334 + 0.665572i \(0.768188\pi\)
\(192\) 1.69963 0.122660
\(193\) 3.12364 0.224845 0.112422 0.993661i \(-0.464139\pi\)
0.112422 + 0.993661i \(0.464139\pi\)
\(194\) −2.00000 −0.143592
\(195\) −0.567323 −0.0406268
\(196\) −4.47710 −0.319793
\(197\) −8.57598 −0.611014 −0.305507 0.952190i \(-0.598826\pi\)
−0.305507 + 0.952190i \(0.598826\pi\)
\(198\) 0 0
\(199\) 8.19777 0.581124 0.290562 0.956856i \(-0.406158\pi\)
0.290562 + 0.956856i \(0.406158\pi\)
\(200\) 3.76509 0.266232
\(201\) 21.3745 1.50764
\(202\) 6.86398 0.482948
\(203\) −13.6218 −0.956062
\(204\) −1.69963 −0.118998
\(205\) −4.76509 −0.332808
\(206\) 0.522900 0.0364322
\(207\) 0.353456 0.0245669
\(208\) 0.300372 0.0208270
\(209\) 0 0
\(210\) 3.00000 0.207020
\(211\) 15.7775 1.08617 0.543083 0.839679i \(-0.317257\pi\)
0.543083 + 0.839679i \(0.317257\pi\)
\(212\) −7.62178 −0.523466
\(213\) 4.37822 0.299990
\(214\) −0.667585 −0.0456352
\(215\) 2.29528 0.156537
\(216\) 5.28799 0.359802
\(217\) −16.7985 −1.14036
\(218\) −9.53018 −0.645466
\(219\) 16.1075 1.08845
\(220\) 0 0
\(221\) −0.300372 −0.0202052
\(222\) 7.11993 0.477858
\(223\) −1.81089 −0.121266 −0.0606332 0.998160i \(-0.519312\pi\)
−0.0606332 + 0.998160i \(0.519312\pi\)
\(224\) −1.58836 −0.106127
\(225\) 0.418920 0.0279280
\(226\) 13.6218 0.906108
\(227\) 3.24357 0.215283 0.107642 0.994190i \(-0.465670\pi\)
0.107642 + 0.994190i \(0.465670\pi\)
\(228\) 11.8764 0.786531
\(229\) −2.95420 −0.195219 −0.0976095 0.995225i \(-0.531120\pi\)
−0.0976095 + 0.995225i \(0.531120\pi\)
\(230\) −3.53018 −0.232773
\(231\) 0 0
\(232\) 8.57598 0.563041
\(233\) 9.47710 0.620865 0.310433 0.950595i \(-0.399526\pi\)
0.310433 + 0.950595i \(0.399526\pi\)
\(234\) 0.0334206 0.00218477
\(235\) −1.23491 −0.0805565
\(236\) 7.97524 0.519144
\(237\) 4.28799 0.278535
\(238\) 1.58836 0.102958
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) −1.88874 −0.121917
\(241\) −7.90840 −0.509425 −0.254712 0.967017i \(-0.581981\pi\)
−0.254712 + 0.967017i \(0.581981\pi\)
\(242\) 0 0
\(243\) 1.15569 0.0741374
\(244\) −6.35346 −0.406738
\(245\) 4.97524 0.317856
\(246\) −7.28799 −0.464665
\(247\) 2.09888 0.133549
\(248\) 10.5760 0.671576
\(249\) −13.9184 −0.882045
\(250\) −9.74033 −0.616033
\(251\) 18.1730 1.14707 0.573535 0.819181i \(-0.305572\pi\)
0.573535 + 0.819181i \(0.305572\pi\)
\(252\) −0.176728 −0.0111328
\(253\) 0 0
\(254\) 3.84431 0.241214
\(255\) 1.88874 0.118277
\(256\) 1.00000 0.0625000
\(257\) −29.4720 −1.83841 −0.919207 0.393776i \(-0.871169\pi\)
−0.919207 + 0.393776i \(0.871169\pi\)
\(258\) 3.51052 0.218555
\(259\) −6.65383 −0.413449
\(260\) −0.333792 −0.0207009
\(261\) 0.954200 0.0590635
\(262\) 19.7280 1.21880
\(263\) 8.57598 0.528818 0.264409 0.964411i \(-0.414823\pi\)
0.264409 + 0.964411i \(0.414823\pi\)
\(264\) 0 0
\(265\) 8.46982 0.520297
\(266\) −11.0989 −0.680516
\(267\) −2.69963 −0.165215
\(268\) 12.5760 0.768201
\(269\) 12.1396 0.740164 0.370082 0.928999i \(-0.379330\pi\)
0.370082 + 0.928999i \(0.379330\pi\)
\(270\) −5.87636 −0.357624
\(271\) −14.5091 −0.881368 −0.440684 0.897662i \(-0.645264\pi\)
−0.440684 + 0.897662i \(0.645264\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0.810892 0.0490774
\(274\) 7.32141 0.442303
\(275\) 0 0
\(276\) −5.39926 −0.324997
\(277\) −29.5723 −1.77683 −0.888413 0.459046i \(-0.848191\pi\)
−0.888413 + 0.459046i \(0.848191\pi\)
\(278\) −10.1309 −0.607613
\(279\) 1.17673 0.0704489
\(280\) 1.76509 0.105484
\(281\) −31.4413 −1.87563 −0.937816 0.347131i \(-0.887156\pi\)
−0.937816 + 0.347131i \(0.887156\pi\)
\(282\) −1.88874 −0.112473
\(283\) 15.1767 0.902163 0.451081 0.892483i \(-0.351038\pi\)
0.451081 + 0.892483i \(0.351038\pi\)
\(284\) 2.57598 0.152857
\(285\) −13.1978 −0.781768
\(286\) 0 0
\(287\) 6.81089 0.402034
\(288\) 0.111264 0.00655630
\(289\) 1.00000 0.0588235
\(290\) −9.53018 −0.559632
\(291\) 3.39926 0.199268
\(292\) 9.47710 0.554605
\(293\) −3.62041 −0.211506 −0.105753 0.994392i \(-0.533725\pi\)
−0.105753 + 0.994392i \(0.533725\pi\)
\(294\) 7.60940 0.443790
\(295\) −8.86260 −0.516000
\(296\) 4.18911 0.243487
\(297\) 0 0
\(298\) 4.14468 0.240095
\(299\) −0.954200 −0.0551828
\(300\) −6.39926 −0.369461
\(301\) −3.28071 −0.189097
\(302\) −13.9752 −0.804185
\(303\) −11.6662 −0.670206
\(304\) 6.98762 0.400768
\(305\) 7.06037 0.404275
\(306\) −0.111264 −0.00636055
\(307\) −33.2967 −1.90034 −0.950170 0.311732i \(-0.899091\pi\)
−0.950170 + 0.311732i \(0.899091\pi\)
\(308\) 0 0
\(309\) −0.888736 −0.0505584
\(310\) −11.7527 −0.667509
\(311\) −7.86907 −0.446214 −0.223107 0.974794i \(-0.571620\pi\)
−0.223107 + 0.974794i \(0.571620\pi\)
\(312\) −0.510520 −0.0289025
\(313\) 23.4413 1.32498 0.662491 0.749070i \(-0.269499\pi\)
0.662491 + 0.749070i \(0.269499\pi\)
\(314\) 16.5760 0.935437
\(315\) 0.196391 0.0110654
\(316\) 2.52290 0.141924
\(317\) −2.89011 −0.162325 −0.0811625 0.996701i \(-0.525863\pi\)
−0.0811625 + 0.996701i \(0.525863\pi\)
\(318\) 12.9542 0.726435
\(319\) 0 0
\(320\) −1.11126 −0.0621216
\(321\) 1.13465 0.0633298
\(322\) 5.04580 0.281191
\(323\) −6.98762 −0.388802
\(324\) −8.65383 −0.480768
\(325\) −1.13093 −0.0627326
\(326\) −13.9098 −0.770391
\(327\) 16.1978 0.895739
\(328\) −4.28799 −0.236765
\(329\) 1.76509 0.0973127
\(330\) 0 0
\(331\) 10.2894 0.565555 0.282777 0.959186i \(-0.408744\pi\)
0.282777 + 0.959186i \(0.408744\pi\)
\(332\) −8.18911 −0.449436
\(333\) 0.466098 0.0255420
\(334\) −13.5316 −0.740414
\(335\) −13.9752 −0.763549
\(336\) 2.69963 0.147277
\(337\) 19.7120 1.07378 0.536891 0.843652i \(-0.319599\pi\)
0.536891 + 0.843652i \(0.319599\pi\)
\(338\) 12.9098 0.702199
\(339\) −23.1520 −1.25744
\(340\) 1.11126 0.0602668
\(341\) 0 0
\(342\) 0.777472 0.0420409
\(343\) −18.2298 −0.984317
\(344\) 2.06546 0.111362
\(345\) 6.00000 0.323029
\(346\) 15.2436 0.819499
\(347\) 29.8196 1.60080 0.800399 0.599468i \(-0.204621\pi\)
0.800399 + 0.599468i \(0.204621\pi\)
\(348\) −14.5760 −0.781355
\(349\) −33.2436 −1.77949 −0.889744 0.456460i \(-0.849117\pi\)
−0.889744 + 0.456460i \(0.849117\pi\)
\(350\) 5.98034 0.319662
\(351\) −1.58836 −0.0847806
\(352\) 0 0
\(353\) −2.66621 −0.141908 −0.0709540 0.997480i \(-0.522604\pi\)
−0.0709540 + 0.997480i \(0.522604\pi\)
\(354\) −13.5549 −0.720437
\(355\) −2.86260 −0.151931
\(356\) −1.58836 −0.0841831
\(357\) −2.69963 −0.142879
\(358\) 20.2225 1.06879
\(359\) 16.8654 0.890119 0.445060 0.895501i \(-0.353182\pi\)
0.445060 + 0.895501i \(0.353182\pi\)
\(360\) −0.123644 −0.00651660
\(361\) 29.8268 1.56983
\(362\) 11.0073 0.578530
\(363\) 0 0
\(364\) 0.477100 0.0250068
\(365\) −10.5316 −0.551247
\(366\) 10.7985 0.564447
\(367\) 14.9542 0.780603 0.390301 0.920687i \(-0.372371\pi\)
0.390301 + 0.920687i \(0.372371\pi\)
\(368\) −3.17673 −0.165598
\(369\) −0.477100 −0.0248368
\(370\) −4.65521 −0.242013
\(371\) −12.1062 −0.628521
\(372\) −17.9752 −0.931973
\(373\) −7.52152 −0.389450 −0.194725 0.980858i \(-0.562381\pi\)
−0.194725 + 0.980858i \(0.562381\pi\)
\(374\) 0 0
\(375\) 16.5549 0.854894
\(376\) −1.11126 −0.0573091
\(377\) −2.57598 −0.132670
\(378\) 8.39926 0.432011
\(379\) −8.57461 −0.440448 −0.220224 0.975449i \(-0.570679\pi\)
−0.220224 + 0.975449i \(0.570679\pi\)
\(380\) −7.76509 −0.398341
\(381\) −6.53390 −0.334742
\(382\) 20.6291 1.05547
\(383\) 32.2619 1.64850 0.824252 0.566223i \(-0.191596\pi\)
0.824252 + 0.566223i \(0.191596\pi\)
\(384\) −1.69963 −0.0867338
\(385\) 0 0
\(386\) −3.12364 −0.158989
\(387\) 0.229812 0.0116820
\(388\) 2.00000 0.101535
\(389\) 17.5054 0.887560 0.443780 0.896136i \(-0.353637\pi\)
0.443780 + 0.896136i \(0.353637\pi\)
\(390\) 0.567323 0.0287275
\(391\) 3.17673 0.160654
\(392\) 4.47710 0.226128
\(393\) −33.5302 −1.69137
\(394\) 8.57598 0.432052
\(395\) −2.80361 −0.141065
\(396\) 0 0
\(397\) −7.81089 −0.392017 −0.196009 0.980602i \(-0.562798\pi\)
−0.196009 + 0.980602i \(0.562798\pi\)
\(398\) −8.19777 −0.410917
\(399\) 18.8640 0.944380
\(400\) −3.76509 −0.188255
\(401\) −9.10989 −0.454926 −0.227463 0.973787i \(-0.573043\pi\)
−0.227463 + 0.973787i \(0.573043\pi\)
\(402\) −21.3745 −1.06606
\(403\) −3.17673 −0.158244
\(404\) −6.86398 −0.341496
\(405\) 9.61669 0.477857
\(406\) 13.6218 0.676038
\(407\) 0 0
\(408\) 1.69963 0.0841441
\(409\) 12.1730 0.601917 0.300958 0.953637i \(-0.402694\pi\)
0.300958 + 0.953637i \(0.402694\pi\)
\(410\) 4.76509 0.235331
\(411\) −12.4437 −0.613801
\(412\) −0.522900 −0.0257614
\(413\) 12.6676 0.623331
\(414\) −0.353456 −0.0173714
\(415\) 9.10026 0.446714
\(416\) −0.300372 −0.0147269
\(417\) 17.2188 0.843209
\(418\) 0 0
\(419\) 17.1854 0.839561 0.419781 0.907626i \(-0.362107\pi\)
0.419781 + 0.907626i \(0.362107\pi\)
\(420\) −3.00000 −0.146385
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) −15.7775 −0.768035
\(423\) −0.123644 −0.00601177
\(424\) 7.62178 0.370147
\(425\) 3.76509 0.182634
\(426\) −4.37822 −0.212125
\(427\) −10.0916 −0.488367
\(428\) 0.667585 0.0322689
\(429\) 0 0
\(430\) −2.29528 −0.110688
\(431\) 32.7824 1.57907 0.789537 0.613703i \(-0.210321\pi\)
0.789537 + 0.613703i \(0.210321\pi\)
\(432\) −5.28799 −0.254419
\(433\) −15.0617 −0.723821 −0.361911 0.932213i \(-0.617875\pi\)
−0.361911 + 0.932213i \(0.617875\pi\)
\(434\) 16.7985 0.806354
\(435\) 16.1978 0.776624
\(436\) 9.53018 0.456413
\(437\) −22.1978 −1.06186
\(438\) −16.1075 −0.769648
\(439\) −38.5526 −1.84002 −0.920008 0.391900i \(-0.871818\pi\)
−0.920008 + 0.391900i \(0.871818\pi\)
\(440\) 0 0
\(441\) 0.498141 0.0237210
\(442\) 0.300372 0.0142872
\(443\) −9.49086 −0.450924 −0.225462 0.974252i \(-0.572389\pi\)
−0.225462 + 0.974252i \(0.572389\pi\)
\(444\) −7.11993 −0.337897
\(445\) 1.76509 0.0836734
\(446\) 1.81089 0.0857482
\(447\) −7.04442 −0.333190
\(448\) 1.58836 0.0750431
\(449\) −12.0668 −0.569469 −0.284735 0.958606i \(-0.591906\pi\)
−0.284735 + 0.958606i \(0.591906\pi\)
\(450\) −0.418920 −0.0197481
\(451\) 0 0
\(452\) −13.6218 −0.640715
\(453\) 23.7527 1.11600
\(454\) −3.24357 −0.152228
\(455\) −0.530184 −0.0248554
\(456\) −11.8764 −0.556161
\(457\) 30.8799 1.44450 0.722251 0.691631i \(-0.243108\pi\)
0.722251 + 0.691631i \(0.243108\pi\)
\(458\) 2.95420 0.138041
\(459\) 5.28799 0.246822
\(460\) 3.53018 0.164596
\(461\) 26.4486 1.23184 0.615918 0.787811i \(-0.288785\pi\)
0.615918 + 0.787811i \(0.288785\pi\)
\(462\) 0 0
\(463\) 38.8268 1.80444 0.902218 0.431280i \(-0.141938\pi\)
0.902218 + 0.431280i \(0.141938\pi\)
\(464\) −8.57598 −0.398130
\(465\) 19.9752 0.926330
\(466\) −9.47710 −0.439018
\(467\) 12.2473 0.566737 0.283368 0.959011i \(-0.408548\pi\)
0.283368 + 0.959011i \(0.408548\pi\)
\(468\) −0.0334206 −0.00154487
\(469\) 19.9752 0.922371
\(470\) 1.23491 0.0569621
\(471\) −28.1730 −1.29814
\(472\) −7.97524 −0.367090
\(473\) 0 0
\(474\) −4.28799 −0.196954
\(475\) −26.3090 −1.20714
\(476\) −1.58836 −0.0728025
\(477\) 0.848031 0.0388287
\(478\) 6.00000 0.274434
\(479\) −0.614501 −0.0280773 −0.0140386 0.999901i \(-0.504469\pi\)
−0.0140386 + 0.999901i \(0.504469\pi\)
\(480\) 1.88874 0.0862086
\(481\) −1.25829 −0.0573731
\(482\) 7.90840 0.360218
\(483\) −8.57598 −0.390221
\(484\) 0 0
\(485\) −2.22253 −0.100920
\(486\) −1.15569 −0.0524230
\(487\) −0.197769 −0.00896176 −0.00448088 0.999990i \(-0.501426\pi\)
−0.00448088 + 0.999990i \(0.501426\pi\)
\(488\) 6.35346 0.287607
\(489\) 23.6414 1.06910
\(490\) −4.97524 −0.224758
\(491\) 7.53156 0.339895 0.169947 0.985453i \(-0.445640\pi\)
0.169947 + 0.985453i \(0.445640\pi\)
\(492\) 7.28799 0.328568
\(493\) 8.57598 0.386243
\(494\) −2.09888 −0.0944333
\(495\) 0 0
\(496\) −10.5760 −0.474876
\(497\) 4.09160 0.183533
\(498\) 13.9184 0.623700
\(499\) −14.9011 −0.667066 −0.333533 0.942739i \(-0.608241\pi\)
−0.333533 + 0.942739i \(0.608241\pi\)
\(500\) 9.74033 0.435601
\(501\) 22.9986 1.02750
\(502\) −18.1730 −0.811101
\(503\) −27.6304 −1.23198 −0.615990 0.787754i \(-0.711244\pi\)
−0.615990 + 0.787754i \(0.711244\pi\)
\(504\) 0.176728 0.00787209
\(505\) 7.62769 0.339428
\(506\) 0 0
\(507\) −21.9418 −0.974470
\(508\) −3.84431 −0.170564
\(509\) −24.5265 −1.08712 −0.543558 0.839371i \(-0.682923\pi\)
−0.543558 + 0.839371i \(0.682923\pi\)
\(510\) −1.88874 −0.0836346
\(511\) 15.0531 0.665909
\(512\) −1.00000 −0.0441942
\(513\) −36.9505 −1.63140
\(514\) 29.4720 1.29995
\(515\) 0.581080 0.0256055
\(516\) −3.51052 −0.154542
\(517\) 0 0
\(518\) 6.65383 0.292352
\(519\) −25.9084 −1.13725
\(520\) 0.333792 0.0146378
\(521\) 38.0814 1.66838 0.834188 0.551480i \(-0.185937\pi\)
0.834188 + 0.551480i \(0.185937\pi\)
\(522\) −0.954200 −0.0417642
\(523\) −16.1075 −0.704334 −0.352167 0.935937i \(-0.614555\pi\)
−0.352167 + 0.935937i \(0.614555\pi\)
\(524\) −19.7280 −0.861820
\(525\) −10.1643 −0.443609
\(526\) −8.57598 −0.373931
\(527\) 10.5760 0.460697
\(528\) 0 0
\(529\) −12.9084 −0.561235
\(530\) −8.46982 −0.367905
\(531\) −0.887358 −0.0385081
\(532\) 11.0989 0.481198
\(533\) 1.28799 0.0557891
\(534\) 2.69963 0.116824
\(535\) −0.741863 −0.0320735
\(536\) −12.5760 −0.543200
\(537\) −34.3708 −1.48321
\(538\) −12.1396 −0.523375
\(539\) 0 0
\(540\) 5.87636 0.252878
\(541\) 36.8799 1.58559 0.792796 0.609487i \(-0.208625\pi\)
0.792796 + 0.609487i \(0.208625\pi\)
\(542\) 14.5091 0.623221
\(543\) −18.7083 −0.802850
\(544\) 1.00000 0.0428746
\(545\) −10.5906 −0.453649
\(546\) −0.810892 −0.0347030
\(547\) 5.08513 0.217424 0.108712 0.994073i \(-0.465327\pi\)
0.108712 + 0.994073i \(0.465327\pi\)
\(548\) −7.32141 −0.312755
\(549\) 0.706912 0.0301703
\(550\) 0 0
\(551\) −59.9257 −2.55292
\(552\) 5.39926 0.229808
\(553\) 4.00728 0.170407
\(554\) 29.5723 1.25641
\(555\) 7.91212 0.335851
\(556\) 10.1309 0.429647
\(557\) 12.1964 0.516778 0.258389 0.966041i \(-0.416808\pi\)
0.258389 + 0.966041i \(0.416808\pi\)
\(558\) −1.17673 −0.0498149
\(559\) −0.620407 −0.0262404
\(560\) −1.76509 −0.0745887
\(561\) 0 0
\(562\) 31.4413 1.32627
\(563\) −22.9556 −0.967462 −0.483731 0.875217i \(-0.660719\pi\)
−0.483731 + 0.875217i \(0.660719\pi\)
\(564\) 1.88874 0.0795301
\(565\) 15.1374 0.636835
\(566\) −15.1767 −0.637925
\(567\) −13.7454 −0.577254
\(568\) −2.57598 −0.108086
\(569\) −36.0000 −1.50920 −0.754599 0.656186i \(-0.772169\pi\)
−0.754599 + 0.656186i \(0.772169\pi\)
\(570\) 13.1978 0.552794
\(571\) −9.17673 −0.384034 −0.192017 0.981392i \(-0.561503\pi\)
−0.192017 + 0.981392i \(0.561503\pi\)
\(572\) 0 0
\(573\) −35.0617 −1.46473
\(574\) −6.81089 −0.284281
\(575\) 11.9607 0.498795
\(576\) −0.111264 −0.00463601
\(577\) −38.3126 −1.59497 −0.797487 0.603336i \(-0.793838\pi\)
−0.797487 + 0.603336i \(0.793838\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 5.30903 0.220636
\(580\) 9.53018 0.395719
\(581\) −13.0073 −0.539633
\(582\) −3.39926 −0.140904
\(583\) 0 0
\(584\) −9.47710 −0.392165
\(585\) 0.0371391 0.00153551
\(586\) 3.62041 0.149558
\(587\) 1.62178 0.0669382 0.0334691 0.999440i \(-0.489344\pi\)
0.0334691 + 0.999440i \(0.489344\pi\)
\(588\) −7.60940 −0.313807
\(589\) −73.9010 −3.04504
\(590\) 8.86260 0.364867
\(591\) −14.5760 −0.599576
\(592\) −4.18911 −0.172171
\(593\) 23.5329 0.966382 0.483191 0.875515i \(-0.339478\pi\)
0.483191 + 0.875515i \(0.339478\pi\)
\(594\) 0 0
\(595\) 1.76509 0.0723617
\(596\) −4.14468 −0.169773
\(597\) 13.9332 0.570246
\(598\) 0.954200 0.0390201
\(599\) 13.9084 0.568282 0.284141 0.958783i \(-0.408292\pi\)
0.284141 + 0.958783i \(0.408292\pi\)
\(600\) 6.39926 0.261249
\(601\) −4.23119 −0.172594 −0.0862969 0.996269i \(-0.527503\pi\)
−0.0862969 + 0.996269i \(0.527503\pi\)
\(602\) 3.28071 0.133712
\(603\) −1.39926 −0.0569821
\(604\) 13.9752 0.568644
\(605\) 0 0
\(606\) 11.6662 0.473907
\(607\) 35.1286 1.42583 0.712913 0.701253i \(-0.247376\pi\)
0.712913 + 0.701253i \(0.247376\pi\)
\(608\) −6.98762 −0.283385
\(609\) −23.1520 −0.938165
\(610\) −7.06037 −0.285866
\(611\) 0.333792 0.0135038
\(612\) 0.111264 0.00449759
\(613\) −42.6661 −1.72327 −0.861633 0.507532i \(-0.830558\pi\)
−0.861633 + 0.507532i \(0.830558\pi\)
\(614\) 33.2967 1.34374
\(615\) −8.09888 −0.326579
\(616\) 0 0
\(617\) −16.0248 −0.645133 −0.322566 0.946547i \(-0.604546\pi\)
−0.322566 + 0.946547i \(0.604546\pi\)
\(618\) 0.888736 0.0357502
\(619\) 14.9011 0.598926 0.299463 0.954108i \(-0.403192\pi\)
0.299463 + 0.954108i \(0.403192\pi\)
\(620\) 11.7527 0.472000
\(621\) 16.7985 0.674101
\(622\) 7.86907 0.315521
\(623\) −2.52290 −0.101078
\(624\) 0.510520 0.0204372
\(625\) 8.00138 0.320055
\(626\) −23.4413 −0.936904
\(627\) 0 0
\(628\) −16.5760 −0.661454
\(629\) 4.18911 0.167031
\(630\) −0.196391 −0.00782442
\(631\) 27.9788 1.11382 0.556909 0.830573i \(-0.311987\pi\)
0.556909 + 0.830573i \(0.311987\pi\)
\(632\) −2.52290 −0.100356
\(633\) 26.8158 1.06583
\(634\) 2.89011 0.114781
\(635\) 4.27205 0.169531
\(636\) −12.9542 −0.513667
\(637\) −1.34479 −0.0532827
\(638\) 0 0
\(639\) −0.286615 −0.0113383
\(640\) 1.11126 0.0439266
\(641\) −17.1520 −0.677462 −0.338731 0.940883i \(-0.609998\pi\)
−0.338731 + 0.940883i \(0.609998\pi\)
\(642\) −1.13465 −0.0447809
\(643\) −9.15197 −0.360918 −0.180459 0.983582i \(-0.557758\pi\)
−0.180459 + 0.983582i \(0.557758\pi\)
\(644\) −5.04580 −0.198832
\(645\) 3.90112 0.153606
\(646\) 6.98762 0.274924
\(647\) −8.02832 −0.315626 −0.157813 0.987469i \(-0.550444\pi\)
−0.157813 + 0.987469i \(0.550444\pi\)
\(648\) 8.65383 0.339954
\(649\) 0 0
\(650\) 1.13093 0.0443586
\(651\) −28.5512 −1.11901
\(652\) 13.9098 0.544749
\(653\) 2.67625 0.104730 0.0523648 0.998628i \(-0.483324\pi\)
0.0523648 + 0.998628i \(0.483324\pi\)
\(654\) −16.1978 −0.633383
\(655\) 21.9230 0.856601
\(656\) 4.28799 0.167418
\(657\) −1.05446 −0.0411385
\(658\) −1.76509 −0.0688104
\(659\) −30.4930 −1.18784 −0.593920 0.804524i \(-0.702421\pi\)
−0.593920 + 0.804524i \(0.702421\pi\)
\(660\) 0 0
\(661\) −14.4871 −0.563484 −0.281742 0.959490i \(-0.590912\pi\)
−0.281742 + 0.959490i \(0.590912\pi\)
\(662\) −10.2894 −0.399908
\(663\) −0.510520 −0.0198270
\(664\) 8.18911 0.317799
\(665\) −12.3338 −0.478284
\(666\) −0.466098 −0.0180609
\(667\) 27.2436 1.05488
\(668\) 13.5316 0.523552
\(669\) −3.07784 −0.118996
\(670\) 13.9752 0.539911
\(671\) 0 0
\(672\) −2.69963 −0.104140
\(673\) 35.6625 1.37469 0.687344 0.726332i \(-0.258777\pi\)
0.687344 + 0.726332i \(0.258777\pi\)
\(674\) −19.7120 −0.759278
\(675\) 19.9098 0.766328
\(676\) −12.9098 −0.496530
\(677\) −25.7280 −0.988806 −0.494403 0.869233i \(-0.664613\pi\)
−0.494403 + 0.869233i \(0.664613\pi\)
\(678\) 23.1520 0.889146
\(679\) 3.17673 0.121912
\(680\) −1.11126 −0.0426150
\(681\) 5.51286 0.211253
\(682\) 0 0
\(683\) −49.2843 −1.88581 −0.942905 0.333061i \(-0.891918\pi\)
−0.942905 + 0.333061i \(0.891918\pi\)
\(684\) −0.777472 −0.0297274
\(685\) 8.13602 0.310861
\(686\) 18.2298 0.696017
\(687\) −5.02104 −0.191565
\(688\) −2.06546 −0.0787451
\(689\) −2.28937 −0.0872180
\(690\) −6.00000 −0.228416
\(691\) −40.3126 −1.53356 −0.766782 0.641908i \(-0.778143\pi\)
−0.766782 + 0.641908i \(0.778143\pi\)
\(692\) −15.2436 −0.579474
\(693\) 0 0
\(694\) −29.8196 −1.13193
\(695\) −11.2581 −0.427045
\(696\) 14.5760 0.552501
\(697\) −4.28799 −0.162419
\(698\) 33.2436 1.25829
\(699\) 16.1075 0.609243
\(700\) −5.98034 −0.226035
\(701\) 10.7651 0.406592 0.203296 0.979117i \(-0.434835\pi\)
0.203296 + 0.979117i \(0.434835\pi\)
\(702\) 1.58836 0.0599489
\(703\) −29.2719 −1.10401
\(704\) 0 0
\(705\) −2.09888 −0.0790486
\(706\) 2.66621 0.100344
\(707\) −10.9025 −0.410030
\(708\) 13.5549 0.509426
\(709\) −20.2064 −0.758868 −0.379434 0.925219i \(-0.623881\pi\)
−0.379434 + 0.925219i \(0.623881\pi\)
\(710\) 2.86260 0.107431
\(711\) −0.280708 −0.0105274
\(712\) 1.58836 0.0595265
\(713\) 33.5970 1.25822
\(714\) 2.69963 0.101031
\(715\) 0 0
\(716\) −20.2225 −0.755751
\(717\) −10.1978 −0.380843
\(718\) −16.8654 −0.629409
\(719\) 24.1062 0.899008 0.449504 0.893278i \(-0.351601\pi\)
0.449504 + 0.893278i \(0.351601\pi\)
\(720\) 0.123644 0.00460793
\(721\) −0.830556 −0.0309315
\(722\) −29.8268 −1.11004
\(723\) −13.4413 −0.499889
\(724\) −11.0073 −0.409082
\(725\) 32.2894 1.19920
\(726\) 0 0
\(727\) 9.38550 0.348089 0.174044 0.984738i \(-0.444316\pi\)
0.174044 + 0.984738i \(0.444316\pi\)
\(728\) −0.477100 −0.0176825
\(729\) 27.9257 1.03429
\(730\) 10.5316 0.389791
\(731\) 2.06546 0.0763939
\(732\) −10.7985 −0.399125
\(733\) 25.2174 0.931427 0.465714 0.884936i \(-0.345798\pi\)
0.465714 + 0.884936i \(0.345798\pi\)
\(734\) −14.9542 −0.551970
\(735\) 8.45606 0.311906
\(736\) 3.17673 0.117096
\(737\) 0 0
\(738\) 0.477100 0.0175623
\(739\) −10.3920 −0.382275 −0.191137 0.981563i \(-0.561218\pi\)
−0.191137 + 0.981563i \(0.561218\pi\)
\(740\) 4.65521 0.171129
\(741\) 3.56732 0.131049
\(742\) 12.1062 0.444431
\(743\) −6.86398 −0.251815 −0.125907 0.992042i \(-0.540184\pi\)
−0.125907 + 0.992042i \(0.540184\pi\)
\(744\) 17.9752 0.659004
\(745\) 4.60584 0.168745
\(746\) 7.52152 0.275383
\(747\) 0.911154 0.0333374
\(748\) 0 0
\(749\) 1.06037 0.0387450
\(750\) −16.5549 −0.604501
\(751\) 34.1062 1.24455 0.622276 0.782798i \(-0.286208\pi\)
0.622276 + 0.782798i \(0.286208\pi\)
\(752\) 1.11126 0.0405236
\(753\) 30.8874 1.12560
\(754\) 2.57598 0.0938118
\(755\) −15.5302 −0.565201
\(756\) −8.39926 −0.305478
\(757\) −37.2581 −1.35417 −0.677085 0.735905i \(-0.736757\pi\)
−0.677085 + 0.735905i \(0.736757\pi\)
\(758\) 8.57461 0.311444
\(759\) 0 0
\(760\) 7.76509 0.281669
\(761\) 15.0631 0.546038 0.273019 0.962009i \(-0.411978\pi\)
0.273019 + 0.962009i \(0.411978\pi\)
\(762\) 6.53390 0.236698
\(763\) 15.1374 0.548011
\(764\) −20.6291 −0.746334
\(765\) −0.123644 −0.00447035
\(766\) −32.2619 −1.16567
\(767\) 2.39554 0.0864979
\(768\) 1.69963 0.0613300
\(769\) 15.3497 0.553526 0.276763 0.960938i \(-0.410738\pi\)
0.276763 + 0.960938i \(0.410738\pi\)
\(770\) 0 0
\(771\) −50.0914 −1.80400
\(772\) 3.12364 0.112422
\(773\) −48.1455 −1.73167 −0.865837 0.500327i \(-0.833213\pi\)
−0.865837 + 0.500327i \(0.833213\pi\)
\(774\) −0.229812 −0.00826043
\(775\) 39.8196 1.43036
\(776\) −2.00000 −0.0717958
\(777\) −11.3090 −0.405709
\(778\) −17.5054 −0.627600
\(779\) 29.9629 1.07353
\(780\) −0.567323 −0.0203134
\(781\) 0 0
\(782\) −3.17673 −0.113600
\(783\) 45.3497 1.62067
\(784\) −4.47710 −0.159896
\(785\) 18.4203 0.657449
\(786\) 33.5302 1.19598
\(787\) 43.5082 1.55090 0.775450 0.631410i \(-0.217523\pi\)
0.775450 + 0.631410i \(0.217523\pi\)
\(788\) −8.57598 −0.305507
\(789\) 14.5760 0.518919
\(790\) 2.80361 0.0997479
\(791\) −21.6364 −0.769300
\(792\) 0 0
\(793\) −1.90840 −0.0677692
\(794\) 7.81089 0.277198
\(795\) 14.3955 0.510557
\(796\) 8.19777 0.290562
\(797\) 11.3324 0.401415 0.200707 0.979651i \(-0.435676\pi\)
0.200707 + 0.979651i \(0.435676\pi\)
\(798\) −18.8640 −0.667778
\(799\) −1.11126 −0.0393137
\(800\) 3.76509 0.133116
\(801\) 0.176728 0.00624438
\(802\) 9.10989 0.321681
\(803\) 0 0
\(804\) 21.3745 0.753820
\(805\) 5.60722 0.197628
\(806\) 3.17673 0.111895
\(807\) 20.6328 0.726308
\(808\) 6.86398 0.241474
\(809\) 19.9084 0.699942 0.349971 0.936761i \(-0.386191\pi\)
0.349971 + 0.936761i \(0.386191\pi\)
\(810\) −9.61669 −0.337896
\(811\) 52.2371 1.83429 0.917146 0.398551i \(-0.130487\pi\)
0.917146 + 0.398551i \(0.130487\pi\)
\(812\) −13.6218 −0.478031
\(813\) −24.6601 −0.864869
\(814\) 0 0
\(815\) −15.4574 −0.541450
\(816\) −1.69963 −0.0594989
\(817\) −14.4327 −0.504935
\(818\) −12.1730 −0.425619
\(819\) −0.0530841 −0.00185491
\(820\) −4.76509 −0.166404
\(821\) 28.8654 1.00741 0.503704 0.863876i \(-0.331970\pi\)
0.503704 + 0.863876i \(0.331970\pi\)
\(822\) 12.4437 0.434023
\(823\) 29.6364 1.03306 0.516529 0.856270i \(-0.327224\pi\)
0.516529 + 0.856270i \(0.327224\pi\)
\(824\) 0.522900 0.0182161
\(825\) 0 0
\(826\) −12.6676 −0.440762
\(827\) 36.3928 1.26550 0.632751 0.774356i \(-0.281926\pi\)
0.632751 + 0.774356i \(0.281926\pi\)
\(828\) 0.353456 0.0122834
\(829\) 33.9084 1.17769 0.588844 0.808247i \(-0.299583\pi\)
0.588844 + 0.808247i \(0.299583\pi\)
\(830\) −9.10026 −0.315875
\(831\) −50.2619 −1.74356
\(832\) 0.300372 0.0104135
\(833\) 4.47710 0.155122
\(834\) −17.2188 −0.596239
\(835\) −15.0371 −0.520382
\(836\) 0 0
\(837\) 55.9257 1.93308
\(838\) −17.1854 −0.593659
\(839\) −44.8158 −1.54721 −0.773607 0.633665i \(-0.781550\pi\)
−0.773607 + 0.633665i \(0.781550\pi\)
\(840\) 3.00000 0.103510
\(841\) 44.5475 1.53612
\(842\) −10.0000 −0.344623
\(843\) −53.4386 −1.84052
\(844\) 15.7775 0.543083
\(845\) 14.3462 0.493523
\(846\) 0.123644 0.00425096
\(847\) 0 0
\(848\) −7.62178 −0.261733
\(849\) 25.7948 0.885275
\(850\) −3.76509 −0.129142
\(851\) 13.3077 0.456181
\(852\) 4.37822 0.149995
\(853\) 3.00372 0.102845 0.0514227 0.998677i \(-0.483624\pi\)
0.0514227 + 0.998677i \(0.483624\pi\)
\(854\) 10.0916 0.345327
\(855\) 0.863976 0.0295474
\(856\) −0.667585 −0.0228176
\(857\) 45.4500 1.55254 0.776271 0.630399i \(-0.217109\pi\)
0.776271 + 0.630399i \(0.217109\pi\)
\(858\) 0 0
\(859\) 10.8626 0.370627 0.185314 0.982679i \(-0.440670\pi\)
0.185314 + 0.982679i \(0.440670\pi\)
\(860\) 2.29528 0.0782683
\(861\) 11.5760 0.394508
\(862\) −32.7824 −1.11657
\(863\) 19.4079 0.660653 0.330327 0.943867i \(-0.392841\pi\)
0.330327 + 0.943867i \(0.392841\pi\)
\(864\) 5.28799 0.179901
\(865\) 16.9396 0.575965
\(866\) 15.0617 0.511819
\(867\) 1.69963 0.0577224
\(868\) −16.7985 −0.570179
\(869\) 0 0
\(870\) −16.1978 −0.549156
\(871\) 3.77747 0.127995
\(872\) −9.53018 −0.322733
\(873\) −0.222528 −0.00753144
\(874\) 22.1978 0.750851
\(875\) 15.4712 0.523022
\(876\) 16.1075 0.544224
\(877\) 39.1693 1.32265 0.661326 0.750098i \(-0.269994\pi\)
0.661326 + 0.750098i \(0.269994\pi\)
\(878\) 38.5526 1.30109
\(879\) −6.15335 −0.207547
\(880\) 0 0
\(881\) −49.0210 −1.65156 −0.825780 0.563992i \(-0.809265\pi\)
−0.825780 + 0.563992i \(0.809265\pi\)
\(882\) −0.498141 −0.0167733
\(883\) 10.2866 0.346172 0.173086 0.984907i \(-0.444626\pi\)
0.173086 + 0.984907i \(0.444626\pi\)
\(884\) −0.300372 −0.0101026
\(885\) −15.0631 −0.506341
\(886\) 9.49086 0.318852
\(887\) −40.7651 −1.36876 −0.684379 0.729127i \(-0.739927\pi\)
−0.684379 + 0.729127i \(0.739927\pi\)
\(888\) 7.11993 0.238929
\(889\) −6.10617 −0.204794
\(890\) −1.76509 −0.0591660
\(891\) 0 0
\(892\) −1.81089 −0.0606332
\(893\) 7.76509 0.259849
\(894\) 7.04442 0.235601
\(895\) 22.4726 0.751175
\(896\) −1.58836 −0.0530635
\(897\) −1.62178 −0.0541498
\(898\) 12.0668 0.402676
\(899\) 90.6995 3.02500
\(900\) 0.418920 0.0139640
\(901\) 7.62178 0.253918
\(902\) 0 0
\(903\) −5.57598 −0.185557
\(904\) 13.6218 0.453054
\(905\) 12.2320 0.406605
\(906\) −23.7527 −0.789131
\(907\) 4.80951 0.159697 0.0798487 0.996807i \(-0.474556\pi\)
0.0798487 + 0.996807i \(0.474556\pi\)
\(908\) 3.24357 0.107642
\(909\) 0.763715 0.0253308
\(910\) 0.530184 0.0175754
\(911\) 29.2581 0.969365 0.484683 0.874690i \(-0.338935\pi\)
0.484683 + 0.874690i \(0.338935\pi\)
\(912\) 11.8764 0.393265
\(913\) 0 0
\(914\) −30.8799 −1.02142
\(915\) 12.0000 0.396708
\(916\) −2.95420 −0.0976095
\(917\) −31.3352 −1.03478
\(918\) −5.28799 −0.174530
\(919\) 37.0604 1.22251 0.611254 0.791434i \(-0.290665\pi\)
0.611254 + 0.791434i \(0.290665\pi\)
\(920\) −3.53018 −0.116387
\(921\) −56.5919 −1.86477
\(922\) −26.4486 −0.871039
\(923\) 0.773753 0.0254684
\(924\) 0 0
\(925\) 15.7724 0.518593
\(926\) −38.8268 −1.27593
\(927\) 0.0581800 0.00191088
\(928\) 8.57598 0.281520
\(929\) −7.06037 −0.231643 −0.115822 0.993270i \(-0.536950\pi\)
−0.115822 + 0.993270i \(0.536950\pi\)
\(930\) −19.9752 −0.655014
\(931\) −31.2843 −1.02530
\(932\) 9.47710 0.310433
\(933\) −13.3745 −0.437861
\(934\) −12.2473 −0.400743
\(935\) 0 0
\(936\) 0.0334206 0.00109239
\(937\) −48.8131 −1.59465 −0.797327 0.603548i \(-0.793753\pi\)
−0.797327 + 0.603548i \(0.793753\pi\)
\(938\) −19.9752 −0.652215
\(939\) 39.8416 1.30018
\(940\) −1.23491 −0.0402783
\(941\) −32.5760 −1.06195 −0.530973 0.847389i \(-0.678174\pi\)
−0.530973 + 0.847389i \(0.678174\pi\)
\(942\) 28.1730 0.917926
\(943\) −13.6218 −0.443586
\(944\) 7.97524 0.259572
\(945\) 9.33379 0.303628
\(946\) 0 0
\(947\) −19.9986 −0.649868 −0.324934 0.945737i \(-0.605342\pi\)
−0.324934 + 0.945737i \(0.605342\pi\)
\(948\) 4.28799 0.139268
\(949\) 2.84665 0.0924063
\(950\) 26.3090 0.853578
\(951\) −4.91212 −0.159286
\(952\) 1.58836 0.0514792
\(953\) −17.1520 −0.555607 −0.277803 0.960638i \(-0.589606\pi\)
−0.277803 + 0.960638i \(0.589606\pi\)
\(954\) −0.848031 −0.0274560
\(955\) 22.9243 0.741814
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) 0.614501 0.0198536
\(959\) −11.6291 −0.375522
\(960\) −1.88874 −0.0609587
\(961\) 80.8514 2.60811
\(962\) 1.25829 0.0405689
\(963\) −0.0742783 −0.00239358
\(964\) −7.90840 −0.254712
\(965\) −3.47119 −0.111742
\(966\) 8.57598 0.275928
\(967\) 51.2755 1.64891 0.824454 0.565929i \(-0.191482\pi\)
0.824454 + 0.565929i \(0.191482\pi\)
\(968\) 0 0
\(969\) −11.8764 −0.381524
\(970\) 2.22253 0.0713611
\(971\) 27.9112 0.895712 0.447856 0.894106i \(-0.352188\pi\)
0.447856 + 0.894106i \(0.352188\pi\)
\(972\) 1.15569 0.0370687
\(973\) 16.0916 0.515873
\(974\) 0.197769 0.00633692
\(975\) −1.92216 −0.0615583
\(976\) −6.35346 −0.203369
\(977\) −14.4858 −0.463441 −0.231720 0.972782i \(-0.574435\pi\)
−0.231720 + 0.972782i \(0.574435\pi\)
\(978\) −23.6414 −0.755970
\(979\) 0 0
\(980\) 4.97524 0.158928
\(981\) −1.06037 −0.0338549
\(982\) −7.53156 −0.240342
\(983\) −20.5760 −0.656272 −0.328136 0.944630i \(-0.606420\pi\)
−0.328136 + 0.944630i \(0.606420\pi\)
\(984\) −7.28799 −0.232333
\(985\) 9.53018 0.303657
\(986\) −8.57598 −0.273115
\(987\) 3.00000 0.0954911
\(988\) 2.09888 0.0667744
\(989\) 6.56142 0.208641
\(990\) 0 0
\(991\) −49.9257 −1.58594 −0.792971 0.609259i \(-0.791467\pi\)
−0.792971 + 0.609259i \(0.791467\pi\)
\(992\) 10.5760 0.335788
\(993\) 17.4881 0.554968
\(994\) −4.09160 −0.129778
\(995\) −9.10989 −0.288803
\(996\) −13.9184 −0.441023
\(997\) 54.5265 1.72687 0.863435 0.504460i \(-0.168308\pi\)
0.863435 + 0.504460i \(0.168308\pi\)
\(998\) 14.9011 0.471687
\(999\) 22.1520 0.700857
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4114.2.a.o.1.3 3
11.10 odd 2 4114.2.a.r.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4114.2.a.o.1.3 3 1.1 even 1 trivial
4114.2.a.r.1.3 yes 3 11.10 odd 2