Defining parameters
Level: | \( N \) | \(=\) | \( 4114 = 2 \cdot 11^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4114.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 38 \) | ||
Sturm bound: | \(1188\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4114))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 618 | 144 | 474 |
Cusp forms | 571 | 144 | 427 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(69\) | \(17\) | \(52\) | \(64\) | \(17\) | \(47\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(81\) | \(19\) | \(62\) | \(75\) | \(19\) | \(56\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(84\) | \(18\) | \(66\) | \(78\) | \(18\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(74\) | \(18\) | \(56\) | \(68\) | \(18\) | \(50\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(78\) | \(23\) | \(55\) | \(72\) | \(23\) | \(49\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(78\) | \(13\) | \(65\) | \(72\) | \(13\) | \(59\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(76\) | \(13\) | \(63\) | \(70\) | \(13\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(78\) | \(23\) | \(55\) | \(72\) | \(23\) | \(49\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(297\) | \(61\) | \(236\) | \(274\) | \(61\) | \(213\) | \(23\) | \(0\) | \(23\) | |||||
Minus space | \(-\) | \(321\) | \(83\) | \(238\) | \(297\) | \(83\) | \(214\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4114))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4114))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4114)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(374))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2057))\)\(^{\oplus 2}\)