Properties

Label 4114.2.a.o
Level $4114$
Weight $2$
Character orbit 4114.a
Self dual yes
Analytic conductor $32.850$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4114,2,Mod(1,4114)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4114, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4114.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4114 = 2 \cdot 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4114.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1,3,-3,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.8504553916\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_1 q^{3} + q^{4} + (\beta_{2} + \beta_1 - 1) q^{5} + \beta_1 q^{6} + \beta_{2} q^{7} - q^{8} + (\beta_{2} + \beta_1) q^{9} + ( - \beta_{2} - \beta_1 + 1) q^{10} - \beta_1 q^{12} + (\beta_1 + 2) q^{13}+ \cdots + (2 \beta_{2} + \beta_1 + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} - 3 q^{5} + q^{6} - q^{7} - 3 q^{8} + 3 q^{10} - q^{12} + 7 q^{13} + q^{14} - 6 q^{15} + 3 q^{16} - 3 q^{17} + 3 q^{19} - 3 q^{20} + 2 q^{21} + 2 q^{23} + q^{24} + 6 q^{25}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.46050
0.239123
−1.69963
−1.00000 −2.46050 1.00000 2.05408 2.46050 0.593579 −1.00000 3.05408 −2.05408
1.2 −1.00000 −0.239123 1.00000 −3.94282 0.239123 −3.18194 −1.00000 −2.94282 3.94282
1.3 −1.00000 1.69963 1.00000 −1.11126 −1.69963 1.58836 −1.00000 −0.111264 1.11126
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4114.2.a.o 3
11.b odd 2 1 4114.2.a.r yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4114.2.a.o 3 1.a even 1 1 trivial
4114.2.a.r yes 3 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4114))\):

\( T_{3}^{3} + T_{3}^{2} - 4T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} + 3T_{5}^{2} - 6T_{5} - 9 \) Copy content Toggle raw display
\( T_{7}^{3} + T_{7}^{2} - 6T_{7} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 4T - 1 \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$7$ \( T^{3} + T^{2} - 6T + 3 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 7 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$23$ \( T^{3} - 2 T^{2} + \cdots - 24 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$31$ \( T^{3} + 8 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$37$ \( T^{3} + 19 T^{2} + \cdots + 159 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} - 12T - 9 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots - 69 \) Copy content Toggle raw display
$47$ \( T^{3} - 3 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$53$ \( T^{3} + 10 T^{2} + \cdots - 504 \) Copy content Toggle raw display
$59$ \( T^{3} + 12 T^{2} + \cdots - 792 \) Copy content Toggle raw display
$61$ \( T^{3} - 4 T^{2} + \cdots - 192 \) Copy content Toggle raw display
$67$ \( T^{3} - 14 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$71$ \( T^{3} + 16 T^{2} + \cdots - 216 \) Copy content Toggle raw display
$73$ \( T^{3} - 23 T^{2} + \cdots - 207 \) Copy content Toggle raw display
$79$ \( T^{3} - 13 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$83$ \( T^{3} + 31 T^{2} + \cdots + 927 \) Copy content Toggle raw display
$89$ \( T^{3} - T^{2} - 6T - 3 \) Copy content Toggle raw display
$97$ \( (T - 2)^{3} \) Copy content Toggle raw display
show more
show less