Properties

Label 4114.2.a.bc.1.3
Level $4114$
Weight $2$
Character 4114.1
Self dual yes
Analytic conductor $32.850$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4114,2,Mod(1,4114)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4114, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4114.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4114 = 2 \cdot 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4114.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,1,4,5,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.8504553916\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.55585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 9x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 374)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.22696\) of defining polynomial
Character \(\chi\) \(=\) 4114.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.22696 q^{3} +1.00000 q^{4} +0.959363 q^{5} +2.22696 q^{6} -4.62570 q^{7} +1.00000 q^{8} +1.95936 q^{9} +0.959363 q^{10} +2.22696 q^{12} +6.94316 q^{13} -4.62570 q^{14} +2.13646 q^{15} +1.00000 q^{16} +1.00000 q^{17} +1.95936 q^{18} -2.17177 q^{19} +0.959363 q^{20} -10.3013 q^{21} -2.45393 q^{23} +2.22696 q^{24} -4.07962 q^{25} +6.94316 q^{26} -2.31746 q^{27} -4.62570 q^{28} +7.17012 q^{29} +2.13646 q^{30} +9.17012 q^{31} +1.00000 q^{32} +1.00000 q^{34} -4.43772 q^{35} +1.95936 q^{36} +10.6257 q^{37} -2.17177 q^{38} +15.4622 q^{39} +0.959363 q^{40} +10.5834 q^{41} -10.3013 q^{42} +1.75683 q^{43} +1.87974 q^{45} -2.45393 q^{46} -0.324441 q^{47} +2.22696 q^{48} +14.3971 q^{49} -4.07962 q^{50} +2.22696 q^{51} +6.94316 q^{52} +4.71620 q^{53} -2.31746 q^{54} -4.62570 q^{56} -4.83646 q^{57} +7.17012 q^{58} +13.7053 q^{59} +2.13646 q^{60} +0.453925 q^{61} +9.17012 q^{62} -9.06342 q^{63} +1.00000 q^{64} +6.66101 q^{65} -0.453925 q^{67} +1.00000 q^{68} -5.46480 q^{69} -4.43772 q^{70} -13.8050 q^{71} +1.95936 q^{72} -0.861884 q^{73} +10.6257 q^{74} -9.08517 q^{75} -2.17177 q^{76} +15.4622 q^{78} +3.10571 q^{79} +0.959363 q^{80} -11.0390 q^{81} +10.5834 q^{82} -3.26062 q^{83} -10.3013 q^{84} +0.959363 q^{85} +1.75683 q^{86} +15.9676 q^{87} -9.26062 q^{89} +1.87974 q^{90} -32.1170 q^{91} -2.45393 q^{92} +20.4215 q^{93} -0.324441 q^{94} -2.08352 q^{95} +2.22696 q^{96} -13.6240 q^{97} +14.3971 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 4 q^{4} + 5 q^{5} + q^{6} - q^{7} + 4 q^{8} + 9 q^{9} + 5 q^{10} + q^{12} + 3 q^{13} - q^{14} + 4 q^{16} + 4 q^{17} + 9 q^{18} - 7 q^{19} + 5 q^{20} - 8 q^{21} + 6 q^{23} + q^{24}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.22696 1.28574 0.642869 0.765976i \(-0.277744\pi\)
0.642869 + 0.765976i \(0.277744\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.959363 0.429040 0.214520 0.976720i \(-0.431181\pi\)
0.214520 + 0.976720i \(0.431181\pi\)
\(6\) 2.22696 0.909154
\(7\) −4.62570 −1.74835 −0.874175 0.485611i \(-0.838597\pi\)
−0.874175 + 0.485611i \(0.838597\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.95936 0.653121
\(10\) 0.959363 0.303377
\(11\) 0 0
\(12\) 2.22696 0.642869
\(13\) 6.94316 1.92569 0.962843 0.270062i \(-0.0870442\pi\)
0.962843 + 0.270062i \(0.0870442\pi\)
\(14\) −4.62570 −1.23627
\(15\) 2.13646 0.551633
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 1.95936 0.461826
\(19\) −2.17177 −0.498239 −0.249119 0.968473i \(-0.580141\pi\)
−0.249119 + 0.968473i \(0.580141\pi\)
\(20\) 0.959363 0.214520
\(21\) −10.3013 −2.24792
\(22\) 0 0
\(23\) −2.45393 −0.511679 −0.255839 0.966719i \(-0.582352\pi\)
−0.255839 + 0.966719i \(0.582352\pi\)
\(24\) 2.22696 0.454577
\(25\) −4.07962 −0.815925
\(26\) 6.94316 1.36167
\(27\) −2.31746 −0.445996
\(28\) −4.62570 −0.874175
\(29\) 7.17012 1.33146 0.665729 0.746194i \(-0.268121\pi\)
0.665729 + 0.746194i \(0.268121\pi\)
\(30\) 2.13646 0.390063
\(31\) 9.17012 1.64700 0.823501 0.567314i \(-0.192018\pi\)
0.823501 + 0.567314i \(0.192018\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) −4.43772 −0.750112
\(36\) 1.95936 0.326560
\(37\) 10.6257 1.74685 0.873427 0.486955i \(-0.161892\pi\)
0.873427 + 0.486955i \(0.161892\pi\)
\(38\) −2.17177 −0.352308
\(39\) 15.4622 2.47593
\(40\) 0.959363 0.151689
\(41\) 10.5834 1.65285 0.826425 0.563046i \(-0.190371\pi\)
0.826425 + 0.563046i \(0.190371\pi\)
\(42\) −10.3013 −1.58952
\(43\) 1.75683 0.267915 0.133957 0.990987i \(-0.457231\pi\)
0.133957 + 0.990987i \(0.457231\pi\)
\(44\) 0 0
\(45\) 1.87974 0.280215
\(46\) −2.45393 −0.361812
\(47\) −0.324441 −0.0473246 −0.0236623 0.999720i \(-0.507533\pi\)
−0.0236623 + 0.999720i \(0.507533\pi\)
\(48\) 2.22696 0.321434
\(49\) 14.3971 2.05673
\(50\) −4.07962 −0.576946
\(51\) 2.22696 0.311837
\(52\) 6.94316 0.962843
\(53\) 4.71620 0.647819 0.323910 0.946088i \(-0.395003\pi\)
0.323910 + 0.946088i \(0.395003\pi\)
\(54\) −2.31746 −0.315366
\(55\) 0 0
\(56\) −4.62570 −0.618135
\(57\) −4.83646 −0.640604
\(58\) 7.17012 0.941483
\(59\) 13.7053 1.78428 0.892140 0.451758i \(-0.149203\pi\)
0.892140 + 0.451758i \(0.149203\pi\)
\(60\) 2.13646 0.275816
\(61\) 0.453925 0.0581192 0.0290596 0.999578i \(-0.490749\pi\)
0.0290596 + 0.999578i \(0.490749\pi\)
\(62\) 9.17012 1.16461
\(63\) −9.06342 −1.14188
\(64\) 1.00000 0.125000
\(65\) 6.66101 0.826196
\(66\) 0 0
\(67\) −0.453925 −0.0554558 −0.0277279 0.999616i \(-0.508827\pi\)
−0.0277279 + 0.999616i \(0.508827\pi\)
\(68\) 1.00000 0.121268
\(69\) −5.46480 −0.657885
\(70\) −4.43772 −0.530409
\(71\) −13.8050 −1.63836 −0.819179 0.573539i \(-0.805570\pi\)
−0.819179 + 0.573539i \(0.805570\pi\)
\(72\) 1.95936 0.230913
\(73\) −0.861884 −0.100876 −0.0504379 0.998727i \(-0.516062\pi\)
−0.0504379 + 0.998727i \(0.516062\pi\)
\(74\) 10.6257 1.23521
\(75\) −9.08517 −1.04906
\(76\) −2.17177 −0.249119
\(77\) 0 0
\(78\) 15.4622 1.75074
\(79\) 3.10571 0.349420 0.174710 0.984620i \(-0.444101\pi\)
0.174710 + 0.984620i \(0.444101\pi\)
\(80\) 0.959363 0.107260
\(81\) −11.0390 −1.22655
\(82\) 10.5834 1.16874
\(83\) −3.26062 −0.357900 −0.178950 0.983858i \(-0.557270\pi\)
−0.178950 + 0.983858i \(0.557270\pi\)
\(84\) −10.3013 −1.12396
\(85\) 0.959363 0.104057
\(86\) 1.75683 0.189444
\(87\) 15.9676 1.71191
\(88\) 0 0
\(89\) −9.26062 −0.981624 −0.490812 0.871266i \(-0.663300\pi\)
−0.490812 + 0.871266i \(0.663300\pi\)
\(90\) 1.87974 0.198142
\(91\) −32.1170 −3.36677
\(92\) −2.45393 −0.255839
\(93\) 20.4215 2.11761
\(94\) −0.324441 −0.0334635
\(95\) −2.08352 −0.213764
\(96\) 2.22696 0.227288
\(97\) −13.6240 −1.38331 −0.691656 0.722227i \(-0.743119\pi\)
−0.691656 + 0.722227i \(0.743119\pi\)
\(98\) 14.3971 1.45433
\(99\) 0 0
\(100\) −4.07962 −0.407962
\(101\) 6.95936 0.692482 0.346241 0.938146i \(-0.387458\pi\)
0.346241 + 0.938146i \(0.387458\pi\)
\(102\) 2.22696 0.220502
\(103\) −13.2867 −1.30918 −0.654589 0.755985i \(-0.727158\pi\)
−0.654589 + 0.755985i \(0.727158\pi\)
\(104\) 6.94316 0.680833
\(105\) −9.88264 −0.964447
\(106\) 4.71620 0.458077
\(107\) 1.28380 0.124110 0.0620550 0.998073i \(-0.480235\pi\)
0.0620550 + 0.998073i \(0.480235\pi\)
\(108\) −2.31746 −0.222998
\(109\) −11.6240 −1.11338 −0.556691 0.830720i \(-0.687929\pi\)
−0.556691 + 0.830720i \(0.687929\pi\)
\(110\) 0 0
\(111\) 23.6630 2.24600
\(112\) −4.62570 −0.437087
\(113\) 2.79747 0.263164 0.131582 0.991305i \(-0.457994\pi\)
0.131582 + 0.991305i \(0.457994\pi\)
\(114\) −4.83646 −0.452976
\(115\) −2.35420 −0.219531
\(116\) 7.17012 0.665729
\(117\) 13.6042 1.25771
\(118\) 13.7053 1.26168
\(119\) −4.62570 −0.424037
\(120\) 2.13646 0.195032
\(121\) 0 0
\(122\) 0.453925 0.0410965
\(123\) 23.5689 2.12513
\(124\) 9.17012 0.823501
\(125\) −8.71065 −0.779104
\(126\) −9.06342 −0.807434
\(127\) −16.4539 −1.46005 −0.730025 0.683421i \(-0.760492\pi\)
−0.730025 + 0.683421i \(0.760492\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.91240 0.344468
\(130\) 6.66101 0.584209
\(131\) −9.43239 −0.824112 −0.412056 0.911159i \(-0.635189\pi\)
−0.412056 + 0.911159i \(0.635189\pi\)
\(132\) 0 0
\(133\) 10.0460 0.871096
\(134\) −0.453925 −0.0392132
\(135\) −2.22329 −0.191350
\(136\) 1.00000 0.0857493
\(137\) −6.48923 −0.554413 −0.277206 0.960810i \(-0.589409\pi\)
−0.277206 + 0.960810i \(0.589409\pi\)
\(138\) −5.46480 −0.465195
\(139\) 4.29138 0.363990 0.181995 0.983299i \(-0.441745\pi\)
0.181995 + 0.983299i \(0.441745\pi\)
\(140\) −4.43772 −0.375056
\(141\) −0.722518 −0.0608470
\(142\) −13.8050 −1.15849
\(143\) 0 0
\(144\) 1.95936 0.163280
\(145\) 6.87875 0.571249
\(146\) −0.861884 −0.0713300
\(147\) 32.0618 2.64441
\(148\) 10.6257 0.873427
\(149\) −10.1272 −0.829656 −0.414828 0.909900i \(-0.636158\pi\)
−0.414828 + 0.909900i \(0.636158\pi\)
\(150\) −9.08517 −0.741801
\(151\) −6.71620 −0.546556 −0.273278 0.961935i \(-0.588108\pi\)
−0.273278 + 0.961935i \(0.588108\pi\)
\(152\) −2.17177 −0.176154
\(153\) 1.95936 0.158405
\(154\) 0 0
\(155\) 8.79747 0.706630
\(156\) 15.4622 1.23796
\(157\) 0.424821 0.0339044 0.0169522 0.999856i \(-0.494604\pi\)
0.0169522 + 0.999856i \(0.494604\pi\)
\(158\) 3.10571 0.247077
\(159\) 10.5028 0.832926
\(160\) 0.959363 0.0758443
\(161\) 11.3511 0.894593
\(162\) −11.0390 −0.867305
\(163\) −17.3809 −1.36138 −0.680688 0.732574i \(-0.738319\pi\)
−0.680688 + 0.732574i \(0.738319\pi\)
\(164\) 10.5834 0.826425
\(165\) 0 0
\(166\) −3.26062 −0.253073
\(167\) −1.83811 −0.142237 −0.0711186 0.997468i \(-0.522657\pi\)
−0.0711186 + 0.997468i \(0.522657\pi\)
\(168\) −10.3013 −0.794759
\(169\) 35.2075 2.70827
\(170\) 0.959363 0.0735797
\(171\) −4.25529 −0.325410
\(172\) 1.75683 0.133957
\(173\) −16.9079 −1.28548 −0.642740 0.766084i \(-0.722202\pi\)
−0.642740 + 0.766084i \(0.722202\pi\)
\(174\) 15.9676 1.21050
\(175\) 18.8711 1.42652
\(176\) 0 0
\(177\) 30.5212 2.29412
\(178\) −9.26062 −0.694113
\(179\) 0.343546 0.0256778 0.0128389 0.999918i \(-0.495913\pi\)
0.0128389 + 0.999918i \(0.495913\pi\)
\(180\) 1.87974 0.140107
\(181\) 16.3082 1.21218 0.606091 0.795395i \(-0.292737\pi\)
0.606091 + 0.795395i \(0.292737\pi\)
\(182\) −32.1170 −2.38067
\(183\) 1.01087 0.0747260
\(184\) −2.45393 −0.180906
\(185\) 10.1939 0.749470
\(186\) 20.4215 1.49738
\(187\) 0 0
\(188\) −0.324441 −0.0236623
\(189\) 10.7199 0.779756
\(190\) −2.08352 −0.151154
\(191\) −5.74063 −0.415377 −0.207689 0.978195i \(-0.566594\pi\)
−0.207689 + 0.978195i \(0.566594\pi\)
\(192\) 2.22696 0.160717
\(193\) 12.4080 0.893144 0.446572 0.894748i \(-0.352645\pi\)
0.446572 + 0.894748i \(0.352645\pi\)
\(194\) −13.6240 −0.978150
\(195\) 14.8338 1.06227
\(196\) 14.3971 1.02836
\(197\) −6.74860 −0.480818 −0.240409 0.970672i \(-0.577282\pi\)
−0.240409 + 0.970672i \(0.577282\pi\)
\(198\) 0 0
\(199\) 8.53520 0.605044 0.302522 0.953142i \(-0.402171\pi\)
0.302522 + 0.953142i \(0.402171\pi\)
\(200\) −4.07962 −0.288473
\(201\) −1.01087 −0.0713016
\(202\) 6.95936 0.489659
\(203\) −33.1668 −2.32785
\(204\) 2.22696 0.155919
\(205\) 10.1533 0.709139
\(206\) −13.2867 −0.925729
\(207\) −4.80813 −0.334188
\(208\) 6.94316 0.481421
\(209\) 0 0
\(210\) −9.88264 −0.681967
\(211\) 0.162550 0.0111904 0.00559519 0.999984i \(-0.498219\pi\)
0.00559519 + 0.999984i \(0.498219\pi\)
\(212\) 4.71620 0.323910
\(213\) −30.7433 −2.10650
\(214\) 1.28380 0.0877590
\(215\) 1.68544 0.114946
\(216\) −2.31746 −0.157683
\(217\) −42.4182 −2.87954
\(218\) −11.6240 −0.787280
\(219\) −1.91938 −0.129700
\(220\) 0 0
\(221\) 6.94316 0.467047
\(222\) 23.6630 1.58816
\(223\) −10.1718 −0.681152 −0.340576 0.940217i \(-0.610622\pi\)
−0.340576 + 0.940217i \(0.610622\pi\)
\(224\) −4.62570 −0.309067
\(225\) −7.99346 −0.532897
\(226\) 2.79747 0.186085
\(227\) 29.0380 1.92732 0.963660 0.267133i \(-0.0860763\pi\)
0.963660 + 0.267133i \(0.0860763\pi\)
\(228\) −4.83646 −0.320302
\(229\) 15.9967 1.05709 0.528546 0.848905i \(-0.322738\pi\)
0.528546 + 0.848905i \(0.322738\pi\)
\(230\) −2.35420 −0.155232
\(231\) 0 0
\(232\) 7.17012 0.470742
\(233\) −5.93228 −0.388637 −0.194318 0.980939i \(-0.562250\pi\)
−0.194318 + 0.980939i \(0.562250\pi\)
\(234\) 13.6042 0.889332
\(235\) −0.311257 −0.0203041
\(236\) 13.7053 0.892140
\(237\) 6.91630 0.449262
\(238\) −4.62570 −0.299839
\(239\) −21.8157 −1.41114 −0.705570 0.708640i \(-0.749309\pi\)
−0.705570 + 0.708640i \(0.749309\pi\)
\(240\) 2.13646 0.137908
\(241\) −6.90785 −0.444974 −0.222487 0.974936i \(-0.571417\pi\)
−0.222487 + 0.974936i \(0.571417\pi\)
\(242\) 0 0
\(243\) −17.6310 −1.13103
\(244\) 0.453925 0.0290596
\(245\) 13.8120 0.882418
\(246\) 23.5689 1.50270
\(247\) −15.0790 −0.959452
\(248\) 9.17012 0.582303
\(249\) −7.26128 −0.460165
\(250\) −8.71065 −0.550910
\(251\) 1.57518 0.0994244 0.0497122 0.998764i \(-0.484170\pi\)
0.0497122 + 0.998764i \(0.484170\pi\)
\(252\) −9.06342 −0.570942
\(253\) 0 0
\(254\) −16.4539 −1.03241
\(255\) 2.13646 0.133791
\(256\) 1.00000 0.0625000
\(257\) 4.73608 0.295428 0.147714 0.989030i \(-0.452808\pi\)
0.147714 + 0.989030i \(0.452808\pi\)
\(258\) 3.91240 0.243576
\(259\) −49.1513 −3.05411
\(260\) 6.66101 0.413098
\(261\) 14.0489 0.869603
\(262\) −9.43239 −0.582735
\(263\) −14.6838 −0.905441 −0.452721 0.891652i \(-0.649547\pi\)
−0.452721 + 0.891652i \(0.649547\pi\)
\(264\) 0 0
\(265\) 4.52454 0.277940
\(266\) 10.0460 0.615958
\(267\) −20.6231 −1.26211
\(268\) −0.453925 −0.0277279
\(269\) 9.37430 0.571561 0.285781 0.958295i \(-0.407747\pi\)
0.285781 + 0.958295i \(0.407747\pi\)
\(270\) −2.22329 −0.135305
\(271\) −2.87875 −0.174871 −0.0874357 0.996170i \(-0.527867\pi\)
−0.0874357 + 0.996170i \(0.527867\pi\)
\(272\) 1.00000 0.0606339
\(273\) −71.5233 −4.32878
\(274\) −6.48923 −0.392029
\(275\) 0 0
\(276\) −5.46480 −0.328942
\(277\) 14.4506 0.868254 0.434127 0.900852i \(-0.357057\pi\)
0.434127 + 0.900852i \(0.357057\pi\)
\(278\) 4.29138 0.257380
\(279\) 17.9676 1.07569
\(280\) −4.43772 −0.265205
\(281\) 14.5319 0.866900 0.433450 0.901178i \(-0.357296\pi\)
0.433450 + 0.901178i \(0.357296\pi\)
\(282\) −0.722518 −0.0430253
\(283\) 5.26984 0.313260 0.156630 0.987657i \(-0.449937\pi\)
0.156630 + 0.987657i \(0.449937\pi\)
\(284\) −13.8050 −0.819179
\(285\) −4.63992 −0.274845
\(286\) 0 0
\(287\) −48.9557 −2.88976
\(288\) 1.95936 0.115457
\(289\) 1.00000 0.0588235
\(290\) 6.87875 0.403934
\(291\) −30.3402 −1.77858
\(292\) −0.861884 −0.0504379
\(293\) −16.1262 −0.942102 −0.471051 0.882106i \(-0.656125\pi\)
−0.471051 + 0.882106i \(0.656125\pi\)
\(294\) 32.0618 1.86988
\(295\) 13.1484 0.765528
\(296\) 10.6257 0.617606
\(297\) 0 0
\(298\) −10.1272 −0.586655
\(299\) −17.0380 −0.985333
\(300\) −9.08517 −0.524532
\(301\) −8.12658 −0.468408
\(302\) −6.71620 −0.386474
\(303\) 15.4982 0.890351
\(304\) −2.17177 −0.124560
\(305\) 0.435479 0.0249354
\(306\) 1.95936 0.112009
\(307\) −2.03201 −0.115973 −0.0579863 0.998317i \(-0.518468\pi\)
−0.0579863 + 0.998317i \(0.518468\pi\)
\(308\) 0 0
\(309\) −29.5890 −1.68326
\(310\) 8.79747 0.499663
\(311\) 14.7453 0.836129 0.418065 0.908417i \(-0.362709\pi\)
0.418065 + 0.908417i \(0.362709\pi\)
\(312\) 15.4622 0.875372
\(313\) −25.4628 −1.43924 −0.719622 0.694366i \(-0.755685\pi\)
−0.719622 + 0.694366i \(0.755685\pi\)
\(314\) 0.424821 0.0239740
\(315\) −8.69511 −0.489914
\(316\) 3.10571 0.174710
\(317\) −3.62405 −0.203547 −0.101773 0.994808i \(-0.532452\pi\)
−0.101773 + 0.994808i \(0.532452\pi\)
\(318\) 10.5028 0.588967
\(319\) 0 0
\(320\) 0.959363 0.0536300
\(321\) 2.85898 0.159573
\(322\) 11.3511 0.632573
\(323\) −2.17177 −0.120841
\(324\) −11.0390 −0.613277
\(325\) −28.3255 −1.57121
\(326\) −17.3809 −0.962638
\(327\) −25.8863 −1.43152
\(328\) 10.5834 0.584371
\(329\) 1.50077 0.0827399
\(330\) 0 0
\(331\) 2.40506 0.132194 0.0660970 0.997813i \(-0.478945\pi\)
0.0660970 + 0.997813i \(0.478945\pi\)
\(332\) −3.26062 −0.178950
\(333\) 20.8196 1.14091
\(334\) −1.83811 −0.100577
\(335\) −0.435479 −0.0237928
\(336\) −10.3013 −0.561980
\(337\) −4.24317 −0.231140 −0.115570 0.993299i \(-0.536869\pi\)
−0.115570 + 0.993299i \(0.536869\pi\)
\(338\) 35.2075 1.91503
\(339\) 6.22986 0.338360
\(340\) 0.959363 0.0520287
\(341\) 0 0
\(342\) −4.25529 −0.230100
\(343\) −34.2167 −1.84753
\(344\) 1.75683 0.0947221
\(345\) −5.24272 −0.282259
\(346\) −16.9079 −0.908972
\(347\) 10.7162 0.575276 0.287638 0.957739i \(-0.407130\pi\)
0.287638 + 0.957739i \(0.407130\pi\)
\(348\) 15.9676 0.855953
\(349\) 13.8375 0.740702 0.370351 0.928892i \(-0.379237\pi\)
0.370351 + 0.928892i \(0.379237\pi\)
\(350\) 18.8711 1.00870
\(351\) −16.0905 −0.858847
\(352\) 0 0
\(353\) 9.29961 0.494968 0.247484 0.968892i \(-0.420396\pi\)
0.247484 + 0.968892i \(0.420396\pi\)
\(354\) 30.5212 1.62219
\(355\) −13.2440 −0.702921
\(356\) −9.26062 −0.490812
\(357\) −10.3013 −0.545200
\(358\) 0.343546 0.0181570
\(359\) −3.54607 −0.187155 −0.0935773 0.995612i \(-0.529830\pi\)
−0.0935773 + 0.995612i \(0.529830\pi\)
\(360\) 1.87974 0.0990709
\(361\) −14.2834 −0.751758
\(362\) 16.3082 0.857142
\(363\) 0 0
\(364\) −32.1170 −1.68339
\(365\) −0.826859 −0.0432798
\(366\) 1.01087 0.0528393
\(367\) 18.6165 0.971772 0.485886 0.874022i \(-0.338497\pi\)
0.485886 + 0.874022i \(0.338497\pi\)
\(368\) −2.45393 −0.127920
\(369\) 20.7367 1.07951
\(370\) 10.1939 0.529955
\(371\) −21.8157 −1.13261
\(372\) 20.4215 1.05881
\(373\) 16.8986 0.874978 0.437489 0.899224i \(-0.355868\pi\)
0.437489 + 0.899224i \(0.355868\pi\)
\(374\) 0 0
\(375\) −19.3983 −1.00172
\(376\) −0.324441 −0.0167318
\(377\) 49.7833 2.56397
\(378\) 10.7199 0.551371
\(379\) 17.0558 0.876097 0.438048 0.898951i \(-0.355670\pi\)
0.438048 + 0.898951i \(0.355670\pi\)
\(380\) −2.08352 −0.106882
\(381\) −36.6423 −1.87724
\(382\) −5.74063 −0.293716
\(383\) −7.09215 −0.362392 −0.181196 0.983447i \(-0.557997\pi\)
−0.181196 + 0.983447i \(0.557997\pi\)
\(384\) 2.22696 0.113644
\(385\) 0 0
\(386\) 12.4080 0.631548
\(387\) 3.44227 0.174981
\(388\) −13.6240 −0.691656
\(389\) 0.826576 0.0419090 0.0209545 0.999780i \(-0.493329\pi\)
0.0209545 + 0.999780i \(0.493329\pi\)
\(390\) 14.8338 0.751139
\(391\) −2.45393 −0.124100
\(392\) 14.3971 0.727163
\(393\) −21.0056 −1.05959
\(394\) −6.74860 −0.339990
\(395\) 2.97950 0.149915
\(396\) 0 0
\(397\) 30.2173 1.51656 0.758282 0.651926i \(-0.226039\pi\)
0.758282 + 0.651926i \(0.226039\pi\)
\(398\) 8.53520 0.427831
\(399\) 22.3720 1.12000
\(400\) −4.07962 −0.203981
\(401\) 18.1301 0.905376 0.452688 0.891669i \(-0.350465\pi\)
0.452688 + 0.891669i \(0.350465\pi\)
\(402\) −1.01087 −0.0504178
\(403\) 63.6696 3.17161
\(404\) 6.95936 0.346241
\(405\) −10.5904 −0.526241
\(406\) −33.1668 −1.64604
\(407\) 0 0
\(408\) 2.22696 0.110251
\(409\) 9.78660 0.483916 0.241958 0.970287i \(-0.422210\pi\)
0.241958 + 0.970287i \(0.422210\pi\)
\(410\) 10.1533 0.501437
\(411\) −14.4513 −0.712829
\(412\) −13.2867 −0.654589
\(413\) −63.3967 −3.11955
\(414\) −4.80813 −0.236307
\(415\) −3.12812 −0.153553
\(416\) 6.94316 0.340416
\(417\) 9.55673 0.467995
\(418\) 0 0
\(419\) 25.5811 1.24972 0.624859 0.780737i \(-0.285156\pi\)
0.624859 + 0.780737i \(0.285156\pi\)
\(420\) −9.88264 −0.482223
\(421\) −33.5592 −1.63558 −0.817788 0.575519i \(-0.804800\pi\)
−0.817788 + 0.575519i \(0.804800\pi\)
\(422\) 0.162550 0.00791280
\(423\) −0.635698 −0.0309087
\(424\) 4.71620 0.229039
\(425\) −4.07962 −0.197891
\(426\) −30.7433 −1.48952
\(427\) −2.09972 −0.101613
\(428\) 1.28380 0.0620550
\(429\) 0 0
\(430\) 1.68544 0.0812792
\(431\) −4.10116 −0.197546 −0.0987729 0.995110i \(-0.531492\pi\)
−0.0987729 + 0.995110i \(0.531492\pi\)
\(432\) −2.31746 −0.111499
\(433\) −28.9758 −1.39249 −0.696245 0.717805i \(-0.745147\pi\)
−0.696245 + 0.717805i \(0.745147\pi\)
\(434\) −42.4182 −2.03614
\(435\) 15.3187 0.734476
\(436\) −11.6240 −0.556691
\(437\) 5.32937 0.254938
\(438\) −1.91938 −0.0917117
\(439\) 23.1675 1.10572 0.552862 0.833273i \(-0.313536\pi\)
0.552862 + 0.833273i \(0.313536\pi\)
\(440\) 0 0
\(441\) 28.2091 1.34329
\(442\) 6.94316 0.330252
\(443\) −12.3693 −0.587685 −0.293843 0.955854i \(-0.594934\pi\)
−0.293843 + 0.955854i \(0.594934\pi\)
\(444\) 23.6630 1.12300
\(445\) −8.88429 −0.421156
\(446\) −10.1718 −0.481647
\(447\) −22.5530 −1.06672
\(448\) −4.62570 −0.218544
\(449\) 16.2114 0.765064 0.382532 0.923942i \(-0.375052\pi\)
0.382532 + 0.923942i \(0.375052\pi\)
\(450\) −7.99346 −0.376815
\(451\) 0 0
\(452\) 2.79747 0.131582
\(453\) −14.9567 −0.702728
\(454\) 29.0380 1.36282
\(455\) −30.8118 −1.44448
\(456\) −4.83646 −0.226488
\(457\) 18.8754 0.882956 0.441478 0.897272i \(-0.354454\pi\)
0.441478 + 0.897272i \(0.354454\pi\)
\(458\) 15.9967 0.747477
\(459\) −2.31746 −0.108170
\(460\) −2.35420 −0.109765
\(461\) −24.9583 −1.16242 −0.581212 0.813752i \(-0.697421\pi\)
−0.581212 + 0.813752i \(0.697421\pi\)
\(462\) 0 0
\(463\) 14.5197 0.674786 0.337393 0.941364i \(-0.390455\pi\)
0.337393 + 0.941364i \(0.390455\pi\)
\(464\) 7.17012 0.332865
\(465\) 19.5916 0.908541
\(466\) −5.93228 −0.274808
\(467\) 25.8355 1.19552 0.597761 0.801674i \(-0.296057\pi\)
0.597761 + 0.801674i \(0.296057\pi\)
\(468\) 13.6042 0.628853
\(469\) 2.09972 0.0969561
\(470\) −0.311257 −0.0143572
\(471\) 0.946060 0.0435922
\(472\) 13.7053 0.630839
\(473\) 0 0
\(474\) 6.91630 0.317676
\(475\) 8.86002 0.406525
\(476\) −4.62570 −0.212019
\(477\) 9.24074 0.423104
\(478\) −21.8157 −0.997827
\(479\) −4.01356 −0.183384 −0.0916921 0.995787i \(-0.529228\pi\)
−0.0916921 + 0.995787i \(0.529228\pi\)
\(480\) 2.13646 0.0975158
\(481\) 73.7759 3.36389
\(482\) −6.90785 −0.314644
\(483\) 25.2785 1.15021
\(484\) 0 0
\(485\) −13.0704 −0.593496
\(486\) −17.6310 −0.799760
\(487\) −11.7193 −0.531051 −0.265526 0.964104i \(-0.585546\pi\)
−0.265526 + 0.964104i \(0.585546\pi\)
\(488\) 0.453925 0.0205482
\(489\) −38.7066 −1.75037
\(490\) 13.8120 0.623964
\(491\) −17.6538 −0.796705 −0.398353 0.917232i \(-0.630418\pi\)
−0.398353 + 0.917232i \(0.630418\pi\)
\(492\) 23.5689 1.06257
\(493\) 7.17012 0.322926
\(494\) −15.0790 −0.678435
\(495\) 0 0
\(496\) 9.17012 0.411751
\(497\) 63.8580 2.86442
\(498\) −7.26128 −0.325386
\(499\) 3.36798 0.150771 0.0753857 0.997154i \(-0.475981\pi\)
0.0753857 + 0.997154i \(0.475981\pi\)
\(500\) −8.71065 −0.389552
\(501\) −4.09340 −0.182880
\(502\) 1.57518 0.0703037
\(503\) −26.9475 −1.20153 −0.600765 0.799426i \(-0.705137\pi\)
−0.600765 + 0.799426i \(0.705137\pi\)
\(504\) −9.06342 −0.403717
\(505\) 6.67655 0.297103
\(506\) 0 0
\(507\) 78.4057 3.48212
\(508\) −16.4539 −0.730025
\(509\) −12.9045 −0.571984 −0.285992 0.958232i \(-0.592323\pi\)
−0.285992 + 0.958232i \(0.592323\pi\)
\(510\) 2.13646 0.0946042
\(511\) 3.98682 0.176366
\(512\) 1.00000 0.0441942
\(513\) 5.03300 0.222212
\(514\) 4.73608 0.208899
\(515\) −12.7468 −0.561690
\(516\) 3.91240 0.172234
\(517\) 0 0
\(518\) −49.1513 −2.15958
\(519\) −37.6532 −1.65279
\(520\) 6.66101 0.292104
\(521\) −42.4076 −1.85791 −0.928954 0.370194i \(-0.879291\pi\)
−0.928954 + 0.370194i \(0.879291\pi\)
\(522\) 14.0489 0.614902
\(523\) 8.84898 0.386939 0.193470 0.981106i \(-0.438026\pi\)
0.193470 + 0.981106i \(0.438026\pi\)
\(524\) −9.43239 −0.412056
\(525\) 42.0253 1.83413
\(526\) −14.6838 −0.640244
\(527\) 9.17012 0.399457
\(528\) 0 0
\(529\) −16.9783 −0.738185
\(530\) 4.52454 0.196534
\(531\) 26.8537 1.16535
\(532\) 10.0460 0.435548
\(533\) 73.4823 3.18287
\(534\) −20.6231 −0.892447
\(535\) 1.23163 0.0532481
\(536\) −0.453925 −0.0196066
\(537\) 0.765064 0.0330149
\(538\) 9.37430 0.404155
\(539\) 0 0
\(540\) −2.22329 −0.0956750
\(541\) −43.4291 −1.86716 −0.933581 0.358366i \(-0.883334\pi\)
−0.933581 + 0.358366i \(0.883334\pi\)
\(542\) −2.87875 −0.123653
\(543\) 36.3178 1.55855
\(544\) 1.00000 0.0428746
\(545\) −11.1517 −0.477685
\(546\) −71.5233 −3.06091
\(547\) −23.6240 −1.01009 −0.505046 0.863093i \(-0.668524\pi\)
−0.505046 + 0.863093i \(0.668524\pi\)
\(548\) −6.48923 −0.277206
\(549\) 0.889404 0.0379588
\(550\) 0 0
\(551\) −15.5719 −0.663384
\(552\) −5.46480 −0.232597
\(553\) −14.3661 −0.610908
\(554\) 14.4506 0.613948
\(555\) 22.7014 0.963622
\(556\) 4.29138 0.181995
\(557\) −0.819879 −0.0347394 −0.0173697 0.999849i \(-0.505529\pi\)
−0.0173697 + 0.999849i \(0.505529\pi\)
\(558\) 17.9676 0.760629
\(559\) 12.1980 0.515919
\(560\) −4.43772 −0.187528
\(561\) 0 0
\(562\) 14.5319 0.612991
\(563\) −7.15102 −0.301379 −0.150690 0.988581i \(-0.548149\pi\)
−0.150690 + 0.988581i \(0.548149\pi\)
\(564\) −0.722518 −0.0304235
\(565\) 2.68379 0.112908
\(566\) 5.26984 0.221508
\(567\) 51.0630 2.14445
\(568\) −13.8050 −0.579247
\(569\) 1.39749 0.0585857 0.0292928 0.999571i \(-0.490674\pi\)
0.0292928 + 0.999571i \(0.490674\pi\)
\(570\) −4.63992 −0.194345
\(571\) −26.9045 −1.12592 −0.562960 0.826484i \(-0.690338\pi\)
−0.562960 + 0.826484i \(0.690338\pi\)
\(572\) 0 0
\(573\) −12.7842 −0.534066
\(574\) −48.9557 −2.04337
\(575\) 10.0111 0.417491
\(576\) 1.95936 0.0816401
\(577\) 20.6713 0.860556 0.430278 0.902696i \(-0.358416\pi\)
0.430278 + 0.902696i \(0.358416\pi\)
\(578\) 1.00000 0.0415945
\(579\) 27.6321 1.14835
\(580\) 6.87875 0.285624
\(581\) 15.0826 0.625733
\(582\) −30.3402 −1.25764
\(583\) 0 0
\(584\) −0.861884 −0.0356650
\(585\) 13.0513 0.539606
\(586\) −16.1262 −0.666166
\(587\) −17.9003 −0.738824 −0.369412 0.929266i \(-0.620441\pi\)
−0.369412 + 0.929266i \(0.620441\pi\)
\(588\) 32.0618 1.32221
\(589\) −19.9154 −0.820601
\(590\) 13.1484 0.541310
\(591\) −15.0289 −0.618206
\(592\) 10.6257 0.436714
\(593\) 13.1701 0.540832 0.270416 0.962744i \(-0.412839\pi\)
0.270416 + 0.962744i \(0.412839\pi\)
\(594\) 0 0
\(595\) −4.43772 −0.181929
\(596\) −10.1272 −0.414828
\(597\) 19.0076 0.777928
\(598\) −17.0380 −0.696735
\(599\) 21.8157 0.891365 0.445683 0.895191i \(-0.352961\pi\)
0.445683 + 0.895191i \(0.352961\pi\)
\(600\) −9.08517 −0.370900
\(601\) 10.0721 0.410848 0.205424 0.978673i \(-0.434143\pi\)
0.205424 + 0.978673i \(0.434143\pi\)
\(602\) −8.12658 −0.331215
\(603\) −0.889404 −0.0362193
\(604\) −6.71620 −0.273278
\(605\) 0 0
\(606\) 15.4982 0.629573
\(607\) 22.0971 0.896893 0.448446 0.893810i \(-0.351978\pi\)
0.448446 + 0.893810i \(0.351978\pi\)
\(608\) −2.17177 −0.0880770
\(609\) −73.8613 −2.99301
\(610\) 0.435479 0.0176320
\(611\) −2.25265 −0.0911323
\(612\) 1.95936 0.0792025
\(613\) −36.8523 −1.48845 −0.744224 0.667930i \(-0.767181\pi\)
−0.744224 + 0.667930i \(0.767181\pi\)
\(614\) −2.03201 −0.0820051
\(615\) 22.6111 0.911767
\(616\) 0 0
\(617\) −28.5286 −1.14852 −0.574259 0.818674i \(-0.694710\pi\)
−0.574259 + 0.818674i \(0.694710\pi\)
\(618\) −29.5890 −1.19024
\(619\) 11.8219 0.475162 0.237581 0.971368i \(-0.423645\pi\)
0.237581 + 0.971368i \(0.423645\pi\)
\(620\) 8.79747 0.353315
\(621\) 5.68688 0.228206
\(622\) 14.7453 0.591233
\(623\) 42.8368 1.71622
\(624\) 15.4622 0.618982
\(625\) 12.0414 0.481658
\(626\) −25.4628 −1.01770
\(627\) 0 0
\(628\) 0.424821 0.0169522
\(629\) 10.6257 0.423674
\(630\) −8.69511 −0.346421
\(631\) −2.06573 −0.0822354 −0.0411177 0.999154i \(-0.513092\pi\)
−0.0411177 + 0.999154i \(0.513092\pi\)
\(632\) 3.10571 0.123538
\(633\) 0.361992 0.0143879
\(634\) −3.62405 −0.143929
\(635\) −15.7853 −0.626420
\(636\) 10.5028 0.416463
\(637\) 99.9612 3.96061
\(638\) 0 0
\(639\) −27.0491 −1.07005
\(640\) 0.959363 0.0379221
\(641\) −8.63162 −0.340928 −0.170464 0.985364i \(-0.554527\pi\)
−0.170464 + 0.985364i \(0.554527\pi\)
\(642\) 2.85898 0.112835
\(643\) −29.0704 −1.14642 −0.573212 0.819407i \(-0.694303\pi\)
−0.573212 + 0.819407i \(0.694303\pi\)
\(644\) 11.3511 0.447297
\(645\) 3.75341 0.147790
\(646\) −2.17177 −0.0854473
\(647\) 36.4060 1.43127 0.715633 0.698476i \(-0.246138\pi\)
0.715633 + 0.698476i \(0.246138\pi\)
\(648\) −11.0390 −0.433652
\(649\) 0 0
\(650\) −28.3255 −1.11102
\(651\) −94.4638 −3.70233
\(652\) −17.3809 −0.680688
\(653\) −47.1436 −1.84487 −0.922436 0.386149i \(-0.873805\pi\)
−0.922436 + 0.386149i \(0.873805\pi\)
\(654\) −25.8863 −1.01224
\(655\) −9.04908 −0.353577
\(656\) 10.5834 0.413213
\(657\) −1.68874 −0.0658842
\(658\) 1.50077 0.0585060
\(659\) −12.4936 −0.486680 −0.243340 0.969941i \(-0.578243\pi\)
−0.243340 + 0.969941i \(0.578243\pi\)
\(660\) 0 0
\(661\) 2.97847 0.115849 0.0579245 0.998321i \(-0.481552\pi\)
0.0579245 + 0.998321i \(0.481552\pi\)
\(662\) 2.40506 0.0934752
\(663\) 15.4622 0.600500
\(664\) −3.26062 −0.126537
\(665\) 9.63772 0.373735
\(666\) 20.8196 0.806743
\(667\) −17.5949 −0.681279
\(668\) −1.83811 −0.0711186
\(669\) −22.6522 −0.875783
\(670\) −0.435479 −0.0168240
\(671\) 0 0
\(672\) −10.3013 −0.397380
\(673\) −26.7460 −1.03098 −0.515490 0.856895i \(-0.672390\pi\)
−0.515490 + 0.856895i \(0.672390\pi\)
\(674\) −4.24317 −0.163441
\(675\) 9.45437 0.363899
\(676\) 35.2075 1.35413
\(677\) −26.7096 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(678\) 6.22986 0.239256
\(679\) 63.0207 2.41851
\(680\) 0.959363 0.0367899
\(681\) 64.6665 2.47803
\(682\) 0 0
\(683\) 13.8024 0.528134 0.264067 0.964504i \(-0.414936\pi\)
0.264067 + 0.964504i \(0.414936\pi\)
\(684\) −4.25529 −0.162705
\(685\) −6.22553 −0.237865
\(686\) −34.2167 −1.30640
\(687\) 35.6240 1.35914
\(688\) 1.75683 0.0669787
\(689\) 32.7453 1.24750
\(690\) −5.24272 −0.199587
\(691\) 30.8140 1.17222 0.586111 0.810231i \(-0.300658\pi\)
0.586111 + 0.810231i \(0.300658\pi\)
\(692\) −16.9079 −0.642740
\(693\) 0 0
\(694\) 10.7162 0.406781
\(695\) 4.11698 0.156166
\(696\) 15.9676 0.605250
\(697\) 10.5834 0.400875
\(698\) 13.8375 0.523755
\(699\) −13.2110 −0.499685
\(700\) 18.8711 0.713261
\(701\) −35.0181 −1.32262 −0.661308 0.750115i \(-0.729998\pi\)
−0.661308 + 0.750115i \(0.729998\pi\)
\(702\) −16.0905 −0.607297
\(703\) −23.0766 −0.870351
\(704\) 0 0
\(705\) −0.693157 −0.0261058
\(706\) 9.29961 0.349995
\(707\) −32.1919 −1.21070
\(708\) 30.5212 1.14706
\(709\) 20.0979 0.754791 0.377395 0.926052i \(-0.376820\pi\)
0.377395 + 0.926052i \(0.376820\pi\)
\(710\) −13.2440 −0.497040
\(711\) 6.08521 0.228213
\(712\) −9.26062 −0.347056
\(713\) −22.5028 −0.842736
\(714\) −10.3013 −0.385515
\(715\) 0 0
\(716\) 0.343546 0.0128389
\(717\) −48.5828 −1.81436
\(718\) −3.54607 −0.132338
\(719\) 22.3369 0.833027 0.416514 0.909129i \(-0.363252\pi\)
0.416514 + 0.909129i \(0.363252\pi\)
\(720\) 1.87974 0.0700537
\(721\) 61.4603 2.28890
\(722\) −14.2834 −0.531573
\(723\) −15.3835 −0.572119
\(724\) 16.3082 0.606091
\(725\) −29.2514 −1.08637
\(726\) 0 0
\(727\) −0.0168621 −0.000625380 0 −0.000312690 1.00000i \(-0.500100\pi\)
−0.000312690 1.00000i \(0.500100\pi\)
\(728\) −32.1170 −1.19033
\(729\) −6.14668 −0.227655
\(730\) −0.826859 −0.0306034
\(731\) 1.75683 0.0649788
\(732\) 1.01087 0.0373630
\(733\) 17.2032 0.635414 0.317707 0.948189i \(-0.397087\pi\)
0.317707 + 0.948189i \(0.397087\pi\)
\(734\) 18.6165 0.687147
\(735\) 30.7589 1.13456
\(736\) −2.45393 −0.0904529
\(737\) 0 0
\(738\) 20.7367 0.763330
\(739\) −32.1457 −1.18250 −0.591249 0.806489i \(-0.701365\pi\)
−0.591249 + 0.806489i \(0.701365\pi\)
\(740\) 10.1939 0.374735
\(741\) −33.5803 −1.23360
\(742\) −21.8157 −0.800880
\(743\) 50.2596 1.84385 0.921923 0.387372i \(-0.126617\pi\)
0.921923 + 0.387372i \(0.126617\pi\)
\(744\) 20.4215 0.748689
\(745\) −9.71570 −0.355956
\(746\) 16.8986 0.618703
\(747\) −6.38874 −0.233752
\(748\) 0 0
\(749\) −5.93849 −0.216988
\(750\) −19.3983 −0.708326
\(751\) −5.55343 −0.202648 −0.101324 0.994854i \(-0.532308\pi\)
−0.101324 + 0.994854i \(0.532308\pi\)
\(752\) −0.324441 −0.0118312
\(753\) 3.50787 0.127834
\(754\) 49.7833 1.81300
\(755\) −6.44327 −0.234495
\(756\) 10.7199 0.389878
\(757\) −42.7400 −1.55341 −0.776706 0.629863i \(-0.783111\pi\)
−0.776706 + 0.629863i \(0.783111\pi\)
\(758\) 17.0558 0.619494
\(759\) 0 0
\(760\) −2.08352 −0.0755771
\(761\) 1.18408 0.0429230 0.0214615 0.999770i \(-0.493168\pi\)
0.0214615 + 0.999770i \(0.493168\pi\)
\(762\) −36.6423 −1.32741
\(763\) 53.7693 1.94658
\(764\) −5.74063 −0.207689
\(765\) 1.87974 0.0679621
\(766\) −7.09215 −0.256250
\(767\) 95.1582 3.43596
\(768\) 2.22696 0.0803586
\(769\) −18.3369 −0.661247 −0.330623 0.943763i \(-0.607259\pi\)
−0.330623 + 0.943763i \(0.607259\pi\)
\(770\) 0 0
\(771\) 10.5471 0.379843
\(772\) 12.4080 0.446572
\(773\) 7.08436 0.254807 0.127403 0.991851i \(-0.459336\pi\)
0.127403 + 0.991851i \(0.459336\pi\)
\(774\) 3.44227 0.123730
\(775\) −37.4106 −1.34383
\(776\) −13.6240 −0.489075
\(777\) −109.458 −3.92679
\(778\) 0.826576 0.0296342
\(779\) −22.9848 −0.823515
\(780\) 14.8338 0.531136
\(781\) 0 0
\(782\) −2.45393 −0.0877522
\(783\) −16.6165 −0.593824
\(784\) 14.3971 0.514182
\(785\) 0.407557 0.0145463
\(786\) −21.0056 −0.749244
\(787\) 35.9352 1.28095 0.640476 0.767979i \(-0.278737\pi\)
0.640476 + 0.767979i \(0.278737\pi\)
\(788\) −6.74860 −0.240409
\(789\) −32.7002 −1.16416
\(790\) 2.97950 0.106006
\(791\) −12.9403 −0.460103
\(792\) 0 0
\(793\) 3.15168 0.111919
\(794\) 30.2173 1.07237
\(795\) 10.0760 0.357358
\(796\) 8.53520 0.302522
\(797\) −24.1777 −0.856418 −0.428209 0.903680i \(-0.640855\pi\)
−0.428209 + 0.903680i \(0.640855\pi\)
\(798\) 22.3720 0.791960
\(799\) −0.324441 −0.0114779
\(800\) −4.07962 −0.144236
\(801\) −18.1449 −0.641119
\(802\) 18.1301 0.640198
\(803\) 0 0
\(804\) −1.01087 −0.0356508
\(805\) 10.8898 0.383816
\(806\) 63.6696 2.24267
\(807\) 20.8762 0.734878
\(808\) 6.95936 0.244830
\(809\) 35.1681 1.23645 0.618223 0.786003i \(-0.287853\pi\)
0.618223 + 0.786003i \(0.287853\pi\)
\(810\) −10.5904 −0.372108
\(811\) −23.3967 −0.821569 −0.410784 0.911733i \(-0.634745\pi\)
−0.410784 + 0.911733i \(0.634745\pi\)
\(812\) −33.1668 −1.16393
\(813\) −6.41086 −0.224839
\(814\) 0 0
\(815\) −16.6746 −0.584085
\(816\) 2.22696 0.0779593
\(817\) −3.81544 −0.133485
\(818\) 9.78660 0.342180
\(819\) −62.9288 −2.19891
\(820\) 10.1533 0.354570
\(821\) −18.7744 −0.655231 −0.327616 0.944811i \(-0.606245\pi\)
−0.327616 + 0.944811i \(0.606245\pi\)
\(822\) −14.4513 −0.504046
\(823\) 29.3047 1.02150 0.510750 0.859729i \(-0.329368\pi\)
0.510750 + 0.859729i \(0.329368\pi\)
\(824\) −13.2867 −0.462864
\(825\) 0 0
\(826\) −63.3967 −2.20585
\(827\) 23.4431 0.815195 0.407597 0.913162i \(-0.366367\pi\)
0.407597 + 0.913162i \(0.366367\pi\)
\(828\) −4.80813 −0.167094
\(829\) −54.4658 −1.89167 −0.945837 0.324642i \(-0.894756\pi\)
−0.945837 + 0.324642i \(0.894756\pi\)
\(830\) −3.12812 −0.108579
\(831\) 32.1810 1.11635
\(832\) 6.94316 0.240711
\(833\) 14.3971 0.498829
\(834\) 9.55673 0.330923
\(835\) −1.76341 −0.0610254
\(836\) 0 0
\(837\) −21.2514 −0.734556
\(838\) 25.5811 0.883684
\(839\) −35.5288 −1.22659 −0.613295 0.789854i \(-0.710156\pi\)
−0.613295 + 0.789854i \(0.710156\pi\)
\(840\) −9.88264 −0.340983
\(841\) 22.4106 0.772781
\(842\) −33.5592 −1.15653
\(843\) 32.3620 1.11461
\(844\) 0.162550 0.00559519
\(845\) 33.7767 1.16195
\(846\) −0.635698 −0.0218557
\(847\) 0 0
\(848\) 4.71620 0.161955
\(849\) 11.7357 0.402770
\(850\) −4.07962 −0.139930
\(851\) −26.0747 −0.893828
\(852\) −30.7433 −1.05325
\(853\) 25.4184 0.870311 0.435155 0.900355i \(-0.356693\pi\)
0.435155 + 0.900355i \(0.356693\pi\)
\(854\) −2.09972 −0.0718510
\(855\) −4.08237 −0.139614
\(856\) 1.28380 0.0438795
\(857\) −47.4794 −1.62187 −0.810933 0.585140i \(-0.801040\pi\)
−0.810933 + 0.585140i \(0.801040\pi\)
\(858\) 0 0
\(859\) −19.6762 −0.671344 −0.335672 0.941979i \(-0.608963\pi\)
−0.335672 + 0.941979i \(0.608963\pi\)
\(860\) 1.68544 0.0574730
\(861\) −109.022 −3.71547
\(862\) −4.10116 −0.139686
\(863\) −33.2389 −1.13146 −0.565732 0.824589i \(-0.691406\pi\)
−0.565732 + 0.824589i \(0.691406\pi\)
\(864\) −2.31746 −0.0788416
\(865\) −16.2208 −0.551522
\(866\) −28.9758 −0.984639
\(867\) 2.22696 0.0756316
\(868\) −42.4182 −1.43977
\(869\) 0 0
\(870\) 15.3187 0.519353
\(871\) −3.15168 −0.106790
\(872\) −11.6240 −0.393640
\(873\) −26.6944 −0.903470
\(874\) 5.32937 0.180269
\(875\) 40.2928 1.36215
\(876\) −1.91938 −0.0648500
\(877\) −11.3327 −0.382677 −0.191339 0.981524i \(-0.561283\pi\)
−0.191339 + 0.981524i \(0.561283\pi\)
\(878\) 23.1675 0.781864
\(879\) −35.9124 −1.21130
\(880\) 0 0
\(881\) 36.9707 1.24557 0.622787 0.782392i \(-0.286000\pi\)
0.622787 + 0.782392i \(0.286000\pi\)
\(882\) 28.2091 0.949850
\(883\) −7.18857 −0.241915 −0.120957 0.992658i \(-0.538596\pi\)
−0.120957 + 0.992658i \(0.538596\pi\)
\(884\) 6.94316 0.233524
\(885\) 29.2809 0.984268
\(886\) −12.3693 −0.415556
\(887\) 17.7145 0.594796 0.297398 0.954754i \(-0.403881\pi\)
0.297398 + 0.954754i \(0.403881\pi\)
\(888\) 23.6630 0.794079
\(889\) 76.1109 2.55268
\(890\) −8.88429 −0.297802
\(891\) 0 0
\(892\) −10.1718 −0.340576
\(893\) 0.704612 0.0235790
\(894\) −22.5530 −0.754285
\(895\) 0.329585 0.0110168
\(896\) −4.62570 −0.154534
\(897\) −37.9430 −1.26688
\(898\) 16.2114 0.540982
\(899\) 65.7509 2.19291
\(900\) −7.99346 −0.266449
\(901\) 4.71620 0.157119
\(902\) 0 0
\(903\) −18.0976 −0.602250
\(904\) 2.79747 0.0930425
\(905\) 15.6455 0.520074
\(906\) −14.9567 −0.496904
\(907\) −12.6378 −0.419632 −0.209816 0.977741i \(-0.567287\pi\)
−0.209816 + 0.977741i \(0.567287\pi\)
\(908\) 29.0380 0.963660
\(909\) 13.6359 0.452275
\(910\) −30.8118 −1.02140
\(911\) −25.0921 −0.831340 −0.415670 0.909516i \(-0.636453\pi\)
−0.415670 + 0.909516i \(0.636453\pi\)
\(912\) −4.83646 −0.160151
\(913\) 0 0
\(914\) 18.8754 0.624344
\(915\) 0.969795 0.0320604
\(916\) 15.9967 0.528546
\(917\) 43.6314 1.44084
\(918\) −2.31746 −0.0764876
\(919\) −11.6380 −0.383902 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(920\) −2.35420 −0.0776158
\(921\) −4.52520 −0.149110
\(922\) −24.9583 −0.821958
\(923\) −95.8506 −3.15496
\(924\) 0 0
\(925\) −43.3488 −1.42530
\(926\) 14.5197 0.477145
\(927\) −26.0335 −0.855051
\(928\) 7.17012 0.235371
\(929\) 53.0023 1.73895 0.869474 0.493978i \(-0.164458\pi\)
0.869474 + 0.493978i \(0.164458\pi\)
\(930\) 19.5916 0.642435
\(931\) −31.2672 −1.02474
\(932\) −5.93228 −0.194318
\(933\) 32.8372 1.07504
\(934\) 25.8355 0.845362
\(935\) 0 0
\(936\) 13.6042 0.444666
\(937\) −4.65799 −0.152170 −0.0760849 0.997101i \(-0.524242\pi\)
−0.0760849 + 0.997101i \(0.524242\pi\)
\(938\) 2.09972 0.0685583
\(939\) −56.7047 −1.85049
\(940\) −0.311257 −0.0101521
\(941\) −19.4997 −0.635672 −0.317836 0.948146i \(-0.602956\pi\)
−0.317836 + 0.948146i \(0.602956\pi\)
\(942\) 0.946060 0.0308243
\(943\) −25.9709 −0.845729
\(944\) 13.7053 0.446070
\(945\) 10.2842 0.334547
\(946\) 0 0
\(947\) 56.3634 1.83156 0.915782 0.401675i \(-0.131572\pi\)
0.915782 + 0.401675i \(0.131572\pi\)
\(948\) 6.91630 0.224631
\(949\) −5.98420 −0.194255
\(950\) 8.86002 0.287457
\(951\) −8.07062 −0.261708
\(952\) −4.62570 −0.149920
\(953\) −36.0944 −1.16921 −0.584607 0.811317i \(-0.698751\pi\)
−0.584607 + 0.811317i \(0.698751\pi\)
\(954\) 9.24074 0.299180
\(955\) −5.50735 −0.178214
\(956\) −21.8157 −0.705570
\(957\) 0 0
\(958\) −4.01356 −0.129672
\(959\) 30.0172 0.969307
\(960\) 2.13646 0.0689541
\(961\) 53.0911 1.71262
\(962\) 73.7759 2.37863
\(963\) 2.51544 0.0810588
\(964\) −6.90785 −0.222487
\(965\) 11.9037 0.383195
\(966\) 25.2785 0.813323
\(967\) −13.8605 −0.445724 −0.222862 0.974850i \(-0.571540\pi\)
−0.222862 + 0.974850i \(0.571540\pi\)
\(968\) 0 0
\(969\) −4.83646 −0.155369
\(970\) −13.0704 −0.419665
\(971\) 36.2603 1.16365 0.581824 0.813315i \(-0.302339\pi\)
0.581824 + 0.813315i \(0.302339\pi\)
\(972\) −17.6310 −0.565515
\(973\) −19.8506 −0.636381
\(974\) −11.7193 −0.375510
\(975\) −63.0798 −2.02017
\(976\) 0.453925 0.0145298
\(977\) −24.3549 −0.779181 −0.389591 0.920988i \(-0.627383\pi\)
−0.389591 + 0.920988i \(0.627383\pi\)
\(978\) −38.7066 −1.23770
\(979\) 0 0
\(980\) 13.8120 0.441209
\(981\) −22.7757 −0.727173
\(982\) −17.6538 −0.563356
\(983\) −53.3076 −1.70025 −0.850125 0.526582i \(-0.823473\pi\)
−0.850125 + 0.526582i \(0.823473\pi\)
\(984\) 23.5689 0.751348
\(985\) −6.47436 −0.206290
\(986\) 7.17012 0.228343
\(987\) 3.34215 0.106382
\(988\) −15.0790 −0.479726
\(989\) −4.31114 −0.137086
\(990\) 0 0
\(991\) −59.7833 −1.89908 −0.949539 0.313648i \(-0.898449\pi\)
−0.949539 + 0.313648i \(0.898449\pi\)
\(992\) 9.17012 0.291152
\(993\) 5.35597 0.169967
\(994\) 63.8580 2.02545
\(995\) 8.18835 0.259588
\(996\) −7.26128 −0.230082
\(997\) 28.4473 0.900936 0.450468 0.892793i \(-0.351257\pi\)
0.450468 + 0.892793i \(0.351257\pi\)
\(998\) 3.36798 0.106612
\(999\) −24.6246 −0.779089
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4114.2.a.bc.1.3 4
11.10 odd 2 374.2.a.d.1.3 4
33.32 even 2 3366.2.a.bg.1.3 4
44.43 even 2 2992.2.a.w.1.2 4
55.54 odd 2 9350.2.a.cl.1.2 4
187.186 odd 2 6358.2.a.t.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
374.2.a.d.1.3 4 11.10 odd 2
2992.2.a.w.1.2 4 44.43 even 2
3366.2.a.bg.1.3 4 33.32 even 2
4114.2.a.bc.1.3 4 1.1 even 1 trivial
6358.2.a.t.1.2 4 187.186 odd 2
9350.2.a.cl.1.2 4 55.54 odd 2