Properties

Label 374.2.a.d.1.3
Level 374374
Weight 22
Character 374.1
Self dual yes
Analytic conductor 2.9862.986
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [374,2,Mod(1,374)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(374, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("374.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 374=21117 374 = 2 \cdot 11 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 374.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.986405035602.98640503560
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.55585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x310x2+9x+16 x^{4} - x^{3} - 10x^{2} + 9x + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 2.226962.22696 of defining polynomial
Character χ\chi == 374.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+2.22696q3+1.00000q4+0.959363q52.22696q6+4.62570q71.00000q8+1.95936q90.959363q10+1.00000q11+2.22696q126.94316q134.62570q14+2.13646q15+1.00000q161.00000q171.95936q18+2.17177q19+0.959363q20+10.3013q211.00000q222.45393q232.22696q244.07962q25+6.94316q262.31746q27+4.62570q287.17012q292.13646q30+9.17012q311.00000q32+2.22696q33+1.00000q34+4.43772q35+1.95936q36+10.6257q372.17177q3815.4622q390.959363q4010.5834q4110.3013q421.75683q43+1.00000q44+1.87974q45+2.45393q460.324441q47+2.22696q48+14.3971q49+4.07962q502.22696q516.94316q52+4.71620q53+2.31746q54+0.959363q554.62570q56+4.83646q57+7.17012q58+13.7053q59+2.13646q600.453925q619.17012q62+9.06342q63+1.00000q646.66101q652.22696q660.453925q671.00000q685.46480q694.43772q7013.8050q711.95936q72+0.861884q7310.6257q749.08517q75+2.17177q76+4.62570q77+15.4622q783.10571q79+0.959363q8011.0390q81+10.5834q82+3.26062q83+10.3013q840.959363q85+1.75683q8615.9676q871.00000q889.26062q891.87974q9032.1170q912.45393q92+20.4215q93+0.324441q94+2.08352q952.22696q9613.6240q9714.3971q98+1.95936q99+O(q100)q-1.00000 q^{2} +2.22696 q^{3} +1.00000 q^{4} +0.959363 q^{5} -2.22696 q^{6} +4.62570 q^{7} -1.00000 q^{8} +1.95936 q^{9} -0.959363 q^{10} +1.00000 q^{11} +2.22696 q^{12} -6.94316 q^{13} -4.62570 q^{14} +2.13646 q^{15} +1.00000 q^{16} -1.00000 q^{17} -1.95936 q^{18} +2.17177 q^{19} +0.959363 q^{20} +10.3013 q^{21} -1.00000 q^{22} -2.45393 q^{23} -2.22696 q^{24} -4.07962 q^{25} +6.94316 q^{26} -2.31746 q^{27} +4.62570 q^{28} -7.17012 q^{29} -2.13646 q^{30} +9.17012 q^{31} -1.00000 q^{32} +2.22696 q^{33} +1.00000 q^{34} +4.43772 q^{35} +1.95936 q^{36} +10.6257 q^{37} -2.17177 q^{38} -15.4622 q^{39} -0.959363 q^{40} -10.5834 q^{41} -10.3013 q^{42} -1.75683 q^{43} +1.00000 q^{44} +1.87974 q^{45} +2.45393 q^{46} -0.324441 q^{47} +2.22696 q^{48} +14.3971 q^{49} +4.07962 q^{50} -2.22696 q^{51} -6.94316 q^{52} +4.71620 q^{53} +2.31746 q^{54} +0.959363 q^{55} -4.62570 q^{56} +4.83646 q^{57} +7.17012 q^{58} +13.7053 q^{59} +2.13646 q^{60} -0.453925 q^{61} -9.17012 q^{62} +9.06342 q^{63} +1.00000 q^{64} -6.66101 q^{65} -2.22696 q^{66} -0.453925 q^{67} -1.00000 q^{68} -5.46480 q^{69} -4.43772 q^{70} -13.8050 q^{71} -1.95936 q^{72} +0.861884 q^{73} -10.6257 q^{74} -9.08517 q^{75} +2.17177 q^{76} +4.62570 q^{77} +15.4622 q^{78} -3.10571 q^{79} +0.959363 q^{80} -11.0390 q^{81} +10.5834 q^{82} +3.26062 q^{83} +10.3013 q^{84} -0.959363 q^{85} +1.75683 q^{86} -15.9676 q^{87} -1.00000 q^{88} -9.26062 q^{89} -1.87974 q^{90} -32.1170 q^{91} -2.45393 q^{92} +20.4215 q^{93} +0.324441 q^{94} +2.08352 q^{95} -2.22696 q^{96} -13.6240 q^{97} -14.3971 q^{98} +1.95936 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+q3+4q4+5q5q6+q74q8+9q95q10+4q11+q123q13q14+4q164q179q18+7q19+5q20+8q214q22++9q99+O(q100) 4 q - 4 q^{2} + q^{3} + 4 q^{4} + 5 q^{5} - q^{6} + q^{7} - 4 q^{8} + 9 q^{9} - 5 q^{10} + 4 q^{11} + q^{12} - 3 q^{13} - q^{14} + 4 q^{16} - 4 q^{17} - 9 q^{18} + 7 q^{19} + 5 q^{20} + 8 q^{21} - 4 q^{22}+ \cdots + 9 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 2.22696 1.28574 0.642869 0.765976i 0.277744π-0.277744\pi
0.642869 + 0.765976i 0.277744π0.277744\pi
44 1.00000 0.500000
55 0.959363 0.429040 0.214520 0.976720i 0.431181π-0.431181\pi
0.214520 + 0.976720i 0.431181π0.431181\pi
66 −2.22696 −0.909154
77 4.62570 1.74835 0.874175 0.485611i 0.161403π-0.161403\pi
0.874175 + 0.485611i 0.161403π0.161403\pi
88 −1.00000 −0.353553
99 1.95936 0.653121
1010 −0.959363 −0.303377
1111 1.00000 0.301511
1212 2.22696 0.642869
1313 −6.94316 −1.92569 −0.962843 0.270062i 0.912956π-0.912956\pi
−0.962843 + 0.270062i 0.912956π0.912956\pi
1414 −4.62570 −1.23627
1515 2.13646 0.551633
1616 1.00000 0.250000
1717 −1.00000 −0.242536
1818 −1.95936 −0.461826
1919 2.17177 0.498239 0.249119 0.968473i 0.419859π-0.419859\pi
0.249119 + 0.968473i 0.419859π0.419859\pi
2020 0.959363 0.214520
2121 10.3013 2.24792
2222 −1.00000 −0.213201
2323 −2.45393 −0.511679 −0.255839 0.966719i 0.582352π-0.582352\pi
−0.255839 + 0.966719i 0.582352π0.582352\pi
2424 −2.22696 −0.454577
2525 −4.07962 −0.815925
2626 6.94316 1.36167
2727 −2.31746 −0.445996
2828 4.62570 0.874175
2929 −7.17012 −1.33146 −0.665729 0.746194i 0.731879π-0.731879\pi
−0.665729 + 0.746194i 0.731879π0.731879\pi
3030 −2.13646 −0.390063
3131 9.17012 1.64700 0.823501 0.567314i 0.192018π-0.192018\pi
0.823501 + 0.567314i 0.192018π0.192018\pi
3232 −1.00000 −0.176777
3333 2.22696 0.387664
3434 1.00000 0.171499
3535 4.43772 0.750112
3636 1.95936 0.326560
3737 10.6257 1.74685 0.873427 0.486955i 0.161892π-0.161892\pi
0.873427 + 0.486955i 0.161892π0.161892\pi
3838 −2.17177 −0.352308
3939 −15.4622 −2.47593
4040 −0.959363 −0.151689
4141 −10.5834 −1.65285 −0.826425 0.563046i 0.809629π-0.809629\pi
−0.826425 + 0.563046i 0.809629π0.809629\pi
4242 −10.3013 −1.58952
4343 −1.75683 −0.267915 −0.133957 0.990987i 0.542769π-0.542769\pi
−0.133957 + 0.990987i 0.542769π0.542769\pi
4444 1.00000 0.150756
4545 1.87974 0.280215
4646 2.45393 0.361812
4747 −0.324441 −0.0473246 −0.0236623 0.999720i 0.507533π-0.507533\pi
−0.0236623 + 0.999720i 0.507533π0.507533\pi
4848 2.22696 0.321434
4949 14.3971 2.05673
5050 4.07962 0.576946
5151 −2.22696 −0.311837
5252 −6.94316 −0.962843
5353 4.71620 0.647819 0.323910 0.946088i 0.395003π-0.395003\pi
0.323910 + 0.946088i 0.395003π0.395003\pi
5454 2.31746 0.315366
5555 0.959363 0.129360
5656 −4.62570 −0.618135
5757 4.83646 0.640604
5858 7.17012 0.941483
5959 13.7053 1.78428 0.892140 0.451758i 0.149203π-0.149203\pi
0.892140 + 0.451758i 0.149203π0.149203\pi
6060 2.13646 0.275816
6161 −0.453925 −0.0581192 −0.0290596 0.999578i 0.509251π-0.509251\pi
−0.0290596 + 0.999578i 0.509251π0.509251\pi
6262 −9.17012 −1.16461
6363 9.06342 1.14188
6464 1.00000 0.125000
6565 −6.66101 −0.826196
6666 −2.22696 −0.274120
6767 −0.453925 −0.0554558 −0.0277279 0.999616i 0.508827π-0.508827\pi
−0.0277279 + 0.999616i 0.508827π0.508827\pi
6868 −1.00000 −0.121268
6969 −5.46480 −0.657885
7070 −4.43772 −0.530409
7171 −13.8050 −1.63836 −0.819179 0.573539i 0.805570π-0.805570\pi
−0.819179 + 0.573539i 0.805570π0.805570\pi
7272 −1.95936 −0.230913
7373 0.861884 0.100876 0.0504379 0.998727i 0.483938π-0.483938\pi
0.0504379 + 0.998727i 0.483938π0.483938\pi
7474 −10.6257 −1.23521
7575 −9.08517 −1.04906
7676 2.17177 0.249119
7777 4.62570 0.527147
7878 15.4622 1.75074
7979 −3.10571 −0.349420 −0.174710 0.984620i 0.555899π-0.555899\pi
−0.174710 + 0.984620i 0.555899π0.555899\pi
8080 0.959363 0.107260
8181 −11.0390 −1.22655
8282 10.5834 1.16874
8383 3.26062 0.357900 0.178950 0.983858i 0.442730π-0.442730\pi
0.178950 + 0.983858i 0.442730π0.442730\pi
8484 10.3013 1.12396
8585 −0.959363 −0.104057
8686 1.75683 0.189444
8787 −15.9676 −1.71191
8888 −1.00000 −0.106600
8989 −9.26062 −0.981624 −0.490812 0.871266i 0.663300π-0.663300\pi
−0.490812 + 0.871266i 0.663300π0.663300\pi
9090 −1.87974 −0.198142
9191 −32.1170 −3.36677
9292 −2.45393 −0.255839
9393 20.4215 2.11761
9494 0.324441 0.0334635
9595 2.08352 0.213764
9696 −2.22696 −0.227288
9797 −13.6240 −1.38331 −0.691656 0.722227i 0.743119π-0.743119\pi
−0.691656 + 0.722227i 0.743119π0.743119\pi
9898 −14.3971 −1.45433
9999 1.95936 0.196923
100100 −4.07962 −0.407962
101101 −6.95936 −0.692482 −0.346241 0.938146i 0.612542π-0.612542\pi
−0.346241 + 0.938146i 0.612542π0.612542\pi
102102 2.22696 0.220502
103103 −13.2867 −1.30918 −0.654589 0.755985i 0.727158π-0.727158\pi
−0.654589 + 0.755985i 0.727158π0.727158\pi
104104 6.94316 0.680833
105105 9.88264 0.964447
106106 −4.71620 −0.458077
107107 −1.28380 −0.124110 −0.0620550 0.998073i 0.519765π-0.519765\pi
−0.0620550 + 0.998073i 0.519765π0.519765\pi
108108 −2.31746 −0.222998
109109 11.6240 1.11338 0.556691 0.830720i 0.312071π-0.312071\pi
0.556691 + 0.830720i 0.312071π0.312071\pi
110110 −0.959363 −0.0914716
111111 23.6630 2.24600
112112 4.62570 0.437087
113113 2.79747 0.263164 0.131582 0.991305i 0.457994π-0.457994\pi
0.131582 + 0.991305i 0.457994π0.457994\pi
114114 −4.83646 −0.452976
115115 −2.35420 −0.219531
116116 −7.17012 −0.665729
117117 −13.6042 −1.25771
118118 −13.7053 −1.26168
119119 −4.62570 −0.424037
120120 −2.13646 −0.195032
121121 1.00000 0.0909091
122122 0.453925 0.0410965
123123 −23.5689 −2.12513
124124 9.17012 0.823501
125125 −8.71065 −0.779104
126126 −9.06342 −0.807434
127127 16.4539 1.46005 0.730025 0.683421i 0.239508π-0.239508\pi
0.730025 + 0.683421i 0.239508π0.239508\pi
128128 −1.00000 −0.0883883
129129 −3.91240 −0.344468
130130 6.66101 0.584209
131131 9.43239 0.824112 0.412056 0.911159i 0.364811π-0.364811\pi
0.412056 + 0.911159i 0.364811π0.364811\pi
132132 2.22696 0.193832
133133 10.0460 0.871096
134134 0.453925 0.0392132
135135 −2.22329 −0.191350
136136 1.00000 0.0857493
137137 −6.48923 −0.554413 −0.277206 0.960810i 0.589409π-0.589409\pi
−0.277206 + 0.960810i 0.589409π0.589409\pi
138138 5.46480 0.465195
139139 −4.29138 −0.363990 −0.181995 0.983299i 0.558255π-0.558255\pi
−0.181995 + 0.983299i 0.558255π0.558255\pi
140140 4.43772 0.375056
141141 −0.722518 −0.0608470
142142 13.8050 1.15849
143143 −6.94316 −0.580616
144144 1.95936 0.163280
145145 −6.87875 −0.571249
146146 −0.861884 −0.0713300
147147 32.0618 2.64441
148148 10.6257 0.873427
149149 10.1272 0.829656 0.414828 0.909900i 0.363842π-0.363842\pi
0.414828 + 0.909900i 0.363842π0.363842\pi
150150 9.08517 0.741801
151151 6.71620 0.546556 0.273278 0.961935i 0.411892π-0.411892\pi
0.273278 + 0.961935i 0.411892π0.411892\pi
152152 −2.17177 −0.176154
153153 −1.95936 −0.158405
154154 −4.62570 −0.372749
155155 8.79747 0.706630
156156 −15.4622 −1.23796
157157 0.424821 0.0339044 0.0169522 0.999856i 0.494604π-0.494604\pi
0.0169522 + 0.999856i 0.494604π0.494604\pi
158158 3.10571 0.247077
159159 10.5028 0.832926
160160 −0.959363 −0.0758443
161161 −11.3511 −0.894593
162162 11.0390 0.867305
163163 −17.3809 −1.36138 −0.680688 0.732574i 0.738319π-0.738319\pi
−0.680688 + 0.732574i 0.738319π0.738319\pi
164164 −10.5834 −0.826425
165165 2.13646 0.166324
166166 −3.26062 −0.253073
167167 1.83811 0.142237 0.0711186 0.997468i 0.477343π-0.477343\pi
0.0711186 + 0.997468i 0.477343π0.477343\pi
168168 −10.3013 −0.794759
169169 35.2075 2.70827
170170 0.959363 0.0735797
171171 4.25529 0.325410
172172 −1.75683 −0.133957
173173 16.9079 1.28548 0.642740 0.766084i 0.277798π-0.277798\pi
0.642740 + 0.766084i 0.277798π0.277798\pi
174174 15.9676 1.21050
175175 −18.8711 −1.42652
176176 1.00000 0.0753778
177177 30.5212 2.29412
178178 9.26062 0.694113
179179 0.343546 0.0256778 0.0128389 0.999918i 0.495913π-0.495913\pi
0.0128389 + 0.999918i 0.495913π0.495913\pi
180180 1.87974 0.140107
181181 16.3082 1.21218 0.606091 0.795395i 0.292737π-0.292737\pi
0.606091 + 0.795395i 0.292737π0.292737\pi
182182 32.1170 2.38067
183183 −1.01087 −0.0747260
184184 2.45393 0.180906
185185 10.1939 0.749470
186186 −20.4215 −1.49738
187187 −1.00000 −0.0731272
188188 −0.324441 −0.0236623
189189 −10.7199 −0.779756
190190 −2.08352 −0.151154
191191 −5.74063 −0.415377 −0.207689 0.978195i 0.566594π-0.566594\pi
−0.207689 + 0.978195i 0.566594π0.566594\pi
192192 2.22696 0.160717
193193 −12.4080 −0.893144 −0.446572 0.894748i 0.647355π-0.647355\pi
−0.446572 + 0.894748i 0.647355π0.647355\pi
194194 13.6240 0.978150
195195 −14.8338 −1.06227
196196 14.3971 1.02836
197197 6.74860 0.480818 0.240409 0.970672i 0.422718π-0.422718\pi
0.240409 + 0.970672i 0.422718π0.422718\pi
198198 −1.95936 −0.139246
199199 8.53520 0.605044 0.302522 0.953142i 0.402171π-0.402171\pi
0.302522 + 0.953142i 0.402171π0.402171\pi
200200 4.07962 0.288473
201201 −1.01087 −0.0713016
202202 6.95936 0.489659
203203 −33.1668 −2.32785
204204 −2.22696 −0.155919
205205 −10.1533 −0.709139
206206 13.2867 0.925729
207207 −4.80813 −0.334188
208208 −6.94316 −0.481421
209209 2.17177 0.150225
210210 −9.88264 −0.681967
211211 −0.162550 −0.0111904 −0.00559519 0.999984i 0.501781π-0.501781\pi
−0.00559519 + 0.999984i 0.501781π0.501781\pi
212212 4.71620 0.323910
213213 −30.7433 −2.10650
214214 1.28380 0.0877590
215215 −1.68544 −0.114946
216216 2.31746 0.157683
217217 42.4182 2.87954
218218 −11.6240 −0.787280
219219 1.91938 0.129700
220220 0.959363 0.0646802
221221 6.94316 0.467047
222222 −23.6630 −1.58816
223223 −10.1718 −0.681152 −0.340576 0.940217i 0.610622π-0.610622\pi
−0.340576 + 0.940217i 0.610622π0.610622\pi
224224 −4.62570 −0.309067
225225 −7.99346 −0.532897
226226 −2.79747 −0.186085
227227 −29.0380 −1.92732 −0.963660 0.267133i 0.913924π-0.913924\pi
−0.963660 + 0.267133i 0.913924π0.913924\pi
228228 4.83646 0.320302
229229 15.9967 1.05709 0.528546 0.848905i 0.322738π-0.322738\pi
0.528546 + 0.848905i 0.322738π0.322738\pi
230230 2.35420 0.155232
231231 10.3013 0.677773
232232 7.17012 0.470742
233233 5.93228 0.388637 0.194318 0.980939i 0.437750π-0.437750\pi
0.194318 + 0.980939i 0.437750π0.437750\pi
234234 13.6042 0.889332
235235 −0.311257 −0.0203041
236236 13.7053 0.892140
237237 −6.91630 −0.449262
238238 4.62570 0.299839
239239 21.8157 1.41114 0.705570 0.708640i 0.250691π-0.250691\pi
0.705570 + 0.708640i 0.250691π0.250691\pi
240240 2.13646 0.137908
241241 6.90785 0.444974 0.222487 0.974936i 0.428583π-0.428583\pi
0.222487 + 0.974936i 0.428583π0.428583\pi
242242 −1.00000 −0.0642824
243243 −17.6310 −1.13103
244244 −0.453925 −0.0290596
245245 13.8120 0.882418
246246 23.5689 1.50270
247247 −15.0790 −0.959452
248248 −9.17012 −0.582303
249249 7.26128 0.460165
250250 8.71065 0.550910
251251 1.57518 0.0994244 0.0497122 0.998764i 0.484170π-0.484170\pi
0.0497122 + 0.998764i 0.484170π0.484170\pi
252252 9.06342 0.570942
253253 −2.45393 −0.154277
254254 −16.4539 −1.03241
255255 −2.13646 −0.133791
256256 1.00000 0.0625000
257257 4.73608 0.295428 0.147714 0.989030i 0.452808π-0.452808\pi
0.147714 + 0.989030i 0.452808π0.452808\pi
258258 3.91240 0.243576
259259 49.1513 3.05411
260260 −6.66101 −0.413098
261261 −14.0489 −0.869603
262262 −9.43239 −0.582735
263263 14.6838 0.905441 0.452721 0.891652i 0.350453π-0.350453\pi
0.452721 + 0.891652i 0.350453π0.350453\pi
264264 −2.22696 −0.137060
265265 4.52454 0.277940
266266 −10.0460 −0.615958
267267 −20.6231 −1.26211
268268 −0.453925 −0.0277279
269269 9.37430 0.571561 0.285781 0.958295i 0.407747π-0.407747\pi
0.285781 + 0.958295i 0.407747π0.407747\pi
270270 2.22329 0.135305
271271 2.87875 0.174871 0.0874357 0.996170i 0.472133π-0.472133\pi
0.0874357 + 0.996170i 0.472133π0.472133\pi
272272 −1.00000 −0.0606339
273273 −71.5233 −4.32878
274274 6.48923 0.392029
275275 −4.07962 −0.246011
276276 −5.46480 −0.328942
277277 −14.4506 −0.868254 −0.434127 0.900852i 0.642943π-0.642943\pi
−0.434127 + 0.900852i 0.642943π0.642943\pi
278278 4.29138 0.257380
279279 17.9676 1.07569
280280 −4.43772 −0.265205
281281 −14.5319 −0.866900 −0.433450 0.901178i 0.642704π-0.642704\pi
−0.433450 + 0.901178i 0.642704π0.642704\pi
282282 0.722518 0.0430253
283283 −5.26984 −0.313260 −0.156630 0.987657i 0.550063π-0.550063\pi
−0.156630 + 0.987657i 0.550063π0.550063\pi
284284 −13.8050 −0.819179
285285 4.63992 0.274845
286286 6.94316 0.410558
287287 −48.9557 −2.88976
288288 −1.95936 −0.115457
289289 1.00000 0.0588235
290290 6.87875 0.403934
291291 −30.3402 −1.77858
292292 0.861884 0.0504379
293293 16.1262 0.942102 0.471051 0.882106i 0.343875π-0.343875\pi
0.471051 + 0.882106i 0.343875π0.343875\pi
294294 −32.0618 −1.86988
295295 13.1484 0.765528
296296 −10.6257 −0.617606
297297 −2.31746 −0.134473
298298 −10.1272 −0.586655
299299 17.0380 0.985333
300300 −9.08517 −0.524532
301301 −8.12658 −0.468408
302302 −6.71620 −0.386474
303303 −15.4982 −0.890351
304304 2.17177 0.124560
305305 −0.435479 −0.0249354
306306 1.95936 0.112009
307307 2.03201 0.115973 0.0579863 0.998317i 0.481532π-0.481532\pi
0.0579863 + 0.998317i 0.481532π0.481532\pi
308308 4.62570 0.263574
309309 −29.5890 −1.68326
310310 −8.79747 −0.499663
311311 14.7453 0.836129 0.418065 0.908417i 0.362709π-0.362709\pi
0.418065 + 0.908417i 0.362709π0.362709\pi
312312 15.4622 0.875372
313313 −25.4628 −1.43924 −0.719622 0.694366i 0.755685π-0.755685\pi
−0.719622 + 0.694366i 0.755685π0.755685\pi
314314 −0.424821 −0.0239740
315315 8.69511 0.489914
316316 −3.10571 −0.174710
317317 −3.62405 −0.203547 −0.101773 0.994808i 0.532452π-0.532452\pi
−0.101773 + 0.994808i 0.532452π0.532452\pi
318318 −10.5028 −0.588967
319319 −7.17012 −0.401450
320320 0.959363 0.0536300
321321 −2.85898 −0.159573
322322 11.3511 0.632573
323323 −2.17177 −0.120841
324324 −11.0390 −0.613277
325325 28.3255 1.57121
326326 17.3809 0.962638
327327 25.8863 1.43152
328328 10.5834 0.584371
329329 −1.50077 −0.0827399
330330 −2.13646 −0.117609
331331 2.40506 0.132194 0.0660970 0.997813i 0.478945π-0.478945\pi
0.0660970 + 0.997813i 0.478945π0.478945\pi
332332 3.26062 0.178950
333333 20.8196 1.14091
334334 −1.83811 −0.100577
335335 −0.435479 −0.0237928
336336 10.3013 0.561980
337337 4.24317 0.231140 0.115570 0.993299i 0.463131π-0.463131\pi
0.115570 + 0.993299i 0.463131π0.463131\pi
338338 −35.2075 −1.91503
339339 6.22986 0.338360
340340 −0.959363 −0.0520287
341341 9.17012 0.496590
342342 −4.25529 −0.230100
343343 34.2167 1.84753
344344 1.75683 0.0947221
345345 −5.24272 −0.282259
346346 −16.9079 −0.908972
347347 −10.7162 −0.575276 −0.287638 0.957739i 0.592870π-0.592870\pi
−0.287638 + 0.957739i 0.592870π0.592870\pi
348348 −15.9676 −0.855953
349349 −13.8375 −0.740702 −0.370351 0.928892i 0.620763π-0.620763\pi
−0.370351 + 0.928892i 0.620763π0.620763\pi
350350 18.8711 1.00870
351351 16.0905 0.858847
352352 −1.00000 −0.0533002
353353 9.29961 0.494968 0.247484 0.968892i 0.420396π-0.420396\pi
0.247484 + 0.968892i 0.420396π0.420396\pi
354354 −30.5212 −1.62219
355355 −13.2440 −0.702921
356356 −9.26062 −0.490812
357357 −10.3013 −0.545200
358358 −0.343546 −0.0181570
359359 3.54607 0.187155 0.0935773 0.995612i 0.470170π-0.470170\pi
0.0935773 + 0.995612i 0.470170π0.470170\pi
360360 −1.87974 −0.0990709
361361 −14.2834 −0.751758
362362 −16.3082 −0.857142
363363 2.22696 0.116885
364364 −32.1170 −1.68339
365365 0.826859 0.0432798
366366 1.01087 0.0528393
367367 18.6165 0.971772 0.485886 0.874022i 0.338497π-0.338497\pi
0.485886 + 0.874022i 0.338497π0.338497\pi
368368 −2.45393 −0.127920
369369 −20.7367 −1.07951
370370 −10.1939 −0.529955
371371 21.8157 1.13261
372372 20.4215 1.05881
373373 −16.8986 −0.874978 −0.437489 0.899224i 0.644132π-0.644132\pi
−0.437489 + 0.899224i 0.644132π0.644132\pi
374374 1.00000 0.0517088
375375 −19.3983 −1.00172
376376 0.324441 0.0167318
377377 49.7833 2.56397
378378 10.7199 0.551371
379379 17.0558 0.876097 0.438048 0.898951i 0.355670π-0.355670\pi
0.438048 + 0.898951i 0.355670π0.355670\pi
380380 2.08352 0.106882
381381 36.6423 1.87724
382382 5.74063 0.293716
383383 −7.09215 −0.362392 −0.181196 0.983447i 0.557997π-0.557997\pi
−0.181196 + 0.983447i 0.557997π0.557997\pi
384384 −2.22696 −0.113644
385385 4.43772 0.226167
386386 12.4080 0.631548
387387 −3.44227 −0.174981
388388 −13.6240 −0.691656
389389 0.826576 0.0419090 0.0209545 0.999780i 0.493329π-0.493329\pi
0.0209545 + 0.999780i 0.493329π0.493329\pi
390390 14.8338 0.751139
391391 2.45393 0.124100
392392 −14.3971 −0.727163
393393 21.0056 1.05959
394394 −6.74860 −0.339990
395395 −2.97950 −0.149915
396396 1.95936 0.0984617
397397 30.2173 1.51656 0.758282 0.651926i 0.226039π-0.226039\pi
0.758282 + 0.651926i 0.226039π0.226039\pi
398398 −8.53520 −0.427831
399399 22.3720 1.12000
400400 −4.07962 −0.203981
401401 18.1301 0.905376 0.452688 0.891669i 0.350465π-0.350465\pi
0.452688 + 0.891669i 0.350465π0.350465\pi
402402 1.01087 0.0504178
403403 −63.6696 −3.17161
404404 −6.95936 −0.346241
405405 −10.5904 −0.526241
406406 33.1668 1.64604
407407 10.6257 0.526696
408408 2.22696 0.110251
409409 −9.78660 −0.483916 −0.241958 0.970287i 0.577790π-0.577790\pi
−0.241958 + 0.970287i 0.577790π0.577790\pi
410410 10.1533 0.501437
411411 −14.4513 −0.712829
412412 −13.2867 −0.654589
413413 63.3967 3.11955
414414 4.80813 0.236307
415415 3.12812 0.153553
416416 6.94316 0.340416
417417 −9.55673 −0.467995
418418 −2.17177 −0.106225
419419 25.5811 1.24972 0.624859 0.780737i 0.285156π-0.285156\pi
0.624859 + 0.780737i 0.285156π0.285156\pi
420420 9.88264 0.482223
421421 −33.5592 −1.63558 −0.817788 0.575519i 0.804800π-0.804800\pi
−0.817788 + 0.575519i 0.804800π0.804800\pi
422422 0.162550 0.00791280
423423 −0.635698 −0.0309087
424424 −4.71620 −0.229039
425425 4.07962 0.197891
426426 30.7433 1.48952
427427 −2.09972 −0.101613
428428 −1.28380 −0.0620550
429429 −15.4622 −0.746520
430430 1.68544 0.0812792
431431 4.10116 0.197546 0.0987729 0.995110i 0.468508π-0.468508\pi
0.0987729 + 0.995110i 0.468508π0.468508\pi
432432 −2.31746 −0.111499
433433 −28.9758 −1.39249 −0.696245 0.717805i 0.745147π-0.745147\pi
−0.696245 + 0.717805i 0.745147π0.745147\pi
434434 −42.4182 −2.03614
435435 −15.3187 −0.734476
436436 11.6240 0.556691
437437 −5.32937 −0.254938
438438 −1.91938 −0.0917117
439439 −23.1675 −1.10572 −0.552862 0.833273i 0.686464π-0.686464\pi
−0.552862 + 0.833273i 0.686464π0.686464\pi
440440 −0.959363 −0.0457358
441441 28.2091 1.34329
442442 −6.94316 −0.330252
443443 −12.3693 −0.587685 −0.293843 0.955854i 0.594934π-0.594934\pi
−0.293843 + 0.955854i 0.594934π0.594934\pi
444444 23.6630 1.12300
445445 −8.88429 −0.421156
446446 10.1718 0.481647
447447 22.5530 1.06672
448448 4.62570 0.218544
449449 16.2114 0.765064 0.382532 0.923942i 0.375052π-0.375052\pi
0.382532 + 0.923942i 0.375052π0.375052\pi
450450 7.99346 0.376815
451451 −10.5834 −0.498353
452452 2.79747 0.131582
453453 14.9567 0.702728
454454 29.0380 1.36282
455455 −30.8118 −1.44448
456456 −4.83646 −0.226488
457457 −18.8754 −0.882956 −0.441478 0.897272i 0.645546π-0.645546\pi
−0.441478 + 0.897272i 0.645546π0.645546\pi
458458 −15.9967 −0.747477
459459 2.31746 0.108170
460460 −2.35420 −0.109765
461461 24.9583 1.16242 0.581212 0.813752i 0.302579π-0.302579\pi
0.581212 + 0.813752i 0.302579π0.302579\pi
462462 −10.3013 −0.479258
463463 14.5197 0.674786 0.337393 0.941364i 0.390455π-0.390455\pi
0.337393 + 0.941364i 0.390455π0.390455\pi
464464 −7.17012 −0.332865
465465 19.5916 0.908541
466466 −5.93228 −0.274808
467467 25.8355 1.19552 0.597761 0.801674i 0.296057π-0.296057\pi
0.597761 + 0.801674i 0.296057π0.296057\pi
468468 −13.6042 −0.628853
469469 −2.09972 −0.0969561
470470 0.311257 0.0143572
471471 0.946060 0.0435922
472472 −13.7053 −0.630839
473473 −1.75683 −0.0807793
474474 6.91630 0.317676
475475 −8.86002 −0.406525
476476 −4.62570 −0.212019
477477 9.24074 0.423104
478478 −21.8157 −0.997827
479479 4.01356 0.183384 0.0916921 0.995787i 0.470772π-0.470772\pi
0.0916921 + 0.995787i 0.470772π0.470772\pi
480480 −2.13646 −0.0975158
481481 −73.7759 −3.36389
482482 −6.90785 −0.314644
483483 −25.2785 −1.15021
484484 1.00000 0.0454545
485485 −13.0704 −0.593496
486486 17.6310 0.799760
487487 −11.7193 −0.531051 −0.265526 0.964104i 0.585546π-0.585546\pi
−0.265526 + 0.964104i 0.585546π0.585546\pi
488488 0.453925 0.0205482
489489 −38.7066 −1.75037
490490 −13.8120 −0.623964
491491 17.6538 0.796705 0.398353 0.917232i 0.369582π-0.369582\pi
0.398353 + 0.917232i 0.369582π0.369582\pi
492492 −23.5689 −1.06257
493493 7.17012 0.322926
494494 15.0790 0.678435
495495 1.87974 0.0844880
496496 9.17012 0.411751
497497 −63.8580 −2.86442
498498 −7.26128 −0.325386
499499 3.36798 0.150771 0.0753857 0.997154i 0.475981π-0.475981\pi
0.0753857 + 0.997154i 0.475981π0.475981\pi
500500 −8.71065 −0.389552
501501 4.09340 0.182880
502502 −1.57518 −0.0703037
503503 26.9475 1.20153 0.600765 0.799426i 0.294863π-0.294863\pi
0.600765 + 0.799426i 0.294863π0.294863\pi
504504 −9.06342 −0.403717
505505 −6.67655 −0.297103
506506 2.45393 0.109090
507507 78.4057 3.48212
508508 16.4539 0.730025
509509 −12.9045 −0.571984 −0.285992 0.958232i 0.592323π-0.592323\pi
−0.285992 + 0.958232i 0.592323π0.592323\pi
510510 2.13646 0.0946042
511511 3.98682 0.176366
512512 −1.00000 −0.0441942
513513 −5.03300 −0.222212
514514 −4.73608 −0.208899
515515 −12.7468 −0.561690
516516 −3.91240 −0.172234
517517 −0.324441 −0.0142689
518518 −49.1513 −2.15958
519519 37.6532 1.65279
520520 6.66101 0.292104
521521 −42.4076 −1.85791 −0.928954 0.370194i 0.879291π-0.879291\pi
−0.928954 + 0.370194i 0.879291π0.879291\pi
522522 14.0489 0.614902
523523 −8.84898 −0.386939 −0.193470 0.981106i 0.561974π-0.561974\pi
−0.193470 + 0.981106i 0.561974π0.561974\pi
524524 9.43239 0.412056
525525 −42.0253 −1.83413
526526 −14.6838 −0.640244
527527 −9.17012 −0.399457
528528 2.22696 0.0969161
529529 −16.9783 −0.738185
530530 −4.52454 −0.196534
531531 26.8537 1.16535
532532 10.0460 0.435548
533533 73.4823 3.18287
534534 20.6231 0.892447
535535 −1.23163 −0.0532481
536536 0.453925 0.0196066
537537 0.765064 0.0330149
538538 −9.37430 −0.404155
539539 14.3971 0.620126
540540 −2.22329 −0.0956750
541541 43.4291 1.86716 0.933581 0.358366i 0.116666π-0.116666\pi
0.933581 + 0.358366i 0.116666π0.116666\pi
542542 −2.87875 −0.123653
543543 36.3178 1.55855
544544 1.00000 0.0428746
545545 11.1517 0.477685
546546 71.5233 3.06091
547547 23.6240 1.01009 0.505046 0.863093i 0.331476π-0.331476\pi
0.505046 + 0.863093i 0.331476π0.331476\pi
548548 −6.48923 −0.277206
549549 −0.889404 −0.0379588
550550 4.07962 0.173956
551551 −15.5719 −0.663384
552552 5.46480 0.232597
553553 −14.3661 −0.610908
554554 14.4506 0.613948
555555 22.7014 0.963622
556556 −4.29138 −0.181995
557557 0.819879 0.0347394 0.0173697 0.999849i 0.494471π-0.494471\pi
0.0173697 + 0.999849i 0.494471π0.494471\pi
558558 −17.9676 −0.760629
559559 12.1980 0.515919
560560 4.43772 0.187528
561561 −2.22696 −0.0940224
562562 14.5319 0.612991
563563 7.15102 0.301379 0.150690 0.988581i 0.451851π-0.451851\pi
0.150690 + 0.988581i 0.451851π0.451851\pi
564564 −0.722518 −0.0304235
565565 2.68379 0.112908
566566 5.26984 0.221508
567567 −51.0630 −2.14445
568568 13.8050 0.579247
569569 −1.39749 −0.0585857 −0.0292928 0.999571i 0.509326π-0.509326\pi
−0.0292928 + 0.999571i 0.509326π0.509326\pi
570570 −4.63992 −0.194345
571571 26.9045 1.12592 0.562960 0.826484i 0.309662π-0.309662\pi
0.562960 + 0.826484i 0.309662π0.309662\pi
572572 −6.94316 −0.290308
573573 −12.7842 −0.534066
574574 48.9557 2.04337
575575 10.0111 0.417491
576576 1.95936 0.0816401
577577 20.6713 0.860556 0.430278 0.902696i 0.358416π-0.358416\pi
0.430278 + 0.902696i 0.358416π0.358416\pi
578578 −1.00000 −0.0415945
579579 −27.6321 −1.14835
580580 −6.87875 −0.285624
581581 15.0826 0.625733
582582 30.3402 1.25764
583583 4.71620 0.195325
584584 −0.861884 −0.0356650
585585 −13.0513 −0.539606
586586 −16.1262 −0.666166
587587 −17.9003 −0.738824 −0.369412 0.929266i 0.620441π-0.620441\pi
−0.369412 + 0.929266i 0.620441π0.620441\pi
588588 32.0618 1.32221
589589 19.9154 0.820601
590590 −13.1484 −0.541310
591591 15.0289 0.618206
592592 10.6257 0.436714
593593 −13.1701 −0.540832 −0.270416 0.962744i 0.587161π-0.587161\pi
−0.270416 + 0.962744i 0.587161π0.587161\pi
594594 2.31746 0.0950866
595595 −4.43772 −0.181929
596596 10.1272 0.414828
597597 19.0076 0.777928
598598 −17.0380 −0.696735
599599 21.8157 0.891365 0.445683 0.895191i 0.352961π-0.352961\pi
0.445683 + 0.895191i 0.352961π0.352961\pi
600600 9.08517 0.370900
601601 −10.0721 −0.410848 −0.205424 0.978673i 0.565857π-0.565857\pi
−0.205424 + 0.978673i 0.565857π0.565857\pi
602602 8.12658 0.331215
603603 −0.889404 −0.0362193
604604 6.71620 0.273278
605605 0.959363 0.0390036
606606 15.4982 0.629573
607607 −22.0971 −0.896893 −0.448446 0.893810i 0.648022π-0.648022\pi
−0.448446 + 0.893810i 0.648022π0.648022\pi
608608 −2.17177 −0.0880770
609609 −73.8613 −2.99301
610610 0.435479 0.0176320
611611 2.25265 0.0911323
612612 −1.95936 −0.0792025
613613 36.8523 1.48845 0.744224 0.667930i 0.232819π-0.232819\pi
0.744224 + 0.667930i 0.232819π0.232819\pi
614614 −2.03201 −0.0820051
615615 −22.6111 −0.911767
616616 −4.62570 −0.186375
617617 −28.5286 −1.14852 −0.574259 0.818674i 0.694710π-0.694710\pi
−0.574259 + 0.818674i 0.694710π0.694710\pi
618618 29.5890 1.19024
619619 11.8219 0.475162 0.237581 0.971368i 0.423645π-0.423645\pi
0.237581 + 0.971368i 0.423645π0.423645\pi
620620 8.79747 0.353315
621621 5.68688 0.228206
622622 −14.7453 −0.591233
623623 −42.8368 −1.71622
624624 −15.4622 −0.618982
625625 12.0414 0.481658
626626 25.4628 1.01770
627627 4.83646 0.193149
628628 0.424821 0.0169522
629629 −10.6257 −0.423674
630630 −8.69511 −0.346421
631631 −2.06573 −0.0822354 −0.0411177 0.999154i 0.513092π-0.513092\pi
−0.0411177 + 0.999154i 0.513092π0.513092\pi
632632 3.10571 0.123538
633633 −0.361992 −0.0143879
634634 3.62405 0.143929
635635 15.7853 0.626420
636636 10.5028 0.416463
637637 −99.9612 −3.96061
638638 7.17012 0.283868
639639 −27.0491 −1.07005
640640 −0.959363 −0.0379221
641641 −8.63162 −0.340928 −0.170464 0.985364i 0.554527π-0.554527\pi
−0.170464 + 0.985364i 0.554527π0.554527\pi
642642 2.85898 0.112835
643643 −29.0704 −1.14642 −0.573212 0.819407i 0.694303π-0.694303\pi
−0.573212 + 0.819407i 0.694303π0.694303\pi
644644 −11.3511 −0.447297
645645 −3.75341 −0.147790
646646 2.17177 0.0854473
647647 36.4060 1.43127 0.715633 0.698476i 0.246138π-0.246138\pi
0.715633 + 0.698476i 0.246138π0.246138\pi
648648 11.0390 0.433652
649649 13.7053 0.537981
650650 −28.3255 −1.11102
651651 94.4638 3.70233
652652 −17.3809 −0.680688
653653 −47.1436 −1.84487 −0.922436 0.386149i 0.873805π-0.873805\pi
−0.922436 + 0.386149i 0.873805π0.873805\pi
654654 −25.8863 −1.01224
655655 9.04908 0.353577
656656 −10.5834 −0.413213
657657 1.68874 0.0658842
658658 1.50077 0.0585060
659659 12.4936 0.486680 0.243340 0.969941i 0.421757π-0.421757\pi
0.243340 + 0.969941i 0.421757π0.421757\pi
660660 2.13646 0.0831618
661661 2.97847 0.115849 0.0579245 0.998321i 0.481552π-0.481552\pi
0.0579245 + 0.998321i 0.481552π0.481552\pi
662662 −2.40506 −0.0934752
663663 15.4622 0.600500
664664 −3.26062 −0.126537
665665 9.63772 0.373735
666666 −20.8196 −0.806743
667667 17.5949 0.681279
668668 1.83811 0.0711186
669669 −22.6522 −0.875783
670670 0.435479 0.0168240
671671 −0.453925 −0.0175236
672672 −10.3013 −0.397380
673673 26.7460 1.03098 0.515490 0.856895i 0.327610π-0.327610\pi
0.515490 + 0.856895i 0.327610π0.327610\pi
674674 −4.24317 −0.163441
675675 9.45437 0.363899
676676 35.2075 1.35413
677677 26.7096 1.02653 0.513266 0.858229i 0.328435π-0.328435\pi
0.513266 + 0.858229i 0.328435π0.328435\pi
678678 −6.22986 −0.239256
679679 −63.0207 −2.41851
680680 0.959363 0.0367899
681681 −64.6665 −2.47803
682682 −9.17012 −0.351142
683683 13.8024 0.528134 0.264067 0.964504i 0.414936π-0.414936\pi
0.264067 + 0.964504i 0.414936π0.414936\pi
684684 4.25529 0.162705
685685 −6.22553 −0.237865
686686 −34.2167 −1.30640
687687 35.6240 1.35914
688688 −1.75683 −0.0669787
689689 −32.7453 −1.24750
690690 5.24272 0.199587
691691 30.8140 1.17222 0.586111 0.810231i 0.300658π-0.300658\pi
0.586111 + 0.810231i 0.300658π0.300658\pi
692692 16.9079 0.642740
693693 9.06342 0.344291
694694 10.7162 0.406781
695695 −4.11698 −0.156166
696696 15.9676 0.605250
697697 10.5834 0.400875
698698 13.8375 0.523755
699699 13.2110 0.499685
700700 −18.8711 −0.713261
701701 35.0181 1.32262 0.661308 0.750115i 0.270002π-0.270002\pi
0.661308 + 0.750115i 0.270002π0.270002\pi
702702 −16.0905 −0.607297
703703 23.0766 0.870351
704704 1.00000 0.0376889
705705 −0.693157 −0.0261058
706706 −9.29961 −0.349995
707707 −32.1919 −1.21070
708708 30.5212 1.14706
709709 20.0979 0.754791 0.377395 0.926052i 0.376820π-0.376820\pi
0.377395 + 0.926052i 0.376820π0.376820\pi
710710 13.2440 0.497040
711711 −6.08521 −0.228213
712712 9.26062 0.347056
713713 −22.5028 −0.842736
714714 10.3013 0.385515
715715 −6.66101 −0.249108
716716 0.343546 0.0128389
717717 48.5828 1.81436
718718 −3.54607 −0.132338
719719 22.3369 0.833027 0.416514 0.909129i 0.363252π-0.363252\pi
0.416514 + 0.909129i 0.363252π0.363252\pi
720720 1.87974 0.0700537
721721 −61.4603 −2.28890
722722 14.2834 0.531573
723723 15.3835 0.572119
724724 16.3082 0.606091
725725 29.2514 1.08637
726726 −2.22696 −0.0826503
727727 −0.0168621 −0.000625380 0 −0.000312690 1.00000i 0.500100π-0.500100\pi
−0.000312690 1.00000i 0.500100π0.500100\pi
728728 32.1170 1.19033
729729 −6.14668 −0.227655
730730 −0.826859 −0.0306034
731731 1.75683 0.0649788
732732 −1.01087 −0.0373630
733733 −17.2032 −0.635414 −0.317707 0.948189i 0.602913π-0.602913\pi
−0.317707 + 0.948189i 0.602913π0.602913\pi
734734 −18.6165 −0.687147
735735 30.7589 1.13456
736736 2.45393 0.0904529
737737 −0.453925 −0.0167206
738738 20.7367 0.763330
739739 32.1457 1.18250 0.591249 0.806489i 0.298635π-0.298635\pi
0.591249 + 0.806489i 0.298635π0.298635\pi
740740 10.1939 0.374735
741741 −33.5803 −1.23360
742742 −21.8157 −0.800880
743743 −50.2596 −1.84385 −0.921923 0.387372i 0.873383π-0.873383\pi
−0.921923 + 0.387372i 0.873383π0.873383\pi
744744 −20.4215 −0.748689
745745 9.71570 0.355956
746746 16.8986 0.618703
747747 6.38874 0.233752
748748 −1.00000 −0.0365636
749749 −5.93849 −0.216988
750750 19.3983 0.708326
751751 −5.55343 −0.202648 −0.101324 0.994854i 0.532308π-0.532308\pi
−0.101324 + 0.994854i 0.532308π0.532308\pi
752752 −0.324441 −0.0118312
753753 3.50787 0.127834
754754 −49.7833 −1.81300
755755 6.44327 0.234495
756756 −10.7199 −0.389878
757757 −42.7400 −1.55341 −0.776706 0.629863i 0.783111π-0.783111\pi
−0.776706 + 0.629863i 0.783111π0.783111\pi
758758 −17.0558 −0.619494
759759 −5.46480 −0.198360
760760 −2.08352 −0.0755771
761761 −1.18408 −0.0429230 −0.0214615 0.999770i 0.506832π-0.506832\pi
−0.0214615 + 0.999770i 0.506832π0.506832\pi
762762 −36.6423 −1.32741
763763 53.7693 1.94658
764764 −5.74063 −0.207689
765765 −1.87974 −0.0679621
766766 7.09215 0.256250
767767 −95.1582 −3.43596
768768 2.22696 0.0803586
769769 18.3369 0.661247 0.330623 0.943763i 0.392741π-0.392741\pi
0.330623 + 0.943763i 0.392741π0.392741\pi
770770 −4.43772 −0.159924
771771 10.5471 0.379843
772772 −12.4080 −0.446572
773773 7.08436 0.254807 0.127403 0.991851i 0.459336π-0.459336\pi
0.127403 + 0.991851i 0.459336π0.459336\pi
774774 3.44227 0.123730
775775 −37.4106 −1.34383
776776 13.6240 0.489075
777777 109.458 3.92679
778778 −0.826576 −0.0296342
779779 −22.9848 −0.823515
780780 −14.8338 −0.531136
781781 −13.8050 −0.493983
782782 −2.45393 −0.0877522
783783 16.6165 0.593824
784784 14.3971 0.514182
785785 0.407557 0.0145463
786786 −21.0056 −0.749244
787787 −35.9352 −1.28095 −0.640476 0.767979i 0.721263π-0.721263\pi
−0.640476 + 0.767979i 0.721263π0.721263\pi
788788 6.74860 0.240409
789789 32.7002 1.16416
790790 2.97950 0.106006
791791 12.9403 0.460103
792792 −1.95936 −0.0696229
793793 3.15168 0.111919
794794 −30.2173 −1.07237
795795 10.0760 0.357358
796796 8.53520 0.302522
797797 −24.1777 −0.856418 −0.428209 0.903680i 0.640855π-0.640855\pi
−0.428209 + 0.903680i 0.640855π0.640855\pi
798798 −22.3720 −0.791960
799799 0.324441 0.0114779
800800 4.07962 0.144236
801801 −18.1449 −0.641119
802802 −18.1301 −0.640198
803803 0.861884 0.0304152
804804 −1.01087 −0.0356508
805805 −10.8898 −0.383816
806806 63.6696 2.24267
807807 20.8762 0.734878
808808 6.95936 0.244830
809809 −35.1681 −1.23645 −0.618223 0.786003i 0.712147π-0.712147\pi
−0.618223 + 0.786003i 0.712147π0.712147\pi
810810 10.5904 0.372108
811811 23.3967 0.821569 0.410784 0.911733i 0.365255π-0.365255\pi
0.410784 + 0.911733i 0.365255π0.365255\pi
812812 −33.1668 −1.16393
813813 6.41086 0.224839
814814 −10.6257 −0.372431
815815 −16.6746 −0.584085
816816 −2.22696 −0.0779593
817817 −3.81544 −0.133485
818818 9.78660 0.342180
819819 −62.9288 −2.19891
820820 −10.1533 −0.354570
821821 18.7744 0.655231 0.327616 0.944811i 0.393755π-0.393755\pi
0.327616 + 0.944811i 0.393755π0.393755\pi
822822 14.4513 0.504046
823823 29.3047 1.02150 0.510750 0.859729i 0.329368π-0.329368\pi
0.510750 + 0.859729i 0.329368π0.329368\pi
824824 13.2867 0.462864
825825 −9.08517 −0.316305
826826 −63.3967 −2.20585
827827 −23.4431 −0.815195 −0.407597 0.913162i 0.633633π-0.633633\pi
−0.407597 + 0.913162i 0.633633π0.633633\pi
828828 −4.80813 −0.167094
829829 −54.4658 −1.89167 −0.945837 0.324642i 0.894756π-0.894756\pi
−0.945837 + 0.324642i 0.894756π0.894756\pi
830830 −3.12812 −0.108579
831831 −32.1810 −1.11635
832832 −6.94316 −0.240711
833833 −14.3971 −0.498829
834834 9.55673 0.330923
835835 1.76341 0.0610254
836836 2.17177 0.0751123
837837 −21.2514 −0.734556
838838 −25.5811 −0.883684
839839 −35.5288 −1.22659 −0.613295 0.789854i 0.710156π-0.710156\pi
−0.613295 + 0.789854i 0.710156π0.710156\pi
840840 −9.88264 −0.340983
841841 22.4106 0.772781
842842 33.5592 1.15653
843843 −32.3620 −1.11461
844844 −0.162550 −0.00559519
845845 33.7767 1.16195
846846 0.635698 0.0218557
847847 4.62570 0.158941
848848 4.71620 0.161955
849849 −11.7357 −0.402770
850850 −4.07962 −0.139930
851851 −26.0747 −0.893828
852852 −30.7433 −1.05325
853853 −25.4184 −0.870311 −0.435155 0.900355i 0.643307π-0.643307\pi
−0.435155 + 0.900355i 0.643307π0.643307\pi
854854 2.09972 0.0718510
855855 4.08237 0.139614
856856 1.28380 0.0438795
857857 47.4794 1.62187 0.810933 0.585140i 0.198960π-0.198960\pi
0.810933 + 0.585140i 0.198960π0.198960\pi
858858 15.4622 0.527869
859859 −19.6762 −0.671344 −0.335672 0.941979i 0.608963π-0.608963\pi
−0.335672 + 0.941979i 0.608963π0.608963\pi
860860 −1.68544 −0.0574730
861861 −109.022 −3.71547
862862 −4.10116 −0.139686
863863 −33.2389 −1.13146 −0.565732 0.824589i 0.691406π-0.691406\pi
−0.565732 + 0.824589i 0.691406π0.691406\pi
864864 2.31746 0.0788416
865865 16.2208 0.551522
866866 28.9758 0.984639
867867 2.22696 0.0756316
868868 42.4182 1.43977
869869 −3.10571 −0.105354
870870 15.3187 0.519353
871871 3.15168 0.106790
872872 −11.6240 −0.393640
873873 −26.6944 −0.903470
874874 5.32937 0.180269
875875 −40.2928 −1.36215
876876 1.91938 0.0648500
877877 11.3327 0.382677 0.191339 0.981524i 0.438717π-0.438717\pi
0.191339 + 0.981524i 0.438717π0.438717\pi
878878 23.1675 0.781864
879879 35.9124 1.21130
880880 0.959363 0.0323401
881881 36.9707 1.24557 0.622787 0.782392i 0.286000π-0.286000\pi
0.622787 + 0.782392i 0.286000π0.286000\pi
882882 −28.2091 −0.949850
883883 −7.18857 −0.241915 −0.120957 0.992658i 0.538596π-0.538596\pi
−0.120957 + 0.992658i 0.538596π0.538596\pi
884884 6.94316 0.233524
885885 29.2809 0.984268
886886 12.3693 0.415556
887887 −17.7145 −0.594796 −0.297398 0.954754i 0.596119π-0.596119\pi
−0.297398 + 0.954754i 0.596119π0.596119\pi
888888 −23.6630 −0.794079
889889 76.1109 2.55268
890890 8.88429 0.297802
891891 −11.0390 −0.369820
892892 −10.1718 −0.340576
893893 −0.704612 −0.0235790
894894 −22.5530 −0.754285
895895 0.329585 0.0110168
896896 −4.62570 −0.154534
897897 37.9430 1.26688
898898 −16.2114 −0.540982
899899 −65.7509 −2.19291
900900 −7.99346 −0.266449
901901 −4.71620 −0.157119
902902 10.5834 0.352389
903903 −18.0976 −0.602250
904904 −2.79747 −0.0930425
905905 15.6455 0.520074
906906 −14.9567 −0.496904
907907 −12.6378 −0.419632 −0.209816 0.977741i 0.567287π-0.567287\pi
−0.209816 + 0.977741i 0.567287π0.567287\pi
908908 −29.0380 −0.963660
909909 −13.6359 −0.452275
910910 30.8118 1.02140
911911 −25.0921 −0.831340 −0.415670 0.909516i 0.636453π-0.636453\pi
−0.415670 + 0.909516i 0.636453π0.636453\pi
912912 4.83646 0.160151
913913 3.26062 0.107911
914914 18.8754 0.624344
915915 −0.969795 −0.0320604
916916 15.9967 0.528546
917917 43.6314 1.44084
918918 −2.31746 −0.0764876
919919 11.6380 0.383902 0.191951 0.981404i 0.438518π-0.438518\pi
0.191951 + 0.981404i 0.438518π0.438518\pi
920920 2.35420 0.0776158
921921 4.52520 0.149110
922922 −24.9583 −0.821958
923923 95.8506 3.15496
924924 10.3013 0.338886
925925 −43.3488 −1.42530
926926 −14.5197 −0.477145
927927 −26.0335 −0.855051
928928 7.17012 0.235371
929929 53.0023 1.73895 0.869474 0.493978i 0.164458π-0.164458\pi
0.869474 + 0.493978i 0.164458π0.164458\pi
930930 −19.5916 −0.642435
931931 31.2672 1.02474
932932 5.93228 0.194318
933933 32.8372 1.07504
934934 −25.8355 −0.845362
935935 −0.959363 −0.0313745
936936 13.6042 0.444666
937937 4.65799 0.152170 0.0760849 0.997101i 0.475758π-0.475758\pi
0.0760849 + 0.997101i 0.475758π0.475758\pi
938938 2.09972 0.0685583
939939 −56.7047 −1.85049
940940 −0.311257 −0.0101521
941941 19.4997 0.635672 0.317836 0.948146i 0.397044π-0.397044\pi
0.317836 + 0.948146i 0.397044π0.397044\pi
942942 −0.946060 −0.0308243
943943 25.9709 0.845729
944944 13.7053 0.446070
945945 −10.2842 −0.334547
946946 1.75683 0.0571196
947947 56.3634 1.83156 0.915782 0.401675i 0.131572π-0.131572\pi
0.915782 + 0.401675i 0.131572π0.131572\pi
948948 −6.91630 −0.224631
949949 −5.98420 −0.194255
950950 8.86002 0.287457
951951 −8.07062 −0.261708
952952 4.62570 0.149920
953953 36.0944 1.16921 0.584607 0.811317i 0.301249π-0.301249\pi
0.584607 + 0.811317i 0.301249π0.301249\pi
954954 −9.24074 −0.299180
955955 −5.50735 −0.178214
956956 21.8157 0.705570
957957 −15.9676 −0.516159
958958 −4.01356 −0.129672
959959 −30.0172 −0.969307
960960 2.13646 0.0689541
961961 53.0911 1.71262
962962 73.7759 2.37863
963963 −2.51544 −0.0810588
964964 6.90785 0.222487
965965 −11.9037 −0.383195
966966 25.2785 0.813323
967967 13.8605 0.445724 0.222862 0.974850i 0.428460π-0.428460\pi
0.222862 + 0.974850i 0.428460π0.428460\pi
968968 −1.00000 −0.0321412
969969 −4.83646 −0.155369
970970 13.0704 0.419665
971971 36.2603 1.16365 0.581824 0.813315i 0.302339π-0.302339\pi
0.581824 + 0.813315i 0.302339π0.302339\pi
972972 −17.6310 −0.565515
973973 −19.8506 −0.636381
974974 11.7193 0.375510
975975 63.0798 2.02017
976976 −0.453925 −0.0145298
977977 −24.3549 −0.779181 −0.389591 0.920988i 0.627383π-0.627383\pi
−0.389591 + 0.920988i 0.627383π0.627383\pi
978978 38.7066 1.23770
979979 −9.26062 −0.295971
980980 13.8120 0.441209
981981 22.7757 0.727173
982982 −17.6538 −0.563356
983983 −53.3076 −1.70025 −0.850125 0.526582i 0.823473π-0.823473\pi
−0.850125 + 0.526582i 0.823473π0.823473\pi
984984 23.5689 0.751348
985985 6.47436 0.206290
986986 −7.17012 −0.228343
987987 −3.34215 −0.106382
988988 −15.0790 −0.479726
989989 4.31114 0.137086
990990 −1.87974 −0.0597420
991991 −59.7833 −1.89908 −0.949539 0.313648i 0.898449π-0.898449\pi
−0.949539 + 0.313648i 0.898449π0.898449\pi
992992 −9.17012 −0.291152
993993 5.35597 0.169967
994994 63.8580 2.02545
995995 8.18835 0.259588
996996 7.26128 0.230082
997997 −28.4473 −0.900936 −0.450468 0.892793i 0.648743π-0.648743\pi
−0.450468 + 0.892793i 0.648743π0.648743\pi
998998 −3.36798 −0.106612
999999 −24.6246 −0.779089
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 374.2.a.d.1.3 4
3.2 odd 2 3366.2.a.bg.1.3 4
4.3 odd 2 2992.2.a.w.1.2 4
5.4 even 2 9350.2.a.cl.1.2 4
11.10 odd 2 4114.2.a.bc.1.3 4
17.16 even 2 6358.2.a.t.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
374.2.a.d.1.3 4 1.1 even 1 trivial
2992.2.a.w.1.2 4 4.3 odd 2
3366.2.a.bg.1.3 4 3.2 odd 2
4114.2.a.bc.1.3 4 11.10 odd 2
6358.2.a.t.1.2 4 17.16 even 2
9350.2.a.cl.1.2 4 5.4 even 2