Properties

Label 374.2.a.d
Level $374$
Weight $2$
Character orbit 374.a
Self dual yes
Analytic conductor $2.986$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [374,2,Mod(1,374)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(374, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("374.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 374 = 2 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 374.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.98640503560\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.55585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 9x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_1 q^{3} + q^{4} + (\beta_{2} + 1) q^{5} - \beta_1 q^{6} + ( - \beta_{3} - \beta_{2}) q^{7} - q^{8} + (\beta_{2} + 2) q^{9} + ( - \beta_{2} - 1) q^{10} + q^{11} + \beta_1 q^{12} + (2 \beta_{3} + \beta_1) q^{13}+ \cdots + (\beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + q^{3} + 4 q^{4} + 5 q^{5} - q^{6} + q^{7} - 4 q^{8} + 9 q^{9} - 5 q^{10} + 4 q^{11} + q^{12} - 3 q^{13} - q^{14} + 4 q^{16} - 4 q^{17} - 9 q^{18} + 7 q^{19} + 5 q^{20} + 8 q^{21} - 4 q^{22}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 10x^{2} + 9x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + \nu^{2} - 7\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - \beta_{2} + 7\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.88332
−0.954430
2.22696
2.61078
−1.00000 −2.88332 1.00000 4.31351 2.88332 −2.83975 −1.00000 5.31351 −4.31351
1.2 −1.00000 −0.954430 1.00000 −3.08906 0.954430 2.36654 −1.00000 −2.08906 3.08906
1.3 −1.00000 2.22696 1.00000 0.959363 −2.22696 4.62570 −1.00000 1.95936 −0.959363
1.4 −1.00000 2.61078 1.00000 2.81619 −2.61078 −3.15249 −1.00000 3.81619 −2.81619
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 374.2.a.d 4
3.b odd 2 1 3366.2.a.bg 4
4.b odd 2 1 2992.2.a.w 4
5.b even 2 1 9350.2.a.cl 4
11.b odd 2 1 4114.2.a.bc 4
17.b even 2 1 6358.2.a.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
374.2.a.d 4 1.a even 1 1 trivial
2992.2.a.w 4 4.b odd 2 1
3366.2.a.bg 4 3.b odd 2 1
4114.2.a.bc 4 11.b odd 2 1
6358.2.a.t 4 17.b even 2 1
9350.2.a.cl 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - T_{3}^{3} - 10T_{3}^{2} + 9T_{3} + 16 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(374))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{4} - 5 T^{3} + \cdots - 36 \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 98 \) Copy content Toggle raw display
$11$ \( (T - 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 3 T^{3} + \cdots + 350 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 7 T^{3} + \cdots - 428 \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 240 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots - 192 \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$37$ \( T^{4} - 25 T^{3} + \cdots + 800 \) Copy content Toggle raw display
$41$ \( T^{4} - 5 T^{3} + \cdots + 810 \) Copy content Toggle raw display
$43$ \( T^{4} - 11 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$47$ \( T^{4} + 17 T^{3} + \cdots - 192 \) Copy content Toggle raw display
$53$ \( T^{4} - 2 T^{3} + \cdots + 384 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 480 \) Copy content Toggle raw display
$61$ \( T^{4} - 14 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$67$ \( T^{4} - 14 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 18000 \) Copy content Toggle raw display
$73$ \( T^{4} + 19 T^{3} + \cdots + 490 \) Copy content Toggle raw display
$79$ \( T^{4} - 17 T^{3} + \cdots + 6806 \) Copy content Toggle raw display
$83$ \( T^{4} + 19 T^{3} + \cdots + 2628 \) Copy content Toggle raw display
$89$ \( T^{4} + 5 T^{3} + \cdots + 5298 \) Copy content Toggle raw display
$97$ \( T^{4} + 6 T^{3} + \cdots + 896 \) Copy content Toggle raw display
show more
show less