Properties

Label 4050.2.c.ba.649.4
Level $4050$
Weight $2$
Character 4050.649
Analytic conductor $32.339$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4050,2,Mod(649,4050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4050.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,6,0,0,-2,0,4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{33})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 17x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(3.37228i\) of defining polynomial
Character \(\chi\) \(=\) 4050.649
Dual form 4050.2.c.ba.649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +3.37228i q^{7} -1.00000i q^{8} +4.37228 q^{11} +6.74456i q^{13} -3.37228 q^{14} +1.00000 q^{16} +1.62772i q^{17} +2.37228 q^{19} +4.37228i q^{22} +1.37228i q^{23} -6.74456 q^{26} -3.37228i q^{28} +1.37228 q^{29} +4.74456 q^{31} +1.00000i q^{32} -1.62772 q^{34} -4.00000i q^{37} +2.37228i q^{38} +3.00000 q^{41} +5.62772i q^{43} -4.37228 q^{44} -1.37228 q^{46} +7.37228i q^{47} -4.37228 q^{49} -6.74456i q^{52} -11.4891i q^{53} +3.37228 q^{56} +1.37228i q^{58} +4.37228 q^{59} -8.11684 q^{61} +4.74456i q^{62} -1.00000 q^{64} -7.00000i q^{67} -1.62772i q^{68} +6.00000 q^{71} -3.11684i q^{73} +4.00000 q^{74} -2.37228 q^{76} +14.7446i q^{77} -2.00000 q^{79} +3.00000i q^{82} +7.37228i q^{83} -5.62772 q^{86} -4.37228i q^{88} +16.1168 q^{89} -22.7446 q^{91} -1.37228i q^{92} -7.37228 q^{94} -8.37228i q^{97} -4.37228i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 6 q^{11} - 2 q^{14} + 4 q^{16} - 2 q^{19} - 4 q^{26} - 6 q^{29} - 4 q^{31} - 18 q^{34} + 12 q^{41} - 6 q^{44} + 6 q^{46} - 6 q^{49} + 2 q^{56} + 6 q^{59} + 2 q^{61} - 4 q^{64} + 24 q^{71}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times\).

\(n\) \(2351\) \(3727\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 3.37228i 1.27460i 0.770615 + 0.637301i \(0.219949\pi\)
−0.770615 + 0.637301i \(0.780051\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 4.37228 1.31829 0.659146 0.752015i \(-0.270918\pi\)
0.659146 + 0.752015i \(0.270918\pi\)
\(12\) 0 0
\(13\) 6.74456i 1.87061i 0.353849 + 0.935303i \(0.384873\pi\)
−0.353849 + 0.935303i \(0.615127\pi\)
\(14\) −3.37228 −0.901280
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.62772i 0.394780i 0.980325 + 0.197390i \(0.0632465\pi\)
−0.980325 + 0.197390i \(0.936754\pi\)
\(18\) 0 0
\(19\) 2.37228 0.544239 0.272119 0.962264i \(-0.412275\pi\)
0.272119 + 0.962264i \(0.412275\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.37228i 0.932174i
\(23\) 1.37228i 0.286140i 0.989713 + 0.143070i \(0.0456975\pi\)
−0.989713 + 0.143070i \(0.954303\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.74456 −1.32272
\(27\) 0 0
\(28\) − 3.37228i − 0.637301i
\(29\) 1.37228 0.254826 0.127413 0.991850i \(-0.459333\pi\)
0.127413 + 0.991850i \(0.459333\pi\)
\(30\) 0 0
\(31\) 4.74456 0.852149 0.426074 0.904688i \(-0.359896\pi\)
0.426074 + 0.904688i \(0.359896\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −1.62772 −0.279151
\(35\) 0 0
\(36\) 0 0
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 2.37228i 0.384835i
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 5.62772i 0.858219i 0.903252 + 0.429110i \(0.141173\pi\)
−0.903252 + 0.429110i \(0.858827\pi\)
\(44\) −4.37228 −0.659146
\(45\) 0 0
\(46\) −1.37228 −0.202332
\(47\) 7.37228i 1.07536i 0.843150 + 0.537679i \(0.180699\pi\)
−0.843150 + 0.537679i \(0.819301\pi\)
\(48\) 0 0
\(49\) −4.37228 −0.624612
\(50\) 0 0
\(51\) 0 0
\(52\) − 6.74456i − 0.935303i
\(53\) − 11.4891i − 1.57815i −0.614295 0.789076i \(-0.710560\pi\)
0.614295 0.789076i \(-0.289440\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.37228 0.450640
\(57\) 0 0
\(58\) 1.37228i 0.180189i
\(59\) 4.37228 0.569223 0.284611 0.958643i \(-0.408135\pi\)
0.284611 + 0.958643i \(0.408135\pi\)
\(60\) 0 0
\(61\) −8.11684 −1.03926 −0.519628 0.854393i \(-0.673929\pi\)
−0.519628 + 0.854393i \(0.673929\pi\)
\(62\) 4.74456i 0.602560i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.00000i − 0.855186i −0.903971 0.427593i \(-0.859362\pi\)
0.903971 0.427593i \(-0.140638\pi\)
\(68\) − 1.62772i − 0.197390i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) − 3.11684i − 0.364799i −0.983225 0.182399i \(-0.941614\pi\)
0.983225 0.182399i \(-0.0583864\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) −2.37228 −0.272119
\(77\) 14.7446i 1.68030i
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.00000i 0.331295i
\(83\) 7.37228i 0.809213i 0.914491 + 0.404607i \(0.132592\pi\)
−0.914491 + 0.404607i \(0.867408\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.62772 −0.606853
\(87\) 0 0
\(88\) − 4.37228i − 0.466087i
\(89\) 16.1168 1.70838 0.854191 0.519959i \(-0.174053\pi\)
0.854191 + 0.519959i \(0.174053\pi\)
\(90\) 0 0
\(91\) −22.7446 −2.38428
\(92\) − 1.37228i − 0.143070i
\(93\) 0 0
\(94\) −7.37228 −0.760393
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.37228i − 0.850076i −0.905175 0.425038i \(-0.860261\pi\)
0.905175 0.425038i \(-0.139739\pi\)
\(98\) − 4.37228i − 0.441667i
\(99\) 0 0
\(100\) 0 0
\(101\) −2.74456 −0.273094 −0.136547 0.990634i \(-0.543601\pi\)
−0.136547 + 0.990634i \(0.543601\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 6.74456 0.661359
\(105\) 0 0
\(106\) 11.4891 1.11592
\(107\) − 8.48913i − 0.820675i −0.911934 0.410337i \(-0.865411\pi\)
0.911934 0.410337i \(-0.134589\pi\)
\(108\) 0 0
\(109\) −15.3723 −1.47240 −0.736199 0.676765i \(-0.763381\pi\)
−0.736199 + 0.676765i \(0.763381\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.37228i 0.318651i
\(113\) 3.25544i 0.306246i 0.988207 + 0.153123i \(0.0489330\pi\)
−0.988207 + 0.153123i \(0.951067\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.37228 −0.127413
\(117\) 0 0
\(118\) 4.37228i 0.402501i
\(119\) −5.48913 −0.503187
\(120\) 0 0
\(121\) 8.11684 0.737895
\(122\) − 8.11684i − 0.734865i
\(123\) 0 0
\(124\) −4.74456 −0.426074
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.11684i − 0.720253i −0.932903 0.360127i \(-0.882733\pi\)
0.932903 0.360127i \(-0.117267\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 2.74456 0.239794 0.119897 0.992786i \(-0.461744\pi\)
0.119897 + 0.992786i \(0.461744\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 1.62772 0.139576
\(137\) 19.1168i 1.63326i 0.577160 + 0.816631i \(0.304161\pi\)
−0.577160 + 0.816631i \(0.695839\pi\)
\(138\) 0 0
\(139\) −0.883156 −0.0749083 −0.0374542 0.999298i \(-0.511925\pi\)
−0.0374542 + 0.999298i \(0.511925\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 29.4891i 2.46600i
\(144\) 0 0
\(145\) 0 0
\(146\) 3.11684 0.257952
\(147\) 0 0
\(148\) 4.00000i 0.328798i
\(149\) 1.88316 0.154274 0.0771371 0.997020i \(-0.475422\pi\)
0.0771371 + 0.997020i \(0.475422\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) − 2.37228i − 0.192417i
\(153\) 0 0
\(154\) −14.7446 −1.18815
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.74456i − 0.538275i −0.963102 0.269137i \(-0.913261\pi\)
0.963102 0.269137i \(-0.0867386\pi\)
\(158\) − 2.00000i − 0.159111i
\(159\) 0 0
\(160\) 0 0
\(161\) −4.62772 −0.364715
\(162\) 0 0
\(163\) 21.4891i 1.68316i 0.540134 + 0.841579i \(0.318374\pi\)
−0.540134 + 0.841579i \(0.681626\pi\)
\(164\) −3.00000 −0.234261
\(165\) 0 0
\(166\) −7.37228 −0.572200
\(167\) − 13.3723i − 1.03478i −0.855750 0.517389i \(-0.826904\pi\)
0.855750 0.517389i \(-0.173096\pi\)
\(168\) 0 0
\(169\) −32.4891 −2.49916
\(170\) 0 0
\(171\) 0 0
\(172\) − 5.62772i − 0.429110i
\(173\) 20.7446i 1.57718i 0.614919 + 0.788590i \(0.289189\pi\)
−0.614919 + 0.788590i \(0.710811\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.37228 0.329573
\(177\) 0 0
\(178\) 16.1168i 1.20801i
\(179\) −14.7446 −1.10206 −0.551030 0.834485i \(-0.685765\pi\)
−0.551030 + 0.834485i \(0.685765\pi\)
\(180\) 0 0
\(181\) 20.8614 1.55062 0.775308 0.631583i \(-0.217595\pi\)
0.775308 + 0.631583i \(0.217595\pi\)
\(182\) − 22.7446i − 1.68594i
\(183\) 0 0
\(184\) 1.37228 0.101166
\(185\) 0 0
\(186\) 0 0
\(187\) 7.11684i 0.520435i
\(188\) − 7.37228i − 0.537679i
\(189\) 0 0
\(190\) 0 0
\(191\) −17.4891 −1.26547 −0.632734 0.774369i \(-0.718067\pi\)
−0.632734 + 0.774369i \(0.718067\pi\)
\(192\) 0 0
\(193\) − 21.1168i − 1.52002i −0.649909 0.760012i \(-0.725193\pi\)
0.649909 0.760012i \(-0.274807\pi\)
\(194\) 8.37228 0.601095
\(195\) 0 0
\(196\) 4.37228 0.312306
\(197\) 5.48913i 0.391084i 0.980695 + 0.195542i \(0.0626466\pi\)
−0.980695 + 0.195542i \(0.937353\pi\)
\(198\) 0 0
\(199\) −13.4891 −0.956219 −0.478109 0.878300i \(-0.658678\pi\)
−0.478109 + 0.878300i \(0.658678\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 2.74456i − 0.193107i
\(203\) 4.62772i 0.324802i
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 6.74456i 0.467651i
\(209\) 10.3723 0.717466
\(210\) 0 0
\(211\) −18.7446 −1.29043 −0.645214 0.764002i \(-0.723232\pi\)
−0.645214 + 0.764002i \(0.723232\pi\)
\(212\) 11.4891i 0.789076i
\(213\) 0 0
\(214\) 8.48913 0.580305
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) − 15.3723i − 1.04114i
\(219\) 0 0
\(220\) 0 0
\(221\) −10.9783 −0.738477
\(222\) 0 0
\(223\) − 6.62772i − 0.443825i −0.975067 0.221912i \(-0.928770\pi\)
0.975067 0.221912i \(-0.0712299\pi\)
\(224\) −3.37228 −0.225320
\(225\) 0 0
\(226\) −3.25544 −0.216548
\(227\) − 19.1168i − 1.26883i −0.772993 0.634415i \(-0.781241\pi\)
0.772993 0.634415i \(-0.218759\pi\)
\(228\) 0 0
\(229\) −12.6277 −0.834463 −0.417232 0.908800i \(-0.637000\pi\)
−0.417232 + 0.908800i \(0.637000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 1.37228i − 0.0900947i
\(233\) 7.11684i 0.466240i 0.972448 + 0.233120i \(0.0748935\pi\)
−0.972448 + 0.233120i \(0.925107\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.37228 −0.284611
\(237\) 0 0
\(238\) − 5.48913i − 0.355807i
\(239\) −3.25544 −0.210577 −0.105288 0.994442i \(-0.533577\pi\)
−0.105288 + 0.994442i \(0.533577\pi\)
\(240\) 0 0
\(241\) −12.4891 −0.804495 −0.402248 0.915531i \(-0.631771\pi\)
−0.402248 + 0.915531i \(0.631771\pi\)
\(242\) 8.11684i 0.521770i
\(243\) 0 0
\(244\) 8.11684 0.519628
\(245\) 0 0
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) − 4.74456i − 0.301280i
\(249\) 0 0
\(250\) 0 0
\(251\) 24.6060 1.55312 0.776558 0.630046i \(-0.216964\pi\)
0.776558 + 0.630046i \(0.216964\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 8.11684 0.509296
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 4.37228i − 0.272735i −0.990658 0.136368i \(-0.956457\pi\)
0.990658 0.136368i \(-0.0435429\pi\)
\(258\) 0 0
\(259\) 13.4891 0.838173
\(260\) 0 0
\(261\) 0 0
\(262\) 2.74456i 0.169560i
\(263\) − 17.4891i − 1.07843i −0.842170 0.539213i \(-0.818722\pi\)
0.842170 0.539213i \(-0.181278\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) 7.00000i 0.427593i
\(269\) −1.37228 −0.0836695 −0.0418347 0.999125i \(-0.513320\pi\)
−0.0418347 + 0.999125i \(0.513320\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 1.62772i 0.0986949i
\(273\) 0 0
\(274\) −19.1168 −1.15489
\(275\) 0 0
\(276\) 0 0
\(277\) 16.7446i 1.00608i 0.864262 + 0.503042i \(0.167786\pi\)
−0.864262 + 0.503042i \(0.832214\pi\)
\(278\) − 0.883156i − 0.0529682i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.37228 0.0818634 0.0409317 0.999162i \(-0.486967\pi\)
0.0409317 + 0.999162i \(0.486967\pi\)
\(282\) 0 0
\(283\) 3.13859i 0.186570i 0.995639 + 0.0932850i \(0.0297368\pi\)
−0.995639 + 0.0932850i \(0.970263\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −29.4891 −1.74373
\(287\) 10.1168i 0.597178i
\(288\) 0 0
\(289\) 14.3505 0.844149
\(290\) 0 0
\(291\) 0 0
\(292\) 3.11684i 0.182399i
\(293\) 26.2337i 1.53259i 0.642490 + 0.766294i \(0.277901\pi\)
−0.642490 + 0.766294i \(0.722099\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 1.88316i 0.109088i
\(299\) −9.25544 −0.535256
\(300\) 0 0
\(301\) −18.9783 −1.09389
\(302\) − 10.0000i − 0.575435i
\(303\) 0 0
\(304\) 2.37228 0.136060
\(305\) 0 0
\(306\) 0 0
\(307\) 1.23369i 0.0704103i 0.999380 + 0.0352051i \(0.0112085\pi\)
−0.999380 + 0.0352051i \(0.988792\pi\)
\(308\) − 14.7446i − 0.840149i
\(309\) 0 0
\(310\) 0 0
\(311\) 20.7446 1.17632 0.588158 0.808746i \(-0.299853\pi\)
0.588158 + 0.808746i \(0.299853\pi\)
\(312\) 0 0
\(313\) − 3.62772i − 0.205051i −0.994730 0.102525i \(-0.967308\pi\)
0.994730 0.102525i \(-0.0326923\pi\)
\(314\) 6.74456 0.380618
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) − 2.74456i − 0.154150i −0.997025 0.0770750i \(-0.975442\pi\)
0.997025 0.0770750i \(-0.0245581\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) − 4.62772i − 0.257893i
\(323\) 3.86141i 0.214854i
\(324\) 0 0
\(325\) 0 0
\(326\) −21.4891 −1.19017
\(327\) 0 0
\(328\) − 3.00000i − 0.165647i
\(329\) −24.8614 −1.37065
\(330\) 0 0
\(331\) 16.2337 0.892284 0.446142 0.894962i \(-0.352798\pi\)
0.446142 + 0.894962i \(0.352798\pi\)
\(332\) − 7.37228i − 0.404607i
\(333\) 0 0
\(334\) 13.3723 0.731699
\(335\) 0 0
\(336\) 0 0
\(337\) − 2.37228i − 0.129226i −0.997910 0.0646132i \(-0.979419\pi\)
0.997910 0.0646132i \(-0.0205814\pi\)
\(338\) − 32.4891i − 1.76718i
\(339\) 0 0
\(340\) 0 0
\(341\) 20.7446 1.12338
\(342\) 0 0
\(343\) 8.86141i 0.478471i
\(344\) 5.62772 0.303426
\(345\) 0 0
\(346\) −20.7446 −1.11523
\(347\) 4.88316i 0.262142i 0.991373 + 0.131071i \(0.0418415\pi\)
−0.991373 + 0.131071i \(0.958158\pi\)
\(348\) 0 0
\(349\) −18.1168 −0.969772 −0.484886 0.874577i \(-0.661139\pi\)
−0.484886 + 0.874577i \(0.661139\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.37228i 0.233043i
\(353\) − 21.3505i − 1.13637i −0.822899 0.568187i \(-0.807645\pi\)
0.822899 0.568187i \(-0.192355\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −16.1168 −0.854191
\(357\) 0 0
\(358\) − 14.7446i − 0.779274i
\(359\) −17.4891 −0.923041 −0.461520 0.887130i \(-0.652696\pi\)
−0.461520 + 0.887130i \(0.652696\pi\)
\(360\) 0 0
\(361\) −13.3723 −0.703804
\(362\) 20.8614i 1.09645i
\(363\) 0 0
\(364\) 22.7446 1.19214
\(365\) 0 0
\(366\) 0 0
\(367\) − 16.0000i − 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 1.37228i 0.0715351i
\(369\) 0 0
\(370\) 0 0
\(371\) 38.7446 2.01152
\(372\) 0 0
\(373\) 15.4891i 0.801997i 0.916079 + 0.400998i \(0.131337\pi\)
−0.916079 + 0.400998i \(0.868663\pi\)
\(374\) −7.11684 −0.368003
\(375\) 0 0
\(376\) 7.37228 0.380196
\(377\) 9.25544i 0.476679i
\(378\) 0 0
\(379\) −17.8614 −0.917479 −0.458739 0.888571i \(-0.651699\pi\)
−0.458739 + 0.888571i \(0.651699\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 17.4891i − 0.894821i
\(383\) − 22.9783i − 1.17413i −0.809538 0.587067i \(-0.800283\pi\)
0.809538 0.587067i \(-0.199717\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21.1168 1.07482
\(387\) 0 0
\(388\) 8.37228i 0.425038i
\(389\) −4.62772 −0.234635 −0.117317 0.993094i \(-0.537429\pi\)
−0.117317 + 0.993094i \(0.537429\pi\)
\(390\) 0 0
\(391\) −2.23369 −0.112962
\(392\) 4.37228i 0.220834i
\(393\) 0 0
\(394\) −5.48913 −0.276538
\(395\) 0 0
\(396\) 0 0
\(397\) 22.7446i 1.14152i 0.821118 + 0.570758i \(0.193351\pi\)
−0.821118 + 0.570758i \(0.806649\pi\)
\(398\) − 13.4891i − 0.676149i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.11684 0.0557725 0.0278863 0.999611i \(-0.491122\pi\)
0.0278863 + 0.999611i \(0.491122\pi\)
\(402\) 0 0
\(403\) 32.0000i 1.59403i
\(404\) 2.74456 0.136547
\(405\) 0 0
\(406\) −4.62772 −0.229670
\(407\) − 17.4891i − 0.866904i
\(408\) 0 0
\(409\) −17.8614 −0.883190 −0.441595 0.897215i \(-0.645587\pi\)
−0.441595 + 0.897215i \(0.645587\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 16.0000i − 0.788263i
\(413\) 14.7446i 0.725532i
\(414\) 0 0
\(415\) 0 0
\(416\) −6.74456 −0.330679
\(417\) 0 0
\(418\) 10.3723i 0.507325i
\(419\) 25.7228 1.25664 0.628321 0.777954i \(-0.283743\pi\)
0.628321 + 0.777954i \(0.283743\pi\)
\(420\) 0 0
\(421\) 30.4674 1.48489 0.742445 0.669908i \(-0.233666\pi\)
0.742445 + 0.669908i \(0.233666\pi\)
\(422\) − 18.7446i − 0.912471i
\(423\) 0 0
\(424\) −11.4891 −0.557961
\(425\) 0 0
\(426\) 0 0
\(427\) − 27.3723i − 1.32464i
\(428\) 8.48913i 0.410337i
\(429\) 0 0
\(430\) 0 0
\(431\) −8.23369 −0.396603 −0.198301 0.980141i \(-0.563542\pi\)
−0.198301 + 0.980141i \(0.563542\pi\)
\(432\) 0 0
\(433\) − 6.37228i − 0.306232i −0.988208 0.153116i \(-0.951069\pi\)
0.988208 0.153116i \(-0.0489309\pi\)
\(434\) −16.0000 −0.768025
\(435\) 0 0
\(436\) 15.3723 0.736199
\(437\) 3.25544i 0.155729i
\(438\) 0 0
\(439\) 18.2337 0.870246 0.435123 0.900371i \(-0.356705\pi\)
0.435123 + 0.900371i \(0.356705\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 10.9783i − 0.522182i
\(443\) − 3.51087i − 0.166807i −0.996516 0.0834033i \(-0.973421\pi\)
0.996516 0.0834033i \(-0.0265790\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.62772 0.313832
\(447\) 0 0
\(448\) − 3.37228i − 0.159325i
\(449\) 9.86141 0.465389 0.232694 0.972550i \(-0.425246\pi\)
0.232694 + 0.972550i \(0.425246\pi\)
\(450\) 0 0
\(451\) 13.1168 0.617648
\(452\) − 3.25544i − 0.153123i
\(453\) 0 0
\(454\) 19.1168 0.897198
\(455\) 0 0
\(456\) 0 0
\(457\) 12.8832i 0.602649i 0.953522 + 0.301324i \(0.0974287\pi\)
−0.953522 + 0.301324i \(0.902571\pi\)
\(458\) − 12.6277i − 0.590055i
\(459\) 0 0
\(460\) 0 0
\(461\) −1.88316 −0.0877073 −0.0438537 0.999038i \(-0.513964\pi\)
−0.0438537 + 0.999038i \(0.513964\pi\)
\(462\) 0 0
\(463\) − 20.0000i − 0.929479i −0.885448 0.464739i \(-0.846148\pi\)
0.885448 0.464739i \(-0.153852\pi\)
\(464\) 1.37228 0.0637066
\(465\) 0 0
\(466\) −7.11684 −0.329681
\(467\) − 43.1168i − 1.99521i −0.0691713 0.997605i \(-0.522036\pi\)
0.0691713 0.997605i \(-0.477964\pi\)
\(468\) 0 0
\(469\) 23.6060 1.09002
\(470\) 0 0
\(471\) 0 0
\(472\) − 4.37228i − 0.201251i
\(473\) 24.6060i 1.13138i
\(474\) 0 0
\(475\) 0 0
\(476\) 5.48913 0.251594
\(477\) 0 0
\(478\) − 3.25544i − 0.148900i
\(479\) −0.510875 −0.0233425 −0.0116712 0.999932i \(-0.503715\pi\)
−0.0116712 + 0.999932i \(0.503715\pi\)
\(480\) 0 0
\(481\) 26.9783 1.23010
\(482\) − 12.4891i − 0.568864i
\(483\) 0 0
\(484\) −8.11684 −0.368947
\(485\) 0 0
\(486\) 0 0
\(487\) − 12.7446i − 0.577511i −0.957403 0.288756i \(-0.906758\pi\)
0.957403 0.288756i \(-0.0932415\pi\)
\(488\) 8.11684i 0.367432i
\(489\) 0 0
\(490\) 0 0
\(491\) 36.6060 1.65200 0.826002 0.563667i \(-0.190610\pi\)
0.826002 + 0.563667i \(0.190610\pi\)
\(492\) 0 0
\(493\) 2.23369i 0.100600i
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) 4.74456 0.213037
\(497\) 20.2337i 0.907605i
\(498\) 0 0
\(499\) −15.1168 −0.676723 −0.338361 0.941016i \(-0.609873\pi\)
−0.338361 + 0.941016i \(0.609873\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 24.6060i 1.09822i
\(503\) − 6.86141i − 0.305935i −0.988231 0.152967i \(-0.951117\pi\)
0.988231 0.152967i \(-0.0488830\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −6.00000 −0.266733
\(507\) 0 0
\(508\) 8.11684i 0.360127i
\(509\) −42.3505 −1.87715 −0.938577 0.345069i \(-0.887855\pi\)
−0.938577 + 0.345069i \(0.887855\pi\)
\(510\) 0 0
\(511\) 10.5109 0.464974
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 4.37228 0.192853
\(515\) 0 0
\(516\) 0 0
\(517\) 32.2337i 1.41764i
\(518\) 13.4891i 0.592678i
\(519\) 0 0
\(520\) 0 0
\(521\) 6.76631 0.296438 0.148219 0.988955i \(-0.452646\pi\)
0.148219 + 0.988955i \(0.452646\pi\)
\(522\) 0 0
\(523\) − 6.11684i − 0.267471i −0.991017 0.133735i \(-0.957303\pi\)
0.991017 0.133735i \(-0.0426972\pi\)
\(524\) −2.74456 −0.119897
\(525\) 0 0
\(526\) 17.4891 0.762562
\(527\) 7.72281i 0.336411i
\(528\) 0 0
\(529\) 21.1168 0.918124
\(530\) 0 0
\(531\) 0 0
\(532\) − 8.00000i − 0.346844i
\(533\) 20.2337i 0.876418i
\(534\) 0 0
\(535\) 0 0
\(536\) −7.00000 −0.302354
\(537\) 0 0
\(538\) − 1.37228i − 0.0591632i
\(539\) −19.1168 −0.823421
\(540\) 0 0
\(541\) 27.3723 1.17683 0.588413 0.808560i \(-0.299753\pi\)
0.588413 + 0.808560i \(0.299753\pi\)
\(542\) 8.00000i 0.343629i
\(543\) 0 0
\(544\) −1.62772 −0.0697879
\(545\) 0 0
\(546\) 0 0
\(547\) − 29.4674i − 1.25993i −0.776622 0.629967i \(-0.783068\pi\)
0.776622 0.629967i \(-0.216932\pi\)
\(548\) − 19.1168i − 0.816631i
\(549\) 0 0
\(550\) 0 0
\(551\) 3.25544 0.138686
\(552\) 0 0
\(553\) − 6.74456i − 0.286808i
\(554\) −16.7446 −0.711408
\(555\) 0 0
\(556\) 0.883156 0.0374542
\(557\) 44.2337i 1.87424i 0.349005 + 0.937121i \(0.386520\pi\)
−0.349005 + 0.937121i \(0.613480\pi\)
\(558\) 0 0
\(559\) −37.9565 −1.60539
\(560\) 0 0
\(561\) 0 0
\(562\) 1.37228i 0.0578862i
\(563\) − 40.7228i − 1.71626i −0.513431 0.858131i \(-0.671626\pi\)
0.513431 0.858131i \(-0.328374\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3.13859 −0.131925
\(567\) 0 0
\(568\) − 6.00000i − 0.251754i
\(569\) −30.6060 −1.28307 −0.641534 0.767094i \(-0.721702\pi\)
−0.641534 + 0.767094i \(0.721702\pi\)
\(570\) 0 0
\(571\) 8.60597 0.360149 0.180074 0.983653i \(-0.442366\pi\)
0.180074 + 0.983653i \(0.442366\pi\)
\(572\) − 29.4891i − 1.23300i
\(573\) 0 0
\(574\) −10.1168 −0.422269
\(575\) 0 0
\(576\) 0 0
\(577\) − 41.1168i − 1.71172i −0.517210 0.855858i \(-0.673030\pi\)
0.517210 0.855858i \(-0.326970\pi\)
\(578\) 14.3505i 0.596903i
\(579\) 0 0
\(580\) 0 0
\(581\) −24.8614 −1.03142
\(582\) 0 0
\(583\) − 50.2337i − 2.08047i
\(584\) −3.11684 −0.128976
\(585\) 0 0
\(586\) −26.2337 −1.08370
\(587\) − 27.0000i − 1.11441i −0.830375 0.557205i \(-0.811874\pi\)
0.830375 0.557205i \(-0.188126\pi\)
\(588\) 0 0
\(589\) 11.2554 0.463772
\(590\) 0 0
\(591\) 0 0
\(592\) − 4.00000i − 0.164399i
\(593\) − 19.7228i − 0.809919i −0.914335 0.404959i \(-0.867286\pi\)
0.914335 0.404959i \(-0.132714\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.88316 −0.0771371
\(597\) 0 0
\(598\) − 9.25544i − 0.378483i
\(599\) −3.76631 −0.153887 −0.0769437 0.997035i \(-0.524516\pi\)
−0.0769437 + 0.997035i \(0.524516\pi\)
\(600\) 0 0
\(601\) −1.86141 −0.0759284 −0.0379642 0.999279i \(-0.512087\pi\)
−0.0379642 + 0.999279i \(0.512087\pi\)
\(602\) − 18.9783i − 0.773496i
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) 18.1168i 0.735340i 0.929956 + 0.367670i \(0.119844\pi\)
−0.929956 + 0.367670i \(0.880156\pi\)
\(608\) 2.37228i 0.0962087i
\(609\) 0 0
\(610\) 0 0
\(611\) −49.7228 −2.01157
\(612\) 0 0
\(613\) − 34.2337i − 1.38269i −0.722527 0.691343i \(-0.757019\pi\)
0.722527 0.691343i \(-0.242981\pi\)
\(614\) −1.23369 −0.0497876
\(615\) 0 0
\(616\) 14.7446 0.594075
\(617\) 4.88316i 0.196588i 0.995157 + 0.0982942i \(0.0313386\pi\)
−0.995157 + 0.0982942i \(0.968661\pi\)
\(618\) 0 0
\(619\) 20.8832 0.839365 0.419682 0.907671i \(-0.362141\pi\)
0.419682 + 0.907671i \(0.362141\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 20.7446i 0.831781i
\(623\) 54.3505i 2.17751i
\(624\) 0 0
\(625\) 0 0
\(626\) 3.62772 0.144993
\(627\) 0 0
\(628\) 6.74456i 0.269137i
\(629\) 6.51087 0.259606
\(630\) 0 0
\(631\) −23.7228 −0.944390 −0.472195 0.881494i \(-0.656538\pi\)
−0.472195 + 0.881494i \(0.656538\pi\)
\(632\) 2.00000i 0.0795557i
\(633\) 0 0
\(634\) 2.74456 0.109001
\(635\) 0 0
\(636\) 0 0
\(637\) − 29.4891i − 1.16840i
\(638\) 6.00000i 0.237542i
\(639\) 0 0
\(640\) 0 0
\(641\) 39.0000 1.54041 0.770204 0.637798i \(-0.220155\pi\)
0.770204 + 0.637798i \(0.220155\pi\)
\(642\) 0 0
\(643\) − 11.0000i − 0.433798i −0.976194 0.216899i \(-0.930406\pi\)
0.976194 0.216899i \(-0.0695942\pi\)
\(644\) 4.62772 0.182358
\(645\) 0 0
\(646\) −3.86141 −0.151925
\(647\) 39.0951i 1.53699i 0.639858 + 0.768493i \(0.278993\pi\)
−0.639858 + 0.768493i \(0.721007\pi\)
\(648\) 0 0
\(649\) 19.1168 0.750402
\(650\) 0 0
\(651\) 0 0
\(652\) − 21.4891i − 0.841579i
\(653\) 19.7228i 0.771813i 0.922538 + 0.385907i \(0.126111\pi\)
−0.922538 + 0.385907i \(0.873889\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.00000 0.117130
\(657\) 0 0
\(658\) − 24.8614i − 0.969199i
\(659\) 17.4891 0.681280 0.340640 0.940194i \(-0.389356\pi\)
0.340640 + 0.940194i \(0.389356\pi\)
\(660\) 0 0
\(661\) −12.2337 −0.475835 −0.237918 0.971285i \(-0.576465\pi\)
−0.237918 + 0.971285i \(0.576465\pi\)
\(662\) 16.2337i 0.630940i
\(663\) 0 0
\(664\) 7.37228 0.286100
\(665\) 0 0
\(666\) 0 0
\(667\) 1.88316i 0.0729161i
\(668\) 13.3723i 0.517389i
\(669\) 0 0
\(670\) 0 0
\(671\) −35.4891 −1.37004
\(672\) 0 0
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) 2.37228 0.0913769
\(675\) 0 0
\(676\) 32.4891 1.24958
\(677\) − 13.7228i − 0.527411i −0.964603 0.263705i \(-0.915055\pi\)
0.964603 0.263705i \(-0.0849446\pi\)
\(678\) 0 0
\(679\) 28.2337 1.08351
\(680\) 0 0
\(681\) 0 0
\(682\) 20.7446i 0.794350i
\(683\) − 30.0951i − 1.15156i −0.817606 0.575778i \(-0.804699\pi\)
0.817606 0.575778i \(-0.195301\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.86141 −0.338330
\(687\) 0 0
\(688\) 5.62772i 0.214555i
\(689\) 77.4891 2.95210
\(690\) 0 0
\(691\) −36.2337 −1.37839 −0.689197 0.724574i \(-0.742037\pi\)
−0.689197 + 0.724574i \(0.742037\pi\)
\(692\) − 20.7446i − 0.788590i
\(693\) 0 0
\(694\) −4.88316 −0.185362
\(695\) 0 0
\(696\) 0 0
\(697\) 4.88316i 0.184963i
\(698\) − 18.1168i − 0.685733i
\(699\) 0 0
\(700\) 0 0
\(701\) −42.8614 −1.61885 −0.809426 0.587221i \(-0.800222\pi\)
−0.809426 + 0.587221i \(0.800222\pi\)
\(702\) 0 0
\(703\) − 9.48913i − 0.357889i
\(704\) −4.37228 −0.164787
\(705\) 0 0
\(706\) 21.3505 0.803538
\(707\) − 9.25544i − 0.348087i
\(708\) 0 0
\(709\) −2.86141 −0.107462 −0.0537312 0.998555i \(-0.517111\pi\)
−0.0537312 + 0.998555i \(0.517111\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 16.1168i − 0.604004i
\(713\) 6.51087i 0.243834i
\(714\) 0 0
\(715\) 0 0
\(716\) 14.7446 0.551030
\(717\) 0 0
\(718\) − 17.4891i − 0.652688i
\(719\) −3.76631 −0.140460 −0.0702299 0.997531i \(-0.522373\pi\)
−0.0702299 + 0.997531i \(0.522373\pi\)
\(720\) 0 0
\(721\) −53.9565 −2.00945
\(722\) − 13.3723i − 0.497665i
\(723\) 0 0
\(724\) −20.8614 −0.775308
\(725\) 0 0
\(726\) 0 0
\(727\) 18.1168i 0.671917i 0.941877 + 0.335958i \(0.109060\pi\)
−0.941877 + 0.335958i \(0.890940\pi\)
\(728\) 22.7446i 0.842970i
\(729\) 0 0
\(730\) 0 0
\(731\) −9.16034 −0.338808
\(732\) 0 0
\(733\) 0.233688i 0.00863146i 0.999991 + 0.00431573i \(0.00137374\pi\)
−0.999991 + 0.00431573i \(0.998626\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) −1.37228 −0.0505830
\(737\) − 30.6060i − 1.12739i
\(738\) 0 0
\(739\) 41.1168 1.51251 0.756254 0.654278i \(-0.227028\pi\)
0.756254 + 0.654278i \(0.227028\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 38.7446i 1.42236i
\(743\) 7.88316i 0.289205i 0.989490 + 0.144602i \(0.0461903\pi\)
−0.989490 + 0.144602i \(0.953810\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −15.4891 −0.567097
\(747\) 0 0
\(748\) − 7.11684i − 0.260218i
\(749\) 28.6277 1.04603
\(750\) 0 0
\(751\) 16.2337 0.592376 0.296188 0.955130i \(-0.404285\pi\)
0.296188 + 0.955130i \(0.404285\pi\)
\(752\) 7.37228i 0.268839i
\(753\) 0 0
\(754\) −9.25544 −0.337063
\(755\) 0 0
\(756\) 0 0
\(757\) − 10.0000i − 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) − 17.8614i − 0.648756i
\(759\) 0 0
\(760\) 0 0
\(761\) 51.0951 1.85220 0.926098 0.377283i \(-0.123142\pi\)
0.926098 + 0.377283i \(0.123142\pi\)
\(762\) 0 0
\(763\) − 51.8397i − 1.87672i
\(764\) 17.4891 0.632734
\(765\) 0 0
\(766\) 22.9783 0.830238
\(767\) 29.4891i 1.06479i
\(768\) 0 0
\(769\) 46.8614 1.68987 0.844933 0.534873i \(-0.179640\pi\)
0.844933 + 0.534873i \(0.179640\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 21.1168i 0.760012i
\(773\) 3.25544i 0.117090i 0.998285 + 0.0585450i \(0.0186461\pi\)
−0.998285 + 0.0585450i \(0.981354\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8.37228 −0.300547
\(777\) 0 0
\(778\) − 4.62772i − 0.165912i
\(779\) 7.11684 0.254987
\(780\) 0 0
\(781\) 26.2337 0.938715
\(782\) − 2.23369i − 0.0798765i
\(783\) 0 0
\(784\) −4.37228 −0.156153
\(785\) 0 0
\(786\) 0 0
\(787\) − 28.0000i − 0.998092i −0.866575 0.499046i \(-0.833684\pi\)
0.866575 0.499046i \(-0.166316\pi\)
\(788\) − 5.48913i − 0.195542i
\(789\) 0 0
\(790\) 0 0
\(791\) −10.9783 −0.390342
\(792\) 0 0
\(793\) − 54.7446i − 1.94404i
\(794\) −22.7446 −0.807174
\(795\) 0 0
\(796\) 13.4891 0.478109
\(797\) − 14.7446i − 0.522279i −0.965301 0.261140i \(-0.915902\pi\)
0.965301 0.261140i \(-0.0840983\pi\)
\(798\) 0 0
\(799\) −12.0000 −0.424529
\(800\) 0 0
\(801\) 0 0
\(802\) 1.11684i 0.0394371i
\(803\) − 13.6277i − 0.480912i
\(804\) 0 0
\(805\) 0 0
\(806\) −32.0000 −1.12715
\(807\) 0 0
\(808\) 2.74456i 0.0965534i
\(809\) 39.3505 1.38349 0.691746 0.722141i \(-0.256842\pi\)
0.691746 + 0.722141i \(0.256842\pi\)
\(810\) 0 0
\(811\) 3.62772 0.127386 0.0636932 0.997970i \(-0.479712\pi\)
0.0636932 + 0.997970i \(0.479712\pi\)
\(812\) − 4.62772i − 0.162401i
\(813\) 0 0
\(814\) 17.4891 0.612994
\(815\) 0 0
\(816\) 0 0
\(817\) 13.3505i 0.467076i
\(818\) − 17.8614i − 0.624509i
\(819\) 0 0
\(820\) 0 0
\(821\) 23.8397 0.832010 0.416005 0.909362i \(-0.363430\pi\)
0.416005 + 0.909362i \(0.363430\pi\)
\(822\) 0 0
\(823\) 25.0951i 0.874760i 0.899277 + 0.437380i \(0.144094\pi\)
−0.899277 + 0.437380i \(0.855906\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −14.7446 −0.513029
\(827\) − 36.8614i − 1.28180i −0.767626 0.640898i \(-0.778562\pi\)
0.767626 0.640898i \(-0.221438\pi\)
\(828\) 0 0
\(829\) 50.1168 1.74063 0.870315 0.492496i \(-0.163915\pi\)
0.870315 + 0.492496i \(0.163915\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 6.74456i − 0.233826i
\(833\) − 7.11684i − 0.246584i
\(834\) 0 0
\(835\) 0 0
\(836\) −10.3723 −0.358733
\(837\) 0 0
\(838\) 25.7228i 0.888580i
\(839\) 9.76631 0.337171 0.168585 0.985687i \(-0.446080\pi\)
0.168585 + 0.985687i \(0.446080\pi\)
\(840\) 0 0
\(841\) −27.1168 −0.935064
\(842\) 30.4674i 1.04998i
\(843\) 0 0
\(844\) 18.7446 0.645214
\(845\) 0 0
\(846\) 0 0
\(847\) 27.3723i 0.940523i
\(848\) − 11.4891i − 0.394538i
\(849\) 0 0
\(850\) 0 0
\(851\) 5.48913 0.188165
\(852\) 0 0
\(853\) 36.2337i 1.24062i 0.784358 + 0.620309i \(0.212993\pi\)
−0.784358 + 0.620309i \(0.787007\pi\)
\(854\) 27.3723 0.936660
\(855\) 0 0
\(856\) −8.48913 −0.290152
\(857\) − 0.510875i − 0.0174511i −0.999962 0.00872557i \(-0.997223\pi\)
0.999962 0.00872557i \(-0.00277747\pi\)
\(858\) 0 0
\(859\) 17.1168 0.584019 0.292010 0.956415i \(-0.405676\pi\)
0.292010 + 0.956415i \(0.405676\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 8.23369i − 0.280441i
\(863\) − 2.39403i − 0.0814938i −0.999170 0.0407469i \(-0.987026\pi\)
0.999170 0.0407469i \(-0.0129737\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.37228 0.216539
\(867\) 0 0
\(868\) − 16.0000i − 0.543075i
\(869\) −8.74456 −0.296639
\(870\) 0 0
\(871\) 47.2119 1.59972
\(872\) 15.3723i 0.520571i
\(873\) 0 0
\(874\) −3.25544 −0.110117
\(875\) 0 0
\(876\) 0 0
\(877\) 35.9565i 1.21416i 0.794639 + 0.607082i \(0.207660\pi\)
−0.794639 + 0.607082i \(0.792340\pi\)
\(878\) 18.2337i 0.615357i
\(879\) 0 0
\(880\) 0 0
\(881\) 24.3505 0.820390 0.410195 0.911998i \(-0.365461\pi\)
0.410195 + 0.911998i \(0.365461\pi\)
\(882\) 0 0
\(883\) 44.7228i 1.50504i 0.658568 + 0.752521i \(0.271163\pi\)
−0.658568 + 0.752521i \(0.728837\pi\)
\(884\) 10.9783 0.369239
\(885\) 0 0
\(886\) 3.51087 0.117950
\(887\) − 19.7228i − 0.662227i −0.943591 0.331114i \(-0.892576\pi\)
0.943591 0.331114i \(-0.107424\pi\)
\(888\) 0 0
\(889\) 27.3723 0.918037
\(890\) 0 0
\(891\) 0 0
\(892\) 6.62772i 0.221912i
\(893\) 17.4891i 0.585251i
\(894\) 0 0
\(895\) 0 0
\(896\) 3.37228 0.112660
\(897\) 0 0
\(898\) 9.86141i 0.329079i
\(899\) 6.51087 0.217150
\(900\) 0 0
\(901\) 18.7011 0.623023
\(902\) 13.1168i 0.436743i
\(903\) 0 0
\(904\) 3.25544 0.108274
\(905\) 0 0
\(906\) 0 0
\(907\) − 7.00000i − 0.232431i −0.993224 0.116216i \(-0.962924\pi\)
0.993224 0.116216i \(-0.0370764\pi\)
\(908\) 19.1168i 0.634415i
\(909\) 0 0
\(910\) 0 0
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) 32.2337i 1.06678i
\(914\) −12.8832 −0.426137
\(915\) 0 0
\(916\) 12.6277 0.417232
\(917\) 9.25544i 0.305641i
\(918\) 0 0
\(919\) 26.4674 0.873078 0.436539 0.899685i \(-0.356204\pi\)
0.436539 + 0.899685i \(0.356204\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 1.88316i − 0.0620184i
\(923\) 40.4674i 1.33200i
\(924\) 0 0
\(925\) 0 0
\(926\) 20.0000 0.657241
\(927\) 0 0
\(928\) 1.37228i 0.0450473i
\(929\) 51.9565 1.70464 0.852319 0.523023i \(-0.175196\pi\)
0.852319 + 0.523023i \(0.175196\pi\)
\(930\) 0 0
\(931\) −10.3723 −0.339938
\(932\) − 7.11684i − 0.233120i
\(933\) 0 0
\(934\) 43.1168 1.41083
\(935\) 0 0
\(936\) 0 0
\(937\) 39.7228i 1.29769i 0.760922 + 0.648844i \(0.224747\pi\)
−0.760922 + 0.648844i \(0.775253\pi\)
\(938\) 23.6060i 0.770762i
\(939\) 0 0
\(940\) 0 0
\(941\) −43.3723 −1.41390 −0.706948 0.707266i \(-0.749929\pi\)
−0.706948 + 0.707266i \(0.749929\pi\)
\(942\) 0 0
\(943\) 4.11684i 0.134063i
\(944\) 4.37228 0.142306
\(945\) 0 0
\(946\) −24.6060 −0.800009
\(947\) 34.7228i 1.12834i 0.825659 + 0.564170i \(0.190804\pi\)
−0.825659 + 0.564170i \(0.809196\pi\)
\(948\) 0 0
\(949\) 21.0217 0.682395
\(950\) 0 0
\(951\) 0 0
\(952\) 5.48913i 0.177904i
\(953\) 2.13859i 0.0692758i 0.999400 + 0.0346379i \(0.0110278\pi\)
−0.999400 + 0.0346379i \(0.988972\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.25544 0.105288
\(957\) 0 0
\(958\) − 0.510875i − 0.0165056i
\(959\) −64.4674 −2.08176
\(960\) 0 0
\(961\) −8.48913 −0.273843
\(962\) 26.9783i 0.869814i
\(963\) 0 0
\(964\) 12.4891 0.402248
\(965\) 0 0
\(966\) 0 0
\(967\) 36.1168i 1.16144i 0.814104 + 0.580720i \(0.197229\pi\)
−0.814104 + 0.580720i \(0.802771\pi\)
\(968\) − 8.11684i − 0.260885i
\(969\) 0 0
\(970\) 0 0
\(971\) 22.9783 0.737407 0.368704 0.929547i \(-0.379802\pi\)
0.368704 + 0.929547i \(0.379802\pi\)
\(972\) 0 0
\(973\) − 2.97825i − 0.0954783i
\(974\) 12.7446 0.408362
\(975\) 0 0
\(976\) −8.11684 −0.259814
\(977\) 22.8832i 0.732097i 0.930596 + 0.366049i \(0.119290\pi\)
−0.930596 + 0.366049i \(0.880710\pi\)
\(978\) 0 0
\(979\) 70.4674 2.25215
\(980\) 0 0
\(981\) 0 0
\(982\) 36.6060i 1.16814i
\(983\) − 12.8614i − 0.410215i −0.978739 0.205108i \(-0.934246\pi\)
0.978739 0.205108i \(-0.0657544\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.23369 −0.0711351
\(987\) 0 0
\(988\) − 16.0000i − 0.509028i
\(989\) −7.72281 −0.245571
\(990\) 0 0
\(991\) 16.2337 0.515680 0.257840 0.966188i \(-0.416989\pi\)
0.257840 + 0.966188i \(0.416989\pi\)
\(992\) 4.74456i 0.150640i
\(993\) 0 0
\(994\) −20.2337 −0.641774
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000i 0.443384i 0.975117 + 0.221692i \(0.0711580\pi\)
−0.975117 + 0.221692i \(0.928842\pi\)
\(998\) − 15.1168i − 0.478515i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.ba.649.4 4
3.2 odd 2 4050.2.c.v.649.2 4
5.2 odd 4 4050.2.a.bo.1.1 2
5.3 odd 4 810.2.a.k.1.2 2
5.4 even 2 inner 4050.2.c.ba.649.1 4
9.2 odd 6 450.2.j.g.49.2 8
9.4 even 3 1350.2.j.f.1099.1 8
9.5 odd 6 450.2.j.g.349.3 8
9.7 even 3 1350.2.j.f.199.4 8
15.2 even 4 4050.2.a.bw.1.1 2
15.8 even 4 810.2.a.i.1.2 2
15.14 odd 2 4050.2.c.v.649.3 4
20.3 even 4 6480.2.a.bn.1.1 2
45.2 even 12 450.2.e.j.301.1 4
45.4 even 6 1350.2.j.f.1099.4 8
45.7 odd 12 1350.2.e.l.901.2 4
45.13 odd 12 270.2.e.c.181.1 4
45.14 odd 6 450.2.j.g.349.2 8
45.22 odd 12 1350.2.e.l.451.2 4
45.23 even 12 90.2.e.c.61.1 yes 4
45.29 odd 6 450.2.j.g.49.3 8
45.32 even 12 450.2.e.j.151.2 4
45.34 even 6 1350.2.j.f.199.1 8
45.38 even 12 90.2.e.c.31.2 4
45.43 odd 12 270.2.e.c.91.1 4
60.23 odd 4 6480.2.a.be.1.1 2
180.23 odd 12 720.2.q.f.241.2 4
180.43 even 12 2160.2.q.f.1441.2 4
180.83 odd 12 720.2.q.f.481.1 4
180.103 even 12 2160.2.q.f.721.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.2 4 45.38 even 12
90.2.e.c.61.1 yes 4 45.23 even 12
270.2.e.c.91.1 4 45.43 odd 12
270.2.e.c.181.1 4 45.13 odd 12
450.2.e.j.151.2 4 45.32 even 12
450.2.e.j.301.1 4 45.2 even 12
450.2.j.g.49.2 8 9.2 odd 6
450.2.j.g.49.3 8 45.29 odd 6
450.2.j.g.349.2 8 45.14 odd 6
450.2.j.g.349.3 8 9.5 odd 6
720.2.q.f.241.2 4 180.23 odd 12
720.2.q.f.481.1 4 180.83 odd 12
810.2.a.i.1.2 2 15.8 even 4
810.2.a.k.1.2 2 5.3 odd 4
1350.2.e.l.451.2 4 45.22 odd 12
1350.2.e.l.901.2 4 45.7 odd 12
1350.2.j.f.199.1 8 45.34 even 6
1350.2.j.f.199.4 8 9.7 even 3
1350.2.j.f.1099.1 8 9.4 even 3
1350.2.j.f.1099.4 8 45.4 even 6
2160.2.q.f.721.2 4 180.103 even 12
2160.2.q.f.1441.2 4 180.43 even 12
4050.2.a.bo.1.1 2 5.2 odd 4
4050.2.a.bw.1.1 2 15.2 even 4
4050.2.c.v.649.2 4 3.2 odd 2
4050.2.c.v.649.3 4 15.14 odd 2
4050.2.c.ba.649.1 4 5.4 even 2 inner
4050.2.c.ba.649.4 4 1.1 even 1 trivial
6480.2.a.be.1.1 2 60.23 odd 4
6480.2.a.bn.1.1 2 20.3 even 4