Properties

Label 2-4050-5.4-c1-0-29
Degree $2$
Conductor $4050$
Sign $-0.894 - 0.447i$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + 3.37i·7-s i·8-s + 4.37·11-s + 6.74i·13-s − 3.37·14-s + 16-s + 1.62i·17-s + 2.37·19-s + 4.37i·22-s + 1.37i·23-s − 6.74·26-s − 3.37i·28-s + 1.37·29-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 1.27i·7-s − 0.353i·8-s + 1.31·11-s + 1.87i·13-s − 0.901·14-s + 0.250·16-s + 0.394i·17-s + 0.544·19-s + 0.932i·22-s + 0.286i·23-s − 1.32·26-s − 0.637i·28-s + 0.254·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4050} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.898978032\)
\(L(\frac12)\) \(\approx\) \(1.898978032\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3.37iT - 7T^{2} \)
11 \( 1 - 4.37T + 11T^{2} \)
13 \( 1 - 6.74iT - 13T^{2} \)
17 \( 1 - 1.62iT - 17T^{2} \)
19 \( 1 - 2.37T + 19T^{2} \)
23 \( 1 - 1.37iT - 23T^{2} \)
29 \( 1 - 1.37T + 29T^{2} \)
31 \( 1 - 4.74T + 31T^{2} \)
37 \( 1 + 4iT - 37T^{2} \)
41 \( 1 - 3T + 41T^{2} \)
43 \( 1 - 5.62iT - 43T^{2} \)
47 \( 1 - 7.37iT - 47T^{2} \)
53 \( 1 + 11.4iT - 53T^{2} \)
59 \( 1 - 4.37T + 59T^{2} \)
61 \( 1 + 8.11T + 61T^{2} \)
67 \( 1 + 7iT - 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 3.11iT - 73T^{2} \)
79 \( 1 + 2T + 79T^{2} \)
83 \( 1 - 7.37iT - 83T^{2} \)
89 \( 1 - 16.1T + 89T^{2} \)
97 \( 1 + 8.37iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.778899908531950656870863497209, −8.096591763972853464711103492277, −7.14344266942868004927085156614, −6.39365764700831839187895222963, −6.09662725889141762413035940857, −5.05435919397786493103366211123, −4.33757576402704188671190830658, −3.53613274247474247944729751437, −2.30260077144553743728770341229, −1.35343112247558987996312743891, 0.64428506538080436136630317698, 1.23766189436254144226878865892, 2.69052877985750115133324848506, 3.46912025772488116525928332852, 4.13203681615567444136957209564, 4.94733256720450024700077108710, 5.83459268445479280959822030851, 6.74455520110533464187945979950, 7.47621449516506366459954402732, 8.141202692069260593408476789550

Graph of the $Z$-function along the critical line