Properties

Label 450.2.j.g.349.3
Level $450$
Weight $2$
Character 450.349
Analytic conductor $3.593$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(49,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,2,0,0,20,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.3
Root \(-1.26217 - 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 450.349
Dual form 450.2.j.g.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-1.65831 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.18614 - 1.26217i) q^{6} +(-2.92048 - 1.68614i) q^{7} +1.00000i q^{8} +(2.50000 + 1.65831i) q^{9} +(2.18614 - 3.78651i) q^{11} +(-0.396143 - 1.68614i) q^{12} +(5.84096 - 3.37228i) q^{13} +(-1.68614 - 2.92048i) q^{14} +(-0.500000 + 0.866025i) q^{16} -1.62772i q^{17} +(1.33591 + 2.68614i) q^{18} +2.37228 q^{19} +(4.00000 + 4.25639i) q^{21} +(3.78651 - 2.18614i) q^{22} +(-1.18843 + 0.686141i) q^{23} +(0.500000 - 1.65831i) q^{24} +6.74456 q^{26} +(-3.31662 - 4.00000i) q^{27} -3.37228i q^{28} +(0.686141 - 1.18843i) q^{29} +(-2.37228 - 4.10891i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-5.51856 + 5.18614i) q^{33} +(0.813859 - 1.40965i) q^{34} +(-0.186141 + 2.99422i) q^{36} -4.00000i q^{37} +(2.05446 + 1.18614i) q^{38} +(-11.3723 + 2.67181i) q^{39} +(1.50000 + 2.59808i) q^{41} +(1.33591 + 5.68614i) q^{42} +(-4.87375 - 2.81386i) q^{43} +4.37228 q^{44} -1.37228 q^{46} +(6.38458 + 3.68614i) q^{47} +(1.26217 - 1.18614i) q^{48} +(2.18614 + 3.78651i) q^{49} +(-0.813859 + 2.69927i) q^{51} +(5.84096 + 3.37228i) q^{52} +11.4891i q^{53} +(-0.872281 - 5.12241i) q^{54} +(1.68614 - 2.92048i) q^{56} +(-3.93398 - 1.18614i) q^{57} +(1.18843 - 0.686141i) q^{58} +(2.18614 + 3.78651i) q^{59} +(4.05842 - 7.02939i) q^{61} -4.74456i q^{62} +(-4.50506 - 9.05842i) q^{63} -1.00000 q^{64} +(-7.37228 + 1.73205i) q^{66} +(-6.06218 + 3.50000i) q^{67} +(1.40965 - 0.813859i) q^{68} +(2.31386 - 0.543620i) q^{69} -6.00000 q^{71} +(-1.65831 + 2.50000i) q^{72} -3.11684i q^{73} +(2.00000 - 3.46410i) q^{74} +(1.18614 + 2.05446i) q^{76} +(-12.7692 + 7.37228i) q^{77} +(-11.1846 - 3.37228i) q^{78} +(1.00000 - 1.73205i) q^{79} +(3.50000 + 8.29156i) q^{81} +3.00000i q^{82} +(6.38458 + 3.68614i) q^{83} +(-1.68614 + 5.59230i) q^{84} +(-2.81386 - 4.87375i) q^{86} +(-1.73205 + 1.62772i) q^{87} +(3.78651 + 2.18614i) q^{88} -16.1168 q^{89} -22.7446 q^{91} +(-1.18843 - 0.686141i) q^{92} +(1.87953 + 8.00000i) q^{93} +(3.68614 + 6.38458i) q^{94} +(1.68614 - 0.396143i) q^{96} +(7.25061 + 4.18614i) q^{97} +4.37228i q^{98} +(11.7446 - 5.84096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 2 q^{6} + 20 q^{9} + 6 q^{11} - 2 q^{14} - 4 q^{16} - 4 q^{19} + 32 q^{21} + 4 q^{24} + 8 q^{26} - 6 q^{29} + 4 q^{31} + 18 q^{34} + 10 q^{36} - 68 q^{39} + 12 q^{41} + 12 q^{44} + 12 q^{46}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −1.65831 0.500000i −0.957427 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) −1.18614 1.26217i −0.484240 0.515278i
\(7\) −2.92048 1.68614i −1.10384 0.637301i −0.166612 0.986023i \(-0.553283\pi\)
−0.937226 + 0.348721i \(0.886616\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.50000 + 1.65831i 0.833333 + 0.552771i
\(10\) 0 0
\(11\) 2.18614 3.78651i 0.659146 1.14167i −0.321691 0.946845i \(-0.604251\pi\)
0.980837 0.194830i \(-0.0624155\pi\)
\(12\) −0.396143 1.68614i −0.114357 0.486747i
\(13\) 5.84096 3.37228i 1.61999 0.935303i 0.633071 0.774094i \(-0.281794\pi\)
0.986920 0.161209i \(-0.0515393\pi\)
\(14\) −1.68614 2.92048i −0.450640 0.780531i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.62772i 0.394780i −0.980325 0.197390i \(-0.936754\pi\)
0.980325 0.197390i \(-0.0632465\pi\)
\(18\) 1.33591 + 2.68614i 0.314876 + 0.633129i
\(19\) 2.37228 0.544239 0.272119 0.962264i \(-0.412275\pi\)
0.272119 + 0.962264i \(0.412275\pi\)
\(20\) 0 0
\(21\) 4.00000 + 4.25639i 0.872872 + 0.928820i
\(22\) 3.78651 2.18614i 0.807286 0.466087i
\(23\) −1.18843 + 0.686141i −0.247805 + 0.143070i −0.618759 0.785581i \(-0.712364\pi\)
0.370954 + 0.928651i \(0.379031\pi\)
\(24\) 0.500000 1.65831i 0.102062 0.338502i
\(25\) 0 0
\(26\) 6.74456 1.32272
\(27\) −3.31662 4.00000i −0.638285 0.769800i
\(28\) 3.37228i 0.637301i
\(29\) 0.686141 1.18843i 0.127413 0.220686i −0.795261 0.606268i \(-0.792666\pi\)
0.922674 + 0.385582i \(0.125999\pi\)
\(30\) 0 0
\(31\) −2.37228 4.10891i −0.426074 0.737982i 0.570446 0.821335i \(-0.306770\pi\)
−0.996520 + 0.0833529i \(0.973437\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −5.51856 + 5.18614i −0.960658 + 0.902791i
\(34\) 0.813859 1.40965i 0.139576 0.241752i
\(35\) 0 0
\(36\) −0.186141 + 2.99422i −0.0310234 + 0.499037i
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 2.05446 + 1.18614i 0.333277 + 0.192417i
\(39\) −11.3723 + 2.67181i −1.82102 + 0.427833i
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 1.33591 + 5.68614i 0.206135 + 0.877391i
\(43\) −4.87375 2.81386i −0.743240 0.429110i 0.0800065 0.996794i \(-0.474506\pi\)
−0.823246 + 0.567685i \(0.807839\pi\)
\(44\) 4.37228 0.659146
\(45\) 0 0
\(46\) −1.37228 −0.202332
\(47\) 6.38458 + 3.68614i 0.931287 + 0.537679i 0.887218 0.461350i \(-0.152635\pi\)
0.0440687 + 0.999029i \(0.485968\pi\)
\(48\) 1.26217 1.18614i 0.182178 0.171205i
\(49\) 2.18614 + 3.78651i 0.312306 + 0.540930i
\(50\) 0 0
\(51\) −0.813859 + 2.69927i −0.113963 + 0.377973i
\(52\) 5.84096 + 3.37228i 0.809996 + 0.467651i
\(53\) 11.4891i 1.57815i 0.614295 + 0.789076i \(0.289440\pi\)
−0.614295 + 0.789076i \(0.710560\pi\)
\(54\) −0.872281 5.12241i −0.118702 0.697072i
\(55\) 0 0
\(56\) 1.68614 2.92048i 0.225320 0.390266i
\(57\) −3.93398 1.18614i −0.521069 0.157108i
\(58\) 1.18843 0.686141i 0.156049 0.0900947i
\(59\) 2.18614 + 3.78651i 0.284611 + 0.492961i 0.972515 0.232841i \(-0.0748021\pi\)
−0.687904 + 0.725802i \(0.741469\pi\)
\(60\) 0 0
\(61\) 4.05842 7.02939i 0.519628 0.900022i −0.480112 0.877207i \(-0.659404\pi\)
0.999740 0.0228144i \(-0.00726267\pi\)
\(62\) 4.74456i 0.602560i
\(63\) −4.50506 9.05842i −0.567584 1.14125i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −7.37228 + 1.73205i −0.907465 + 0.213201i
\(67\) −6.06218 + 3.50000i −0.740613 + 0.427593i −0.822292 0.569066i \(-0.807305\pi\)
0.0816792 + 0.996659i \(0.473972\pi\)
\(68\) 1.40965 0.813859i 0.170945 0.0986949i
\(69\) 2.31386 0.543620i 0.278556 0.0654442i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.65831 + 2.50000i −0.195434 + 0.294628i
\(73\) 3.11684i 0.364799i −0.983225 0.182399i \(-0.941614\pi\)
0.983225 0.182399i \(-0.0583864\pi\)
\(74\) 2.00000 3.46410i 0.232495 0.402694i
\(75\) 0 0
\(76\) 1.18614 + 2.05446i 0.136060 + 0.235662i
\(77\) −12.7692 + 7.37228i −1.45518 + 0.840149i
\(78\) −11.1846 3.37228i −1.26641 0.381836i
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) 3.50000 + 8.29156i 0.388889 + 0.921285i
\(82\) 3.00000i 0.331295i
\(83\) 6.38458 + 3.68614i 0.700799 + 0.404607i 0.807645 0.589669i \(-0.200742\pi\)
−0.106846 + 0.994276i \(0.534075\pi\)
\(84\) −1.68614 + 5.59230i −0.183973 + 0.610170i
\(85\) 0 0
\(86\) −2.81386 4.87375i −0.303426 0.525550i
\(87\) −1.73205 + 1.62772i −0.185695 + 0.174510i
\(88\) 3.78651 + 2.18614i 0.403643 + 0.233043i
\(89\) −16.1168 −1.70838 −0.854191 0.519959i \(-0.825947\pi\)
−0.854191 + 0.519959i \(0.825947\pi\)
\(90\) 0 0
\(91\) −22.7446 −2.38428
\(92\) −1.18843 0.686141i −0.123902 0.0715351i
\(93\) 1.87953 + 8.00000i 0.194898 + 0.829561i
\(94\) 3.68614 + 6.38458i 0.380196 + 0.658519i
\(95\) 0 0
\(96\) 1.68614 0.396143i 0.172091 0.0404312i
\(97\) 7.25061 + 4.18614i 0.736188 + 0.425038i 0.820682 0.571386i \(-0.193594\pi\)
−0.0844938 + 0.996424i \(0.526927\pi\)
\(98\) 4.37228i 0.441667i
\(99\) 11.7446 5.84096i 1.18037 0.587039i
\(100\) 0 0
\(101\) −1.37228 + 2.37686i −0.136547 + 0.236507i −0.926187 0.377064i \(-0.876934\pi\)
0.789640 + 0.613570i \(0.210267\pi\)
\(102\) −2.05446 + 1.93070i −0.203421 + 0.191168i
\(103\) 13.8564 8.00000i 1.36531 0.788263i 0.374987 0.927030i \(-0.377647\pi\)
0.990325 + 0.138767i \(0.0443138\pi\)
\(104\) 3.37228 + 5.84096i 0.330679 + 0.572754i
\(105\) 0 0
\(106\) −5.74456 + 9.94987i −0.557961 + 0.966417i
\(107\) 8.48913i 0.820675i 0.911934 + 0.410337i \(0.134589\pi\)
−0.911934 + 0.410337i \(0.865411\pi\)
\(108\) 1.80579 4.87228i 0.173762 0.468835i
\(109\) −15.3723 −1.47240 −0.736199 0.676765i \(-0.763381\pi\)
−0.736199 + 0.676765i \(0.763381\pi\)
\(110\) 0 0
\(111\) −2.00000 + 6.63325i −0.189832 + 0.629600i
\(112\) 2.92048 1.68614i 0.275960 0.159325i
\(113\) −2.81929 + 1.62772i −0.265217 + 0.153123i −0.626712 0.779251i \(-0.715600\pi\)
0.361495 + 0.932374i \(0.382266\pi\)
\(114\) −2.81386 2.99422i −0.263542 0.280434i
\(115\) 0 0
\(116\) 1.37228 0.127413
\(117\) 20.1947 + 1.25544i 1.86700 + 0.116065i
\(118\) 4.37228i 0.402501i
\(119\) −2.74456 + 4.75372i −0.251594 + 0.435773i
\(120\) 0 0
\(121\) −4.05842 7.02939i −0.368947 0.639036i
\(122\) 7.02939 4.05842i 0.636411 0.367432i
\(123\) −1.18843 5.05842i −0.107157 0.456103i
\(124\) 2.37228 4.10891i 0.213037 0.368991i
\(125\) 0 0
\(126\) 0.627719 10.0974i 0.0559216 0.899544i
\(127\) 8.11684i 0.720253i −0.932903 0.360127i \(-0.882733\pi\)
0.932903 0.360127i \(-0.117267\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 6.67527 + 7.10313i 0.587724 + 0.625396i
\(130\) 0 0
\(131\) 1.37228 + 2.37686i 0.119897 + 0.207667i 0.919727 0.392560i \(-0.128410\pi\)
−0.799830 + 0.600227i \(0.795077\pi\)
\(132\) −7.25061 2.18614i −0.631084 0.190279i
\(133\) −6.92820 4.00000i −0.600751 0.346844i
\(134\) −7.00000 −0.604708
\(135\) 0 0
\(136\) 1.62772 0.139576
\(137\) 16.5557 + 9.55842i 1.41445 + 0.816631i 0.995803 0.0915197i \(-0.0291724\pi\)
0.418643 + 0.908151i \(0.362506\pi\)
\(138\) 2.27567 + 0.686141i 0.193718 + 0.0584082i
\(139\) 0.441578 + 0.764836i 0.0374542 + 0.0648725i 0.884145 0.467213i \(-0.154742\pi\)
−0.846691 + 0.532085i \(0.821409\pi\)
\(140\) 0 0
\(141\) −8.74456 9.30506i −0.736425 0.783628i
\(142\) −5.19615 3.00000i −0.436051 0.251754i
\(143\) 29.4891i 2.46600i
\(144\) −2.68614 + 1.33591i −0.223845 + 0.111326i
\(145\) 0 0
\(146\) 1.55842 2.69927i 0.128976 0.223393i
\(147\) −1.73205 7.37228i −0.142857 0.608056i
\(148\) 3.46410 2.00000i 0.284747 0.164399i
\(149\) 0.941578 + 1.63086i 0.0771371 + 0.133605i 0.902014 0.431708i \(-0.142089\pi\)
−0.824877 + 0.565313i \(0.808755\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 2.37228i 0.192417i
\(153\) 2.69927 4.06930i 0.218223 0.328983i
\(154\) −14.7446 −1.18815
\(155\) 0 0
\(156\) −8.00000 8.51278i −0.640513 0.681568i
\(157\) −5.84096 + 3.37228i −0.466160 + 0.269137i −0.714631 0.699502i \(-0.753405\pi\)
0.248471 + 0.968639i \(0.420072\pi\)
\(158\) 1.73205 1.00000i 0.137795 0.0795557i
\(159\) 5.74456 19.0526i 0.455573 1.51097i
\(160\) 0 0
\(161\) 4.62772 0.364715
\(162\) −1.11469 + 8.93070i −0.0875785 + 0.701662i
\(163\) 21.4891i 1.68316i 0.540134 + 0.841579i \(0.318374\pi\)
−0.540134 + 0.841579i \(0.681626\pi\)
\(164\) −1.50000 + 2.59808i −0.117130 + 0.202876i
\(165\) 0 0
\(166\) 3.68614 + 6.38458i 0.286100 + 0.495540i
\(167\) 11.5807 6.68614i 0.896144 0.517389i 0.0201970 0.999796i \(-0.493571\pi\)
0.875947 + 0.482407i \(0.160237\pi\)
\(168\) −4.25639 + 4.00000i −0.328388 + 0.308607i
\(169\) 16.2446 28.1364i 1.24958 2.16434i
\(170\) 0 0
\(171\) 5.93070 + 3.93398i 0.453532 + 0.300839i
\(172\) 5.62772i 0.429110i
\(173\) 17.9653 + 10.3723i 1.36588 + 0.788590i 0.990399 0.138241i \(-0.0441448\pi\)
0.375479 + 0.926831i \(0.377478\pi\)
\(174\) −2.31386 + 0.543620i −0.175413 + 0.0412118i
\(175\) 0 0
\(176\) 2.18614 + 3.78651i 0.164787 + 0.285419i
\(177\) −1.73205 7.37228i −0.130189 0.554135i
\(178\) −13.9576 8.05842i −1.04617 0.604004i
\(179\) 14.7446 1.10206 0.551030 0.834485i \(-0.314235\pi\)
0.551030 + 0.834485i \(0.314235\pi\)
\(180\) 0 0
\(181\) 20.8614 1.55062 0.775308 0.631583i \(-0.217595\pi\)
0.775308 + 0.631583i \(0.217595\pi\)
\(182\) −19.6974 11.3723i −1.46007 0.842970i
\(183\) −10.2448 + 9.62772i −0.757319 + 0.711701i
\(184\) −0.686141 1.18843i −0.0505830 0.0876123i
\(185\) 0 0
\(186\) −2.37228 + 7.86797i −0.173944 + 0.576907i
\(187\) −6.16337 3.55842i −0.450710 0.260218i
\(188\) 7.37228i 0.537679i
\(189\) 2.94158 + 17.2742i 0.213968 + 1.25651i
\(190\) 0 0
\(191\) −8.74456 + 15.1460i −0.632734 + 1.09593i 0.354256 + 0.935148i \(0.384734\pi\)
−0.986990 + 0.160780i \(0.948599\pi\)
\(192\) 1.65831 + 0.500000i 0.119678 + 0.0360844i
\(193\) −18.2877 + 10.5584i −1.31638 + 0.760012i −0.983144 0.182832i \(-0.941474\pi\)
−0.333235 + 0.942844i \(0.608140\pi\)
\(194\) 4.18614 + 7.25061i 0.300547 + 0.520563i
\(195\) 0 0
\(196\) −2.18614 + 3.78651i −0.156153 + 0.270465i
\(197\) 5.48913i 0.391084i −0.980695 0.195542i \(-0.937353\pi\)
0.980695 0.195542i \(-0.0626466\pi\)
\(198\) 13.0916 + 0.813859i 0.930377 + 0.0578385i
\(199\) −13.4891 −0.956219 −0.478109 0.878300i \(-0.658678\pi\)
−0.478109 + 0.878300i \(0.658678\pi\)
\(200\) 0 0
\(201\) 11.8030 2.77300i 0.832518 0.195593i
\(202\) −2.37686 + 1.37228i −0.167235 + 0.0965534i
\(203\) −4.00772 + 2.31386i −0.281287 + 0.162401i
\(204\) −2.74456 + 0.644810i −0.192158 + 0.0451457i
\(205\) 0 0
\(206\) 16.0000 1.11477
\(207\) −4.10891 0.255437i −0.285589 0.0177541i
\(208\) 6.74456i 0.467651i
\(209\) 5.18614 8.98266i 0.358733 0.621344i
\(210\) 0 0
\(211\) 9.37228 + 16.2333i 0.645214 + 1.11754i 0.984252 + 0.176771i \(0.0565653\pi\)
−0.339037 + 0.940773i \(0.610101\pi\)
\(212\) −9.94987 + 5.74456i −0.683360 + 0.394538i
\(213\) 9.94987 + 3.00000i 0.681754 + 0.205557i
\(214\) −4.24456 + 7.35180i −0.290152 + 0.502559i
\(215\) 0 0
\(216\) 4.00000 3.31662i 0.272166 0.225668i
\(217\) 16.0000i 1.08615i
\(218\) −13.3128 7.68614i −0.901656 0.520571i
\(219\) −1.55842 + 5.16870i −0.105308 + 0.349268i
\(220\) 0 0
\(221\) −5.48913 9.50744i −0.369239 0.639540i
\(222\) −5.04868 + 4.74456i −0.338845 + 0.318434i
\(223\) 5.73977 + 3.31386i 0.384364 + 0.221912i 0.679715 0.733476i \(-0.262103\pi\)
−0.295351 + 0.955389i \(0.595437\pi\)
\(224\) 3.37228 0.225320
\(225\) 0 0
\(226\) −3.25544 −0.216548
\(227\) −16.5557 9.55842i −1.09884 0.634415i −0.162923 0.986639i \(-0.552092\pi\)
−0.935916 + 0.352224i \(0.885426\pi\)
\(228\) −0.939764 4.00000i −0.0622374 0.264906i
\(229\) 6.31386 + 10.9359i 0.417232 + 0.722666i 0.995660 0.0930670i \(-0.0296671\pi\)
−0.578428 + 0.815733i \(0.696334\pi\)
\(230\) 0 0
\(231\) 24.8614 5.84096i 1.63576 0.384307i
\(232\) 1.18843 + 0.686141i 0.0780243 + 0.0450473i
\(233\) 7.11684i 0.466240i −0.972448 0.233120i \(-0.925107\pi\)
0.972448 0.233120i \(-0.0748935\pi\)
\(234\) 16.8614 + 11.1846i 1.10226 + 0.731160i
\(235\) 0 0
\(236\) −2.18614 + 3.78651i −0.142306 + 0.246481i
\(237\) −2.52434 + 2.37228i −0.163973 + 0.154096i
\(238\) −4.75372 + 2.74456i −0.308138 + 0.177904i
\(239\) −1.62772 2.81929i −0.105288 0.182365i 0.808568 0.588403i \(-0.200243\pi\)
−0.913856 + 0.406038i \(0.866910\pi\)
\(240\) 0 0
\(241\) 6.24456 10.8159i 0.402248 0.696713i −0.591749 0.806122i \(-0.701562\pi\)
0.993997 + 0.109409i \(0.0348958\pi\)
\(242\) 8.11684i 0.521770i
\(243\) −1.65831 15.5000i −0.106381 0.994325i
\(244\) 8.11684 0.519628
\(245\) 0 0
\(246\) 1.50000 4.97494i 0.0956365 0.317190i
\(247\) 13.8564 8.00000i 0.881662 0.509028i
\(248\) 4.10891 2.37228i 0.260916 0.150640i
\(249\) −8.74456 9.30506i −0.554164 0.589684i
\(250\) 0 0
\(251\) −24.6060 −1.55312 −0.776558 0.630046i \(-0.783036\pi\)
−0.776558 + 0.630046i \(0.783036\pi\)
\(252\) 5.59230 8.43070i 0.352282 0.531084i
\(253\) 6.00000i 0.377217i
\(254\) 4.05842 7.02939i 0.254648 0.441063i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.78651 2.18614i 0.236196 0.136368i −0.377231 0.926119i \(-0.623124\pi\)
0.613427 + 0.789751i \(0.289790\pi\)
\(258\) 2.22938 + 9.48913i 0.138795 + 0.590767i
\(259\) −6.74456 + 11.6819i −0.419087 + 0.725880i
\(260\) 0 0
\(261\) 3.68614 1.83324i 0.228166 0.113475i
\(262\) 2.74456i 0.169560i
\(263\) −15.1460 8.74456i −0.933944 0.539213i −0.0458872 0.998947i \(-0.514611\pi\)
−0.888057 + 0.459734i \(0.847945\pi\)
\(264\) −5.18614 5.51856i −0.319185 0.339644i
\(265\) 0 0
\(266\) −4.00000 6.92820i −0.245256 0.424795i
\(267\) 26.7268 + 8.05842i 1.63565 + 0.493167i
\(268\) −6.06218 3.50000i −0.370306 0.213797i
\(269\) 1.37228 0.0836695 0.0418347 0.999125i \(-0.486680\pi\)
0.0418347 + 0.999125i \(0.486680\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 1.40965 + 0.813859i 0.0854723 + 0.0493475i
\(273\) 37.7176 + 11.3723i 2.28277 + 0.688282i
\(274\) 9.55842 + 16.5557i 0.577445 + 1.00016i
\(275\) 0 0
\(276\) 1.62772 + 1.73205i 0.0979772 + 0.104257i
\(277\) −14.5012 8.37228i −0.871294 0.503042i −0.00351574 0.999994i \(-0.501119\pi\)
−0.867778 + 0.496952i \(0.834452\pi\)
\(278\) 0.883156i 0.0529682i
\(279\) 0.883156 14.2063i 0.0528732 0.850507i
\(280\) 0 0
\(281\) 0.686141 1.18843i 0.0409317 0.0708958i −0.844834 0.535029i \(-0.820301\pi\)
0.885765 + 0.464133i \(0.153634\pi\)
\(282\) −2.92048 12.4307i −0.173912 0.740238i
\(283\) 2.71810 1.56930i 0.161574 0.0932850i −0.417033 0.908892i \(-0.636930\pi\)
0.578607 + 0.815607i \(0.303597\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) 14.7446 25.5383i 0.871864 1.51011i
\(287\) 10.1168i 0.597178i
\(288\) −2.99422 0.186141i −0.176436 0.0109684i
\(289\) 14.3505 0.844149
\(290\) 0 0
\(291\) −9.93070 10.5672i −0.582148 0.619462i
\(292\) 2.69927 1.55842i 0.157963 0.0911997i
\(293\) −22.7190 + 13.1168i −1.32726 + 0.766294i −0.984875 0.173265i \(-0.944568\pi\)
−0.342385 + 0.939560i \(0.611235\pi\)
\(294\) 2.18614 7.25061i 0.127498 0.422864i
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) −22.3966 + 3.81386i −1.29958 + 0.221303i
\(298\) 1.88316i 0.109088i
\(299\) −4.62772 + 8.01544i −0.267628 + 0.463545i
\(300\) 0 0
\(301\) 9.48913 + 16.4356i 0.546944 + 0.947335i
\(302\) 8.66025 5.00000i 0.498342 0.287718i
\(303\) 3.46410 3.25544i 0.199007 0.187020i
\(304\) −1.18614 + 2.05446i −0.0680298 + 0.117831i
\(305\) 0 0
\(306\) 4.37228 2.17448i 0.249947 0.124307i
\(307\) 1.23369i 0.0704103i 0.999380 + 0.0352051i \(0.0112085\pi\)
−0.999380 + 0.0352051i \(0.988792\pi\)
\(308\) −12.7692 7.37228i −0.727591 0.420075i
\(309\) −26.9783 + 6.33830i −1.53474 + 0.360573i
\(310\) 0 0
\(311\) 10.3723 + 17.9653i 0.588158 + 1.01872i 0.994474 + 0.104987i \(0.0334801\pi\)
−0.406315 + 0.913733i \(0.633187\pi\)
\(312\) −2.67181 11.3723i −0.151262 0.643829i
\(313\) 3.14170 + 1.81386i 0.177579 + 0.102525i 0.586155 0.810199i \(-0.300641\pi\)
−0.408576 + 0.912724i \(0.633974\pi\)
\(314\) −6.74456 −0.380618
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −2.37686 1.37228i −0.133498 0.0770750i 0.431764 0.901987i \(-0.357891\pi\)
−0.565262 + 0.824912i \(0.691225\pi\)
\(318\) 14.5012 13.6277i 0.813188 0.764205i
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) 4.24456 14.0776i 0.236908 0.785736i
\(322\) 4.00772 + 2.31386i 0.223342 + 0.128946i
\(323\) 3.86141i 0.214854i
\(324\) −5.43070 + 7.17687i −0.301706 + 0.398715i
\(325\) 0 0
\(326\) −10.7446 + 18.6101i −0.595086 + 1.03072i
\(327\) 25.4920 + 7.68614i 1.40971 + 0.425045i
\(328\) −2.59808 + 1.50000i −0.143455 + 0.0828236i
\(329\) −12.4307 21.5306i −0.685327 1.18702i
\(330\) 0 0
\(331\) −8.11684 + 14.0588i −0.446142 + 0.772741i −0.998131 0.0611107i \(-0.980536\pi\)
0.551989 + 0.833851i \(0.313869\pi\)
\(332\) 7.37228i 0.404607i
\(333\) 6.63325 10.0000i 0.363500 0.547997i
\(334\) 13.3723 0.731699
\(335\) 0 0
\(336\) −5.68614 + 1.33591i −0.310204 + 0.0728797i
\(337\) −2.05446 + 1.18614i −0.111913 + 0.0646132i −0.554912 0.831909i \(-0.687248\pi\)
0.442999 + 0.896522i \(0.353915\pi\)
\(338\) 28.1364 16.2446i 1.53042 0.883588i
\(339\) 5.48913 1.28962i 0.298128 0.0700426i
\(340\) 0 0
\(341\) −20.7446 −1.12338
\(342\) 3.16915 + 6.37228i 0.171368 + 0.344574i
\(343\) 8.86141i 0.478471i
\(344\) 2.81386 4.87375i 0.151713 0.262775i
\(345\) 0 0
\(346\) 10.3723 + 17.9653i 0.557617 + 0.965821i
\(347\) −4.22894 + 2.44158i −0.227021 + 0.131071i −0.609197 0.793019i \(-0.708508\pi\)
0.382176 + 0.924090i \(0.375175\pi\)
\(348\) −2.27567 0.686141i −0.121989 0.0367810i
\(349\) 9.05842 15.6896i 0.484886 0.839848i −0.514963 0.857212i \(-0.672194\pi\)
0.999849 + 0.0173648i \(0.00552768\pi\)
\(350\) 0 0
\(351\) −32.8614 12.1793i −1.75401 0.650081i
\(352\) 4.37228i 0.233043i
\(353\) −18.4901 10.6753i −0.984129 0.568187i −0.0806147 0.996745i \(-0.525688\pi\)
−0.903514 + 0.428558i \(0.859022\pi\)
\(354\) 2.18614 7.25061i 0.116192 0.385365i
\(355\) 0 0
\(356\) −8.05842 13.9576i −0.427096 0.739751i
\(357\) 6.92820 6.51087i 0.366679 0.344592i
\(358\) 12.7692 + 7.37228i 0.674871 + 0.389637i
\(359\) 17.4891 0.923041 0.461520 0.887130i \(-0.347304\pi\)
0.461520 + 0.887130i \(0.347304\pi\)
\(360\) 0 0
\(361\) −13.3723 −0.703804
\(362\) 18.0665 + 10.4307i 0.949555 + 0.548226i
\(363\) 3.21543 + 13.6861i 0.168767 + 0.718336i
\(364\) −11.3723 19.6974i −0.596070 1.03242i
\(365\) 0 0
\(366\) −13.6861 + 3.21543i −0.715386 + 0.168073i
\(367\) 13.8564 + 8.00000i 0.723299 + 0.417597i 0.815966 0.578101i \(-0.196206\pi\)
−0.0926670 + 0.995697i \(0.529539\pi\)
\(368\) 1.37228i 0.0715351i
\(369\) −0.558422 + 8.98266i −0.0290703 + 0.467619i
\(370\) 0 0
\(371\) 19.3723 33.5538i 1.00576 1.74203i
\(372\) −5.98844 + 5.62772i −0.310486 + 0.291784i
\(373\) 13.4140 7.74456i 0.694549 0.400998i −0.110765 0.993847i \(-0.535330\pi\)
0.805314 + 0.592848i \(0.201997\pi\)
\(374\) −3.55842 6.16337i −0.184002 0.318700i
\(375\) 0 0
\(376\) −3.68614 + 6.38458i −0.190098 + 0.329260i
\(377\) 9.25544i 0.476679i
\(378\) −6.08963 + 16.4307i −0.313217 + 0.845104i
\(379\) −17.8614 −0.917479 −0.458739 0.888571i \(-0.651699\pi\)
−0.458739 + 0.888571i \(0.651699\pi\)
\(380\) 0 0
\(381\) −4.05842 + 13.4603i −0.207919 + 0.689590i
\(382\) −15.1460 + 8.74456i −0.774938 + 0.447411i
\(383\) 19.8997 11.4891i 1.01683 0.587067i 0.103646 0.994614i \(-0.466949\pi\)
0.913184 + 0.407547i \(0.133616\pi\)
\(384\) 1.18614 + 1.26217i 0.0605300 + 0.0644098i
\(385\) 0 0
\(386\) −21.1168 −1.07482
\(387\) −7.51811 15.1168i −0.382167 0.768432i
\(388\) 8.37228i 0.425038i
\(389\) −2.31386 + 4.00772i −0.117317 + 0.203200i −0.918704 0.394947i \(-0.870763\pi\)
0.801386 + 0.598147i \(0.204096\pi\)
\(390\) 0 0
\(391\) 1.11684 + 1.93443i 0.0564812 + 0.0978284i
\(392\) −3.78651 + 2.18614i −0.191247 + 0.110417i
\(393\) −1.08724 4.62772i −0.0548440 0.233438i
\(394\) 2.74456 4.75372i 0.138269 0.239489i
\(395\) 0 0
\(396\) 10.9307 + 7.25061i 0.549289 + 0.364357i
\(397\) 22.7446i 1.14152i 0.821118 + 0.570758i \(0.193351\pi\)
−0.821118 + 0.570758i \(0.806649\pi\)
\(398\) −11.6819 6.74456i −0.585562 0.338074i
\(399\) 9.48913 + 10.0974i 0.475050 + 0.505500i
\(400\) 0 0
\(401\) 0.558422 + 0.967215i 0.0278863 + 0.0483004i 0.879632 0.475655i \(-0.157789\pi\)
−0.851745 + 0.523956i \(0.824456\pi\)
\(402\) 11.6082 + 3.50000i 0.578964 + 0.174564i
\(403\) −27.7128 16.0000i −1.38047 0.797017i
\(404\) −2.74456 −0.136547
\(405\) 0 0
\(406\) −4.62772 −0.229670
\(407\) −15.1460 8.74456i −0.750761 0.433452i
\(408\) −2.69927 0.813859i −0.133634 0.0402920i
\(409\) 8.93070 + 15.4684i 0.441595 + 0.764865i 0.997808 0.0661749i \(-0.0210795\pi\)
−0.556213 + 0.831040i \(0.687746\pi\)
\(410\) 0 0
\(411\) −22.6753 24.1287i −1.11849 1.19018i
\(412\) 13.8564 + 8.00000i 0.682656 + 0.394132i
\(413\) 14.7446i 0.725532i
\(414\) −3.43070 2.27567i −0.168610 0.111843i
\(415\) 0 0
\(416\) −3.37228 + 5.84096i −0.165340 + 0.286377i
\(417\) −0.349857 1.48913i −0.0171325 0.0729228i
\(418\) 8.98266 5.18614i 0.439356 0.253662i
\(419\) 12.8614 + 22.2766i 0.628321 + 1.08828i 0.987889 + 0.155165i \(0.0495908\pi\)
−0.359568 + 0.933119i \(0.617076\pi\)
\(420\) 0 0
\(421\) −15.2337 + 26.3855i −0.742445 + 1.28595i 0.208935 + 0.977930i \(0.433000\pi\)
−0.951379 + 0.308022i \(0.900333\pi\)
\(422\) 18.7446i 0.912471i
\(423\) 9.84868 + 19.8030i 0.478859 + 0.962854i
\(424\) −11.4891 −0.557961
\(425\) 0 0
\(426\) 7.11684 + 7.57301i 0.344812 + 0.366914i
\(427\) −23.7051 + 13.6861i −1.14717 + 0.662319i
\(428\) −7.35180 + 4.24456i −0.355363 + 0.205169i
\(429\) −14.7446 + 48.9022i −0.711874 + 2.36102i
\(430\) 0 0
\(431\) 8.23369 0.396603 0.198301 0.980141i \(-0.436458\pi\)
0.198301 + 0.980141i \(0.436458\pi\)
\(432\) 5.12241 0.872281i 0.246452 0.0419677i
\(433\) 6.37228i 0.306232i −0.988208 0.153116i \(-0.951069\pi\)
0.988208 0.153116i \(-0.0489309\pi\)
\(434\) −8.00000 + 13.8564i −0.384012 + 0.665129i
\(435\) 0 0
\(436\) −7.68614 13.3128i −0.368099 0.637567i
\(437\) −2.81929 + 1.62772i −0.134865 + 0.0778643i
\(438\) −3.93398 + 3.69702i −0.187973 + 0.176650i
\(439\) −9.11684 + 15.7908i −0.435123 + 0.753656i −0.997306 0.0733577i \(-0.976629\pi\)
0.562182 + 0.827013i \(0.309962\pi\)
\(440\) 0 0
\(441\) −0.813859 + 13.0916i −0.0387552 + 0.623408i
\(442\) 10.9783i 0.522182i
\(443\) −3.04051 1.75544i −0.144459 0.0834033i 0.426029 0.904710i \(-0.359912\pi\)
−0.570487 + 0.821306i \(0.693246\pi\)
\(444\) −6.74456 + 1.58457i −0.320083 + 0.0752006i
\(445\) 0 0
\(446\) 3.31386 + 5.73977i 0.156916 + 0.271786i
\(447\) −0.746000 3.17527i −0.0352846 0.150185i
\(448\) 2.92048 + 1.68614i 0.137980 + 0.0796627i
\(449\) −9.86141 −0.465389 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(450\) 0 0
\(451\) 13.1168 0.617648
\(452\) −2.81929 1.62772i −0.132608 0.0765614i
\(453\) −12.6217 + 11.8614i −0.593019 + 0.557297i
\(454\) −9.55842 16.5557i −0.448599 0.776996i
\(455\) 0 0
\(456\) 1.18614 3.93398i 0.0555461 0.184226i
\(457\) −11.1571 6.44158i −0.521909 0.301324i 0.215806 0.976436i \(-0.430762\pi\)
−0.737715 + 0.675112i \(0.764095\pi\)
\(458\) 12.6277i 0.590055i
\(459\) −6.51087 + 5.39853i −0.303902 + 0.251982i
\(460\) 0 0
\(461\) −0.941578 + 1.63086i −0.0438537 + 0.0759568i −0.887119 0.461541i \(-0.847297\pi\)
0.843265 + 0.537497i \(0.180630\pi\)
\(462\) 24.4511 + 7.37228i 1.13757 + 0.342990i
\(463\) −17.3205 + 10.0000i −0.804952 + 0.464739i −0.845200 0.534450i \(-0.820519\pi\)
0.0402476 + 0.999190i \(0.487185\pi\)
\(464\) 0.686141 + 1.18843i 0.0318533 + 0.0551715i
\(465\) 0 0
\(466\) 3.55842 6.16337i 0.164841 0.285512i
\(467\) 43.1168i 1.99521i 0.0691713 + 0.997605i \(0.477964\pi\)
−0.0691713 + 0.997605i \(0.522036\pi\)
\(468\) 9.01011 + 18.1168i 0.416493 + 0.837451i
\(469\) 23.6060 1.09002
\(470\) 0 0
\(471\) 11.3723 2.67181i 0.524007 0.123111i
\(472\) −3.78651 + 2.18614i −0.174288 + 0.100625i
\(473\) −21.3094 + 12.3030i −0.979807 + 0.565692i
\(474\) −3.37228 + 0.792287i −0.154894 + 0.0363909i
\(475\) 0 0
\(476\) −5.48913 −0.251594
\(477\) −19.0526 + 28.7228i −0.872357 + 1.31513i
\(478\) 3.25544i 0.148900i
\(479\) −0.255437 + 0.442430i −0.0116712 + 0.0202152i −0.871802 0.489858i \(-0.837048\pi\)
0.860131 + 0.510074i \(0.170382\pi\)
\(480\) 0 0
\(481\) −13.4891 23.3639i −0.615051 1.06530i
\(482\) 10.8159 6.24456i 0.492651 0.284432i
\(483\) −7.67420 2.31386i −0.349188 0.105284i
\(484\) 4.05842 7.02939i 0.184474 0.319518i
\(485\) 0 0
\(486\) 6.31386 14.2525i 0.286402 0.646509i
\(487\) 12.7446i 0.577511i −0.957403 0.288756i \(-0.906758\pi\)
0.957403 0.288756i \(-0.0932415\pi\)
\(488\) 7.02939 + 4.05842i 0.318206 + 0.183716i
\(489\) 10.7446 35.6357i 0.485886 1.61150i
\(490\) 0 0
\(491\) 18.3030 + 31.7017i 0.826002 + 1.43068i 0.901151 + 0.433505i \(0.142723\pi\)
−0.0751489 + 0.997172i \(0.523943\pi\)
\(492\) 3.78651 3.55842i 0.170709 0.160426i
\(493\) −1.93443 1.11684i −0.0871224 0.0503001i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) 4.74456 0.213037
\(497\) 17.5229 + 10.1168i 0.786009 + 0.453802i
\(498\) −2.92048 12.4307i −0.130870 0.557033i
\(499\) 7.55842 + 13.0916i 0.338361 + 0.586059i 0.984125 0.177479i \(-0.0567940\pi\)
−0.645763 + 0.763538i \(0.723461\pi\)
\(500\) 0 0
\(501\) −22.5475 + 5.29734i −1.00735 + 0.236668i
\(502\) −21.3094 12.3030i −0.951085 0.549109i
\(503\) 6.86141i 0.305935i 0.988231 + 0.152967i \(0.0488830\pi\)
−0.988231 + 0.152967i \(0.951117\pi\)
\(504\) 9.05842 4.50506i 0.403494 0.200671i
\(505\) 0 0
\(506\) −3.00000 + 5.19615i −0.133366 + 0.230997i
\(507\) −41.0068 + 38.5367i −1.82117 + 1.71147i
\(508\) 7.02939 4.05842i 0.311879 0.180063i
\(509\) −21.1753 36.6766i −0.938577 1.62566i −0.768127 0.640297i \(-0.778811\pi\)
−0.170450 0.985366i \(-0.554522\pi\)
\(510\) 0 0
\(511\) −5.25544 + 9.10268i −0.232487 + 0.402679i
\(512\) 1.00000i 0.0441942i
\(513\) −7.86797 9.48913i −0.347379 0.418955i
\(514\) 4.37228 0.192853
\(515\) 0 0
\(516\) −2.81386 + 9.33252i −0.123873 + 0.410841i
\(517\) 27.9152 16.1168i 1.22771 0.708818i
\(518\) −11.6819 + 6.74456i −0.513274 + 0.296339i
\(519\) −24.6060 26.1831i −1.08008 1.14931i
\(520\) 0 0
\(521\) −6.76631 −0.296438 −0.148219 0.988955i \(-0.547354\pi\)
−0.148219 + 0.988955i \(0.547354\pi\)
\(522\) 4.10891 + 0.255437i 0.179842 + 0.0111802i
\(523\) 6.11684i 0.267471i −0.991017 0.133735i \(-0.957303\pi\)
0.991017 0.133735i \(-0.0426972\pi\)
\(524\) −1.37228 + 2.37686i −0.0599484 + 0.103834i
\(525\) 0 0
\(526\) −8.74456 15.1460i −0.381281 0.660398i
\(527\) −6.68815 + 3.86141i −0.291340 + 0.168206i
\(528\) −1.73205 7.37228i −0.0753778 0.320837i
\(529\) −10.5584 + 18.2877i −0.459062 + 0.795118i
\(530\) 0 0
\(531\) −0.813859 + 13.0916i −0.0353185 + 0.568126i
\(532\) 8.00000i 0.346844i
\(533\) 17.5229 + 10.1168i 0.759001 + 0.438209i
\(534\) 19.1168 + 20.3422i 0.827267 + 0.880292i
\(535\) 0 0
\(536\) −3.50000 6.06218i −0.151177 0.261846i
\(537\) −24.4511 7.37228i −1.05514 0.318137i
\(538\) 1.18843 + 0.686141i 0.0512369 + 0.0295816i
\(539\) 19.1168 0.823421
\(540\) 0 0
\(541\) 27.3723 1.17683 0.588413 0.808560i \(-0.299753\pi\)
0.588413 + 0.808560i \(0.299753\pi\)
\(542\) 6.92820 + 4.00000i 0.297592 + 0.171815i
\(543\) −34.5947 10.4307i −1.48460 0.447624i
\(544\) 0.813859 + 1.40965i 0.0348939 + 0.0604381i
\(545\) 0 0
\(546\) 26.9783 + 28.7075i 1.15456 + 1.22857i
\(547\) 25.5195 + 14.7337i 1.09113 + 0.629967i 0.933878 0.357591i \(-0.116402\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(548\) 19.1168i 0.816631i
\(549\) 21.8030 10.8434i 0.930529 0.462783i
\(550\) 0 0
\(551\) 1.62772 2.81929i 0.0693431 0.120106i
\(552\) 0.543620 + 2.31386i 0.0231380 + 0.0984844i
\(553\) −5.84096 + 3.37228i −0.248383 + 0.143404i
\(554\) −8.37228 14.5012i −0.355704 0.616098i
\(555\) 0 0
\(556\) −0.441578 + 0.764836i −0.0187271 + 0.0324363i
\(557\) 44.2337i 1.87424i −0.349005 0.937121i \(-0.613480\pi\)
0.349005 0.937121i \(-0.386520\pi\)
\(558\) 7.86797 11.8614i 0.333078 0.502133i
\(559\) −37.9565 −1.60539
\(560\) 0 0
\(561\) 8.44158 + 8.98266i 0.356404 + 0.379248i
\(562\) 1.18843 0.686141i 0.0501309 0.0289431i
\(563\) 35.2670 20.3614i 1.48633 0.858131i 0.486448 0.873710i \(-0.338292\pi\)
0.999879 + 0.0155787i \(0.00495904\pi\)
\(564\) 3.68614 12.2255i 0.155215 0.514788i
\(565\) 0 0
\(566\) 3.13859 0.131925
\(567\) 3.75906 30.1168i 0.157865 1.26479i
\(568\) 6.00000i 0.251754i
\(569\) −15.3030 + 26.5055i −0.641534 + 1.11117i 0.343556 + 0.939132i \(0.388369\pi\)
−0.985090 + 0.172038i \(0.944965\pi\)
\(570\) 0 0
\(571\) −4.30298 7.45299i −0.180074 0.311898i 0.761831 0.647775i \(-0.224300\pi\)
−0.941906 + 0.335878i \(0.890967\pi\)
\(572\) 25.5383 14.7446i 1.06781 0.616501i
\(573\) 22.0742 20.7446i 0.922164 0.866617i
\(574\) 5.05842 8.76144i 0.211134 0.365696i
\(575\) 0 0
\(576\) −2.50000 1.65831i −0.104167 0.0690963i
\(577\) 41.1168i 1.71172i −0.517210 0.855858i \(-0.673030\pi\)
0.517210 0.855858i \(-0.326970\pi\)
\(578\) 12.4279 + 7.17527i 0.516934 + 0.298452i
\(579\) 35.6060 8.36530i 1.47973 0.347650i
\(580\) 0 0
\(581\) −12.4307 21.5306i −0.515712 0.893240i
\(582\) −3.31662 14.1168i −0.137479 0.585162i
\(583\) 43.5036 + 25.1168i 1.80174 + 1.04023i
\(584\) 3.11684 0.128976
\(585\) 0 0
\(586\) −26.2337 −1.08370
\(587\) −23.3827 13.5000i −0.965107 0.557205i −0.0673658 0.997728i \(-0.521459\pi\)
−0.897741 + 0.440524i \(0.854793\pi\)
\(588\) 5.51856 5.18614i 0.227581 0.213873i
\(589\) −5.62772 9.74749i −0.231886 0.401639i
\(590\) 0 0
\(591\) −2.74456 + 9.10268i −0.112896 + 0.374434i
\(592\) 3.46410 + 2.00000i 0.142374 + 0.0821995i
\(593\) 19.7228i 0.809919i 0.914335 + 0.404959i \(0.132714\pi\)
−0.914335 + 0.404959i \(0.867286\pi\)
\(594\) −21.3030 7.89542i −0.874072 0.323953i
\(595\) 0 0
\(596\) −0.941578 + 1.63086i −0.0385685 + 0.0668027i
\(597\) 22.3692 + 6.74456i 0.915510 + 0.276037i
\(598\) −8.01544 + 4.62772i −0.327776 + 0.189241i
\(599\) −1.88316 3.26172i −0.0769437 0.133270i 0.824986 0.565153i \(-0.191183\pi\)
−0.901930 + 0.431883i \(0.857849\pi\)
\(600\) 0 0
\(601\) 0.930703 1.61203i 0.0379642 0.0657559i −0.846419 0.532517i \(-0.821246\pi\)
0.884383 + 0.466762i \(0.154579\pi\)
\(602\) 18.9783i 0.773496i
\(603\) −20.9595 1.30298i −0.853538 0.0530616i
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 4.62772 1.08724i 0.187988 0.0441661i
\(607\) 15.6896 9.05842i 0.636823 0.367670i −0.146567 0.989201i \(-0.546822\pi\)
0.783390 + 0.621531i \(0.213489\pi\)
\(608\) −2.05446 + 1.18614i −0.0833192 + 0.0481044i
\(609\) 7.80298 1.83324i 0.316193 0.0742867i
\(610\) 0 0
\(611\) 49.7228 2.01157
\(612\) 4.87375 + 0.302985i 0.197010 + 0.0122474i
\(613\) 34.2337i 1.38269i −0.722527 0.691343i \(-0.757019\pi\)
0.722527 0.691343i \(-0.242981\pi\)
\(614\) −0.616844 + 1.06841i −0.0248938 + 0.0431173i
\(615\) 0 0
\(616\) −7.37228 12.7692i −0.297038 0.514484i
\(617\) −4.22894 + 2.44158i −0.170251 + 0.0982942i −0.582704 0.812684i \(-0.698005\pi\)
0.412453 + 0.910979i \(0.364672\pi\)
\(618\) −26.5330 8.00000i −1.06731 0.321807i
\(619\) −10.4416 + 18.0853i −0.419682 + 0.726911i −0.995907 0.0903798i \(-0.971192\pi\)
0.576225 + 0.817291i \(0.304525\pi\)
\(620\) 0 0
\(621\) 6.68614 + 2.47805i 0.268306 + 0.0994408i
\(622\) 20.7446i 0.831781i
\(623\) 47.0689 + 27.1753i 1.88578 + 1.08875i
\(624\) 3.37228 11.1846i 0.134999 0.447742i
\(625\) 0 0
\(626\) 1.81386 + 3.14170i 0.0724964 + 0.125567i
\(627\) −13.0916 + 12.3030i −0.522827 + 0.491334i
\(628\) −5.84096 3.37228i −0.233080 0.134569i
\(629\) −6.51087 −0.259606
\(630\) 0 0
\(631\) −23.7228 −0.944390 −0.472195 0.881494i \(-0.656538\pi\)
−0.472195 + 0.881494i \(0.656538\pi\)
\(632\) 1.73205 + 1.00000i 0.0688973 + 0.0397779i
\(633\) −7.42554 31.6060i −0.295139 1.25622i
\(634\) −1.37228 2.37686i −0.0545003 0.0943972i
\(635\) 0 0
\(636\) 19.3723 4.55134i 0.768161 0.180472i
\(637\) 25.5383 + 14.7446i 1.01187 + 0.584201i
\(638\) 6.00000i 0.237542i
\(639\) −15.0000 9.94987i −0.593391 0.393611i
\(640\) 0 0
\(641\) 19.5000 33.7750i 0.770204 1.33403i −0.167247 0.985915i \(-0.553488\pi\)
0.937451 0.348117i \(-0.113179\pi\)
\(642\) 10.7147 10.0693i 0.422876 0.397403i
\(643\) −9.52628 + 5.50000i −0.375680 + 0.216899i −0.675937 0.736959i \(-0.736261\pi\)
0.300257 + 0.953858i \(0.402928\pi\)
\(644\) 2.31386 + 4.00772i 0.0911788 + 0.157926i
\(645\) 0 0
\(646\) 1.93070 3.34408i 0.0759625 0.131571i
\(647\) 39.0951i 1.53699i −0.639858 0.768493i \(-0.721007\pi\)
0.639858 0.768493i \(-0.278993\pi\)
\(648\) −8.29156 + 3.50000i −0.325723 + 0.137493i
\(649\) 19.1168 0.750402
\(650\) 0 0
\(651\) 8.00000 26.5330i 0.313545 1.03991i
\(652\) −18.6101 + 10.7446i −0.728829 + 0.420790i
\(653\) −17.0805 + 9.86141i −0.668410 + 0.385907i −0.795474 0.605988i \(-0.792778\pi\)
0.127064 + 0.991895i \(0.459445\pi\)
\(654\) 18.2337 + 19.4024i 0.712994 + 0.758694i
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 5.16870 7.79211i 0.201650 0.303999i
\(658\) 24.8614i 0.969199i
\(659\) 8.74456 15.1460i 0.340640 0.590005i −0.643912 0.765100i \(-0.722690\pi\)
0.984552 + 0.175094i \(0.0560230\pi\)
\(660\) 0 0
\(661\) 6.11684 + 10.5947i 0.237918 + 0.412085i 0.960117 0.279600i \(-0.0902018\pi\)
−0.722199 + 0.691685i \(0.756868\pi\)
\(662\) −14.0588 + 8.11684i −0.546410 + 0.315470i
\(663\) 4.34896 + 18.5109i 0.168900 + 0.718903i
\(664\) −3.68614 + 6.38458i −0.143050 + 0.247770i
\(665\) 0 0
\(666\) 10.7446 5.34363i 0.416343 0.207061i
\(667\) 1.88316i 0.0729161i
\(668\) 11.5807 + 6.68614i 0.448072 + 0.258695i
\(669\) −7.86141 8.36530i −0.303940 0.323421i
\(670\) 0 0
\(671\) −17.7446 30.7345i −0.685021 1.18649i
\(672\) −5.59230 1.68614i −0.215727 0.0650443i
\(673\) −8.66025 5.00000i −0.333828 0.192736i 0.323711 0.946156i \(-0.395069\pi\)
−0.657539 + 0.753420i \(0.728403\pi\)
\(674\) −2.37228 −0.0913769
\(675\) 0 0
\(676\) 32.4891 1.24958
\(677\) −11.8843 6.86141i −0.456751 0.263705i 0.253926 0.967224i \(-0.418278\pi\)
−0.710677 + 0.703518i \(0.751611\pi\)
\(678\) 5.39853 + 1.62772i 0.207329 + 0.0625122i
\(679\) −14.1168 24.4511i −0.541755 0.938347i
\(680\) 0 0
\(681\) 22.6753 + 24.1287i 0.868918 + 0.924613i
\(682\) −17.9653 10.3723i −0.687928 0.397175i
\(683\) 30.0951i 1.15156i 0.817606 + 0.575778i \(0.195301\pi\)
−0.817606 + 0.575778i \(0.804699\pi\)
\(684\) −0.441578 + 7.10313i −0.0168842 + 0.271595i
\(685\) 0 0
\(686\) −4.43070 + 7.67420i −0.169165 + 0.293002i
\(687\) −5.00239 21.2921i −0.190853 0.812345i
\(688\) 4.87375 2.81386i 0.185810 0.107277i
\(689\) 38.7446 + 67.1076i 1.47605 + 2.55659i
\(690\) 0 0
\(691\) 18.1168 31.3793i 0.689197 1.19372i −0.282901 0.959149i \(-0.591297\pi\)
0.972098 0.234575i \(-0.0753700\pi\)
\(692\) 20.7446i 0.788590i
\(693\) −44.1485 2.74456i −1.67706 0.104257i
\(694\) −4.88316 −0.185362
\(695\) 0 0
\(696\) −1.62772 1.73205i −0.0616985 0.0656532i
\(697\) 4.22894 2.44158i 0.160182 0.0924814i
\(698\) 15.6896 9.05842i 0.593862 0.342866i
\(699\) −3.55842 + 11.8020i −0.134592 + 0.446391i
\(700\) 0 0
\(701\) 42.8614 1.61885 0.809426 0.587221i \(-0.199778\pi\)
0.809426 + 0.587221i \(0.199778\pi\)
\(702\) −22.3692 26.9783i −0.844270 1.01823i
\(703\) 9.48913i 0.357889i
\(704\) −2.18614 + 3.78651i −0.0823933 + 0.142709i
\(705\) 0 0
\(706\) −10.6753 18.4901i −0.401769 0.695884i
\(707\) 8.01544 4.62772i 0.301452 0.174043i
\(708\) 5.51856 5.18614i 0.207400 0.194907i
\(709\) 1.43070 2.47805i 0.0537312 0.0930652i −0.837909 0.545810i \(-0.816222\pi\)
0.891640 + 0.452745i \(0.149555\pi\)
\(710\) 0 0
\(711\) 5.37228 2.67181i 0.201476 0.100201i
\(712\) 16.1168i 0.604004i
\(713\) 5.63858 + 3.25544i 0.211167 + 0.121917i
\(714\) 9.25544 2.17448i 0.346376 0.0813779i
\(715\) 0 0
\(716\) 7.37228 + 12.7692i 0.275515 + 0.477206i
\(717\) 1.28962 + 5.48913i 0.0481618 + 0.204995i
\(718\) 15.1460 + 8.74456i 0.565245 + 0.326344i
\(719\) 3.76631 0.140460 0.0702299 0.997531i \(-0.477627\pi\)
0.0702299 + 0.997531i \(0.477627\pi\)
\(720\) 0 0
\(721\) −53.9565 −2.00945
\(722\) −11.5807 6.68614i −0.430990 0.248832i
\(723\) −15.7634 + 14.8139i −0.586247 + 0.550933i
\(724\) 10.4307 + 18.0665i 0.387654 + 0.671436i
\(725\) 0 0
\(726\) −4.05842 + 13.4603i −0.150622 + 0.499557i
\(727\) −15.6896 9.05842i −0.581897 0.335958i 0.179990 0.983668i \(-0.442393\pi\)
−0.761887 + 0.647710i \(0.775727\pi\)
\(728\) 22.7446i 0.842970i
\(729\) −5.00000 + 26.5330i −0.185185 + 0.982704i
\(730\) 0 0
\(731\) −4.58017 + 7.93309i −0.169404 + 0.293416i
\(732\) −13.4603 4.05842i −0.497506 0.150004i
\(733\) 0.202380 0.116844i 0.00747506 0.00431573i −0.496258 0.868175i \(-0.665293\pi\)
0.503733 + 0.863859i \(0.331960\pi\)
\(734\) 8.00000 + 13.8564i 0.295285 + 0.511449i
\(735\) 0 0
\(736\) 0.686141 1.18843i 0.0252915 0.0438061i
\(737\) 30.6060i 1.12739i
\(738\) −4.97494 + 7.50000i −0.183130 + 0.276079i
\(739\) 41.1168 1.51251 0.756254 0.654278i \(-0.227028\pi\)
0.756254 + 0.654278i \(0.227028\pi\)
\(740\) 0 0
\(741\) −26.9783 + 6.33830i −0.991071 + 0.232843i
\(742\) 33.5538 19.3723i 1.23180 0.711179i
\(743\) −6.82701 + 3.94158i −0.250459 + 0.144602i −0.619974 0.784622i \(-0.712857\pi\)
0.369516 + 0.929225i \(0.379524\pi\)
\(744\) −8.00000 + 1.87953i −0.293294 + 0.0689068i
\(745\) 0 0
\(746\) 15.4891 0.567097
\(747\) 9.84868 + 19.8030i 0.360345 + 0.724553i
\(748\) 7.11684i 0.260218i
\(749\) 14.3139 24.7923i 0.523017 0.905892i
\(750\) 0 0
\(751\) −8.11684 14.0588i −0.296188 0.513012i 0.679073 0.734071i \(-0.262382\pi\)
−0.975261 + 0.221059i \(0.929049\pi\)
\(752\) −6.38458 + 3.68614i −0.232822 + 0.134420i
\(753\) 40.8044 + 12.3030i 1.48699 + 0.448346i
\(754\) 4.62772 8.01544i 0.168532 0.291905i
\(755\) 0 0
\(756\) −13.4891 + 11.1846i −0.490595 + 0.406780i
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) −15.4684 8.93070i −0.561839 0.324378i
\(759\) 3.00000 9.94987i 0.108893 0.361158i
\(760\) 0 0
\(761\) 25.5475 + 44.2496i 0.926098 + 1.60405i 0.789786 + 0.613383i \(0.210192\pi\)
0.136312 + 0.990666i \(0.456475\pi\)
\(762\) −10.2448 + 9.62772i −0.371131 + 0.348775i
\(763\) 44.8945 + 25.9198i 1.62529 + 0.938361i
\(764\) −17.4891 −0.632734
\(765\) 0 0
\(766\) 22.9783 0.830238
\(767\) 25.5383 + 14.7446i 0.922136 + 0.532395i
\(768\) 0.396143 + 1.68614i 0.0142946 + 0.0608434i
\(769\) −23.4307 40.5832i −0.844933 1.46347i −0.885680 0.464297i \(-0.846307\pi\)
0.0407468 0.999170i \(-0.487026\pi\)
\(770\) 0 0
\(771\) −7.37228 + 1.73205i −0.265506 + 0.0623783i
\(772\) −18.2877 10.5584i −0.658190 0.380006i
\(773\) 3.25544i 0.117090i −0.998285 0.0585450i \(-0.981354\pi\)
0.998285 0.0585450i \(-0.0186461\pi\)
\(774\) 1.04755 16.8506i 0.0376533 0.605683i
\(775\) 0 0
\(776\) −4.18614 + 7.25061i −0.150274 + 0.260282i
\(777\) 17.0256 16.0000i 0.610788 0.573997i
\(778\) −4.00772 + 2.31386i −0.143684 + 0.0829559i
\(779\) 3.55842 + 6.16337i 0.127494 + 0.220826i
\(780\) 0 0
\(781\) −13.1168 + 22.7190i −0.469358 + 0.812951i
\(782\) 2.23369i 0.0798765i
\(783\) −7.02939 + 1.19702i −0.251210 + 0.0427778i
\(784\) −4.37228 −0.156153
\(785\) 0 0
\(786\) 1.37228 4.55134i 0.0489477 0.162341i
\(787\) −24.2487 + 14.0000i −0.864373 + 0.499046i −0.865474 0.500953i \(-0.832983\pi\)
0.00110111 + 0.999999i \(0.499650\pi\)
\(788\) 4.75372 2.74456i 0.169344 0.0977710i
\(789\) 20.7446 + 22.0742i 0.738526 + 0.785863i
\(790\) 0 0
\(791\) 10.9783 0.390342
\(792\) 5.84096 + 11.7446i 0.207550 + 0.417325i
\(793\) 54.7446i 1.94404i
\(794\) −11.3723 + 19.6974i −0.403587 + 0.699033i
\(795\) 0 0
\(796\) −6.74456 11.6819i −0.239055 0.414055i
\(797\) 12.7692 7.37228i 0.452307 0.261140i −0.256497 0.966545i \(-0.582568\pi\)
0.708804 + 0.705405i \(0.249235\pi\)
\(798\) 3.16915 + 13.4891i 0.112187 + 0.477510i
\(799\) 6.00000 10.3923i 0.212265 0.367653i
\(800\) 0 0
\(801\) −40.2921 26.7268i −1.42365 0.944344i
\(802\) 1.11684i 0.0394371i
\(803\) −11.8020 6.81386i −0.416482 0.240456i
\(804\) 8.30298 + 8.83518i 0.292824 + 0.311593i
\(805\) 0 0
\(806\) −16.0000 27.7128i −0.563576 0.976142i
\(807\) −2.27567 0.686141i −0.0801074 0.0241533i
\(808\) −2.37686 1.37228i −0.0836177 0.0482767i
\(809\) −39.3505 −1.38349 −0.691746 0.722141i \(-0.743158\pi\)
−0.691746 + 0.722141i \(0.743158\pi\)
\(810\) 0 0
\(811\) 3.62772 0.127386 0.0636932 0.997970i \(-0.479712\pi\)
0.0636932 + 0.997970i \(0.479712\pi\)
\(812\) −4.00772 2.31386i −0.140643 0.0812005i
\(813\) −13.2665 4.00000i −0.465276 0.140286i
\(814\) −8.74456 15.1460i −0.306497 0.530868i
\(815\) 0 0
\(816\) −1.93070 2.05446i −0.0675881 0.0719203i
\(817\) −11.5619 6.67527i −0.404500 0.233538i
\(818\) 17.8614i 0.624509i
\(819\) −56.8614 37.7176i −1.98690 1.31796i
\(820\) 0 0
\(821\) 11.9198 20.6457i 0.416005 0.720542i −0.579528 0.814952i \(-0.696763\pi\)
0.995533 + 0.0944104i \(0.0300966\pi\)
\(822\) −7.57301 32.2337i −0.264139 1.12428i
\(823\) 21.7330 12.5475i 0.757564 0.437380i −0.0708562 0.997487i \(-0.522573\pi\)
0.828421 + 0.560107i \(0.189240\pi\)
\(824\) 8.00000 + 13.8564i 0.278693 + 0.482711i
\(825\) 0 0
\(826\) 7.37228 12.7692i 0.256514 0.444296i
\(827\) 36.8614i 1.28180i 0.767626 + 0.640898i \(0.221438\pi\)
−0.767626 + 0.640898i \(0.778562\pi\)
\(828\) −1.83324 3.68614i −0.0637095 0.128102i
\(829\) 50.1168 1.74063 0.870315 0.492496i \(-0.163915\pi\)
0.870315 + 0.492496i \(0.163915\pi\)
\(830\) 0 0
\(831\) 19.8614 + 21.1345i 0.688985 + 0.733147i
\(832\) −5.84096 + 3.37228i −0.202499 + 0.116913i
\(833\) 6.16337 3.55842i 0.213548 0.123292i
\(834\) 0.441578 1.46455i 0.0152906 0.0507132i
\(835\) 0 0
\(836\) 10.3723 0.358733
\(837\) −8.56768 + 23.1168i −0.296142 + 0.799035i
\(838\) 25.7228i 0.888580i
\(839\) 4.88316 8.45787i 0.168585 0.291998i −0.769337 0.638843i \(-0.779413\pi\)
0.937923 + 0.346844i \(0.112747\pi\)
\(840\) 0 0
\(841\) 13.5584 + 23.4839i 0.467532 + 0.809789i
\(842\) −26.3855 + 15.2337i −0.909305 + 0.524988i
\(843\) −1.73205 + 1.62772i −0.0596550 + 0.0560616i
\(844\) −9.37228 + 16.2333i −0.322607 + 0.558772i
\(845\) 0 0
\(846\) −1.37228 + 22.0742i −0.0471800 + 0.758928i
\(847\) 27.3723i 0.940523i
\(848\) −9.94987 5.74456i −0.341680 0.197269i
\(849\) −5.29211 + 1.24333i −0.181625 + 0.0426711i
\(850\) 0 0
\(851\) 2.74456 + 4.75372i 0.0940824 + 0.162955i
\(852\) 2.37686 + 10.1168i 0.0814299 + 0.346597i
\(853\) −31.3793 18.1168i −1.07441 0.620309i −0.145024 0.989428i \(-0.546326\pi\)
−0.929382 + 0.369119i \(0.879659\pi\)
\(854\) −27.3723 −0.936660
\(855\) 0 0
\(856\) −8.48913 −0.290152
\(857\) −0.442430 0.255437i −0.0151131 0.00872557i 0.492424 0.870355i \(-0.336111\pi\)
−0.507538 + 0.861630i \(0.669444\pi\)
\(858\) −37.2203 + 34.9783i −1.27068 + 1.19414i
\(859\) −8.55842 14.8236i −0.292010 0.505775i 0.682275 0.731095i \(-0.260991\pi\)
−0.974285 + 0.225320i \(0.927657\pi\)
\(860\) 0 0
\(861\) −5.05842 + 16.7769i −0.172391 + 0.571755i
\(862\) 7.13058 + 4.11684i 0.242869 + 0.140220i
\(863\) 2.39403i 0.0814938i 0.999170 + 0.0407469i \(0.0129737\pi\)
−0.999170 + 0.0407469i \(0.987026\pi\)
\(864\) 4.87228 + 1.80579i 0.165758 + 0.0614342i
\(865\) 0 0
\(866\) 3.18614 5.51856i 0.108269 0.187528i
\(867\) −23.7977 7.17527i −0.808211 0.243685i
\(868\) −13.8564 + 8.00000i −0.470317 + 0.271538i
\(869\) −4.37228 7.57301i −0.148319 0.256897i
\(870\) 0 0
\(871\) −23.6060 + 40.8867i −0.799858 + 1.38539i
\(872\) 15.3723i 0.520571i
\(873\) 11.1846 + 22.4891i 0.378541 + 0.761142i
\(874\) −3.25544 −0.110117
\(875\) 0 0
\(876\) −5.25544 + 1.23472i −0.177565 + 0.0417172i
\(877\) 31.1392 17.9783i 1.05150 0.607082i 0.128429 0.991719i \(-0.459006\pi\)
0.923068 + 0.384636i \(0.125673\pi\)
\(878\) −15.7908 + 9.11684i −0.532915 + 0.307679i
\(879\) 44.2337 10.3923i 1.49197 0.350524i
\(880\) 0 0
\(881\) −24.3505 −0.820390 −0.410195 0.911998i \(-0.634539\pi\)
−0.410195 + 0.911998i \(0.634539\pi\)
\(882\) −7.25061 + 10.9307i −0.244141 + 0.368056i
\(883\) 44.7228i 1.50504i 0.658568 + 0.752521i \(0.271163\pi\)
−0.658568 + 0.752521i \(0.728837\pi\)
\(884\) 5.48913 9.50744i 0.184619 0.319770i
\(885\) 0 0
\(886\) −1.75544 3.04051i −0.0589751 0.102148i
\(887\) 17.0805 9.86141i 0.573506 0.331114i −0.185043 0.982730i \(-0.559242\pi\)
0.758548 + 0.651617i \(0.225909\pi\)
\(888\) −6.63325 2.00000i −0.222597 0.0671156i
\(889\) −13.6861 + 23.7051i −0.459018 + 0.795043i
\(890\) 0 0
\(891\) 39.0475 + 4.87375i 1.30814 + 0.163277i
\(892\) 6.62772i 0.221912i
\(893\) 15.1460 + 8.74456i 0.506842 + 0.292626i
\(894\) 0.941578 3.12286i 0.0314911 0.104444i
\(895\) 0 0
\(896\) 1.68614 + 2.92048i 0.0563300 + 0.0975664i
\(897\) 11.6819 10.9783i 0.390048 0.366553i
\(898\) −8.54023 4.93070i −0.284991 0.164540i
\(899\) −6.51087 −0.217150
\(900\) 0 0
\(901\) 18.7011 0.623023
\(902\) 11.3595 + 6.55842i 0.378231 + 0.218372i
\(903\) −7.51811 32.0000i −0.250187 1.06489i
\(904\) −1.62772 2.81929i −0.0541371 0.0937682i
\(905\) 0 0
\(906\) −16.8614 + 3.96143i −0.560183 + 0.131610i
\(907\) 6.06218 + 3.50000i 0.201291 + 0.116216i 0.597258 0.802049i \(-0.296257\pi\)
−0.395966 + 0.918265i \(0.629590\pi\)
\(908\) 19.1168i 0.634415i
\(909\) −7.37228 + 3.66648i −0.244523 + 0.121610i
\(910\) 0 0
\(911\) 21.0000 36.3731i 0.695761 1.20509i −0.274162 0.961683i \(-0.588401\pi\)
0.969923 0.243410i \(-0.0782661\pi\)
\(912\) 2.99422 2.81386i 0.0991485 0.0931762i
\(913\) 27.9152 16.1168i 0.923858 0.533390i
\(914\) −6.44158 11.1571i −0.213068 0.369045i
\(915\) 0 0
\(916\) −6.31386 + 10.9359i −0.208616 + 0.361333i
\(917\) 9.25544i 0.305641i
\(918\) −8.33785 + 1.41983i −0.275190 + 0.0468613i
\(919\) 26.4674 0.873078 0.436539 0.899685i \(-0.356204\pi\)
0.436539 + 0.899685i \(0.356204\pi\)
\(920\) 0 0
\(921\) 0.616844 2.04584i 0.0203257 0.0674127i
\(922\) −1.63086 + 0.941578i −0.0537095 + 0.0310092i
\(923\) −35.0458 + 20.2337i −1.15355 + 0.666000i
\(924\) 17.4891 + 18.6101i 0.575350 + 0.612228i
\(925\) 0 0
\(926\) −20.0000 −0.657241
\(927\) 47.9075 + 2.97825i 1.57349 + 0.0978186i
\(928\) 1.37228i 0.0450473i
\(929\) 25.9783 44.9956i 0.852319 1.47626i −0.0267916 0.999641i \(-0.508529\pi\)
0.879110 0.476618i \(-0.158138\pi\)
\(930\) 0 0
\(931\) 5.18614 + 8.98266i 0.169969 + 0.294395i
\(932\) 6.16337 3.55842i 0.201888 0.116560i
\(933\) −8.21782 34.9783i −0.269039 1.14514i
\(934\) −21.5584 + 37.3403i −0.705413 + 1.22181i
\(935\) 0 0
\(936\) −1.25544 + 20.1947i −0.0410353 + 0.660084i
\(937\) 39.7228i 1.29769i 0.760922 + 0.648844i \(0.224747\pi\)
−0.760922 + 0.648844i \(0.775253\pi\)
\(938\) 20.4434 + 11.8030i 0.667500 + 0.385381i
\(939\) −4.30298 4.57879i −0.140423 0.149423i
\(940\) 0 0
\(941\) −21.6861 37.5615i −0.706948 1.22447i −0.965984 0.258602i \(-0.916738\pi\)
0.259036 0.965868i \(-0.416595\pi\)
\(942\) 11.1846 + 3.37228i 0.364414 + 0.109875i
\(943\) −3.56529 2.05842i −0.116102 0.0670314i
\(944\) −4.37228 −0.142306
\(945\) 0 0
\(946\) −24.6060 −0.800009
\(947\) 30.0708 + 17.3614i 0.977171 + 0.564170i 0.901415 0.432956i \(-0.142530\pi\)
0.0757561 + 0.997126i \(0.475863\pi\)
\(948\) −3.31662 1.00000i −0.107719 0.0324785i
\(949\) −10.5109 18.2054i −0.341197 0.590971i
\(950\) 0 0
\(951\) 3.25544 + 3.46410i 0.105565 + 0.112331i
\(952\) −4.75372 2.74456i −0.154069 0.0889518i
\(953\) 2.13859i 0.0692758i −0.999400 0.0346379i \(-0.988972\pi\)
0.999400 0.0346379i \(-0.0110278\pi\)
\(954\) −30.8614 + 15.3484i −0.999175 + 0.496923i
\(955\) 0 0
\(956\) 1.62772 2.81929i 0.0526442 0.0911824i
\(957\) 2.37686 + 10.1168i 0.0768330 + 0.327031i
\(958\) −0.442430 + 0.255437i −0.0142943 + 0.00825281i
\(959\) −32.2337 55.8304i −1.04088 1.80286i
\(960\) 0 0
\(961\) 4.24456 7.35180i 0.136921 0.237155i
\(962\) 26.9783i 0.869814i
\(963\) −14.0776 + 21.2228i −0.453645 + 0.683896i
\(964\) 12.4891 0.402248
\(965\) 0 0
\(966\) −5.48913 5.84096i −0.176610 0.187930i
\(967\) 31.2781 18.0584i 1.00584 0.580720i 0.0958662 0.995394i \(-0.469438\pi\)
0.909970 + 0.414675i \(0.136105\pi\)
\(968\) 7.02939 4.05842i 0.225933 0.130443i
\(969\) −1.93070 + 6.40342i −0.0620231 + 0.205707i
\(970\) 0 0
\(971\) −22.9783 −0.737407 −0.368704 0.929547i \(-0.620198\pi\)
−0.368704 + 0.929547i \(0.620198\pi\)
\(972\) 12.5942 9.18614i 0.403960 0.294646i
\(973\) 2.97825i 0.0954783i
\(974\) 6.37228 11.0371i 0.204181 0.353652i
\(975\) 0 0
\(976\) 4.05842 + 7.02939i 0.129907 + 0.225005i
\(977\) −19.8174 + 11.4416i −0.634015 + 0.366049i −0.782305 0.622895i \(-0.785956\pi\)
0.148291 + 0.988944i \(0.452623\pi\)
\(978\) 27.1229 25.4891i 0.867295 0.815052i
\(979\) −35.2337 + 61.0265i −1.12607 + 1.95042i
\(980\) 0 0
\(981\) −38.4307 25.4920i −1.22700 0.813898i
\(982\) 36.6060i 1.16814i
\(983\) −11.1383 6.43070i −0.355257 0.205108i 0.311741 0.950167i \(-0.399088\pi\)
−0.666998 + 0.745059i \(0.732421\pi\)
\(984\) 5.05842 1.18843i 0.161257 0.0378858i
\(985\) 0 0
\(986\) −1.11684 1.93443i −0.0355676 0.0616048i
\(987\) 9.84868 + 41.9198i 0.313487 + 1.33432i
\(988\) 13.8564 + 8.00000i 0.440831 + 0.254514i
\(989\) 7.72281 0.245571
\(990\) 0 0
\(991\) 16.2337 0.515680 0.257840 0.966188i \(-0.416989\pi\)
0.257840 + 0.966188i \(0.416989\pi\)
\(992\) 4.10891 + 2.37228i 0.130458 + 0.0753200i
\(993\) 20.4897 19.2554i 0.650220 0.611053i
\(994\) 10.1168 + 17.5229i 0.320887 + 0.555792i
\(995\) 0 0
\(996\) 3.68614 12.2255i 0.116800 0.387381i
\(997\) −12.1244 7.00000i −0.383982 0.221692i 0.295567 0.955322i \(-0.404491\pi\)
−0.679549 + 0.733630i \(0.737825\pi\)
\(998\) 15.1168i 0.478515i
\(999\) −16.0000 + 13.2665i −0.506218 + 0.419733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.j.g.349.3 8
3.2 odd 2 1350.2.j.f.1099.1 8
5.2 odd 4 450.2.e.j.151.2 4
5.3 odd 4 90.2.e.c.61.1 yes 4
5.4 even 2 inner 450.2.j.g.349.2 8
9.2 odd 6 4050.2.c.ba.649.4 4
9.4 even 3 inner 450.2.j.g.49.2 8
9.5 odd 6 1350.2.j.f.199.4 8
9.7 even 3 4050.2.c.v.649.2 4
15.2 even 4 1350.2.e.l.451.2 4
15.8 even 4 270.2.e.c.181.1 4
15.14 odd 2 1350.2.j.f.1099.4 8
20.3 even 4 720.2.q.f.241.2 4
45.2 even 12 4050.2.a.bo.1.1 2
45.4 even 6 inner 450.2.j.g.49.3 8
45.7 odd 12 4050.2.a.bw.1.1 2
45.13 odd 12 90.2.e.c.31.2 4
45.14 odd 6 1350.2.j.f.199.1 8
45.22 odd 12 450.2.e.j.301.1 4
45.23 even 12 270.2.e.c.91.1 4
45.29 odd 6 4050.2.c.ba.649.1 4
45.32 even 12 1350.2.e.l.901.2 4
45.34 even 6 4050.2.c.v.649.3 4
45.38 even 12 810.2.a.k.1.2 2
45.43 odd 12 810.2.a.i.1.2 2
60.23 odd 4 2160.2.q.f.721.2 4
180.23 odd 12 2160.2.q.f.1441.2 4
180.43 even 12 6480.2.a.be.1.1 2
180.83 odd 12 6480.2.a.bn.1.1 2
180.103 even 12 720.2.q.f.481.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.c.31.2 4 45.13 odd 12
90.2.e.c.61.1 yes 4 5.3 odd 4
270.2.e.c.91.1 4 45.23 even 12
270.2.e.c.181.1 4 15.8 even 4
450.2.e.j.151.2 4 5.2 odd 4
450.2.e.j.301.1 4 45.22 odd 12
450.2.j.g.49.2 8 9.4 even 3 inner
450.2.j.g.49.3 8 45.4 even 6 inner
450.2.j.g.349.2 8 5.4 even 2 inner
450.2.j.g.349.3 8 1.1 even 1 trivial
720.2.q.f.241.2 4 20.3 even 4
720.2.q.f.481.1 4 180.103 even 12
810.2.a.i.1.2 2 45.43 odd 12
810.2.a.k.1.2 2 45.38 even 12
1350.2.e.l.451.2 4 15.2 even 4
1350.2.e.l.901.2 4 45.32 even 12
1350.2.j.f.199.1 8 45.14 odd 6
1350.2.j.f.199.4 8 9.5 odd 6
1350.2.j.f.1099.1 8 3.2 odd 2
1350.2.j.f.1099.4 8 15.14 odd 2
2160.2.q.f.721.2 4 60.23 odd 4
2160.2.q.f.1441.2 4 180.23 odd 12
4050.2.a.bo.1.1 2 45.2 even 12
4050.2.a.bw.1.1 2 45.7 odd 12
4050.2.c.v.649.2 4 9.7 even 3
4050.2.c.v.649.3 4 45.34 even 6
4050.2.c.ba.649.1 4 45.29 odd 6
4050.2.c.ba.649.4 4 9.2 odd 6
6480.2.a.be.1.1 2 180.43 even 12
6480.2.a.bn.1.1 2 180.83 odd 12