Properties

Label 405.3.s.a.37.34
Level $405$
Weight $3$
Character 405.37
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 37.34
Character \(\chi\) \(=\) 405.37
Dual form 405.3.s.a.208.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.75348 + 0.328387i) q^{2} +(10.0415 + 1.77059i) q^{4} +(4.26277 + 2.61320i) q^{5} +(1.74995 - 2.49919i) q^{7} +(22.5515 + 6.04267i) q^{8} +(15.1421 + 11.2084i) q^{10} +(-8.21269 - 2.98918i) q^{11} +(-14.9670 + 1.30944i) q^{13} +(7.38912 - 8.80601i) q^{14} +(44.3363 + 16.1371i) q^{16} +(-24.1418 + 6.46879i) q^{17} +(23.0066 - 13.2829i) q^{19} +(38.1778 + 33.7882i) q^{20} +(-29.8446 - 13.9168i) q^{22} +(-16.6632 - 23.7975i) q^{23} +(11.3424 + 22.2789i) q^{25} -56.6083 q^{26} +(21.9973 - 21.9973i) q^{28} +(-3.19342 - 3.80577i) q^{29} +(-2.35330 + 13.3462i) q^{31} +(76.4778 + 35.6622i) q^{32} +(-92.7402 + 16.3526i) q^{34} +(13.9905 - 6.08049i) q^{35} +(21.6691 - 5.80622i) q^{37} +(90.7169 - 42.3020i) q^{38} +(80.3413 + 84.6902i) q^{40} +(10.7753 + 9.04151i) q^{41} +(21.6979 - 10.1179i) q^{43} +(-77.1755 - 44.5573i) q^{44} +(-54.7302 - 94.7954i) q^{46} +(-13.8013 + 19.7104i) q^{47} +(13.5754 + 37.2980i) q^{49} +(35.2572 + 87.3482i) q^{50} +(-152.610 - 13.3517i) q^{52} +(-35.7379 + 35.7379i) q^{53} +(-27.1975 - 34.2036i) q^{55} +(54.5659 - 45.7863i) q^{56} +(-10.7367 - 15.3335i) q^{58} +(7.15372 + 19.6547i) q^{59} +(-13.4180 - 76.0970i) q^{61} +(-13.2158 + 49.3221i) q^{62} +(111.904 + 64.6080i) q^{64} +(-67.2226 - 33.5299i) q^{65} +(-8.95949 - 102.407i) q^{67} +(-253.875 + 22.2112i) q^{68} +(54.5099 - 18.2287i) q^{70} +(12.6791 - 21.9608i) q^{71} +(86.6915 + 23.2289i) q^{73} +(83.2413 - 14.6777i) q^{74} +(254.541 - 92.6453i) q^{76} +(-21.8424 + 15.2942i) q^{77} +(-6.63920 - 7.91230i) q^{79} +(146.826 + 184.649i) q^{80} +(37.4756 + 37.4756i) q^{82} +(-6.03693 + 69.0024i) q^{83} +(-119.815 - 35.5126i) q^{85} +(84.7654 - 30.8521i) q^{86} +(-167.146 - 117.037i) q^{88} +(-61.3185 + 35.4023i) q^{89} +(-22.9190 + 39.6969i) q^{91} +(-125.188 - 268.467i) q^{92} +(-58.2757 + 69.4503i) q^{94} +(132.783 + 3.49913i) q^{95} +(-32.6054 - 69.9225i) q^{97} +(38.7067 + 144.455i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.75348 + 0.328387i 1.87674 + 0.164193i 0.967632 0.252367i \(-0.0812089\pi\)
0.909108 + 0.416560i \(0.136764\pi\)
\(3\) 0 0
\(4\) 10.0415 + 1.77059i 2.51039 + 0.442649i
\(5\) 4.26277 + 2.61320i 0.852553 + 0.522640i
\(6\) 0 0
\(7\) 1.74995 2.49919i 0.249993 0.357027i −0.674467 0.738305i \(-0.735627\pi\)
0.924461 + 0.381277i \(0.124516\pi\)
\(8\) 22.5515 + 6.04267i 2.81894 + 0.755334i
\(9\) 0 0
\(10\) 15.1421 + 11.2084i 1.51421 + 1.12084i
\(11\) −8.21269 2.98918i −0.746608 0.271743i −0.0594306 0.998232i \(-0.518928\pi\)
−0.687178 + 0.726489i \(0.741151\pi\)
\(12\) 0 0
\(13\) −14.9670 + 1.30944i −1.15131 + 0.100726i −0.646785 0.762672i \(-0.723887\pi\)
−0.504522 + 0.863399i \(0.668331\pi\)
\(14\) 7.38912 8.80601i 0.527794 0.629000i
\(15\) 0 0
\(16\) 44.3363 + 16.1371i 2.77102 + 1.00857i
\(17\) −24.1418 + 6.46879i −1.42011 + 0.380517i −0.885522 0.464597i \(-0.846199\pi\)
−0.534586 + 0.845114i \(0.679533\pi\)
\(18\) 0 0
\(19\) 23.0066 13.2829i 1.21088 0.699100i 0.247926 0.968779i \(-0.420251\pi\)
0.962950 + 0.269679i \(0.0869177\pi\)
\(20\) 38.1778 + 33.7882i 1.90889 + 1.68941i
\(21\) 0 0
\(22\) −29.8446 13.9168i −1.35657 0.632580i
\(23\) −16.6632 23.7975i −0.724487 1.03467i −0.997359 0.0726240i \(-0.976863\pi\)
0.272873 0.962050i \(-0.412026\pi\)
\(24\) 0 0
\(25\) 11.3424 + 22.2789i 0.453694 + 0.891157i
\(26\) −56.6083 −2.17724
\(27\) 0 0
\(28\) 21.9973 21.9973i 0.785617 0.785617i
\(29\) −3.19342 3.80577i −0.110118 0.131233i 0.708170 0.706042i \(-0.249521\pi\)
−0.818288 + 0.574809i \(0.805077\pi\)
\(30\) 0 0
\(31\) −2.35330 + 13.3462i −0.0759130 + 0.430524i 0.923037 + 0.384711i \(0.125699\pi\)
−0.998950 + 0.0458129i \(0.985412\pi\)
\(32\) 76.4778 + 35.6622i 2.38993 + 1.11444i
\(33\) 0 0
\(34\) −92.7402 + 16.3526i −2.72765 + 0.480959i
\(35\) 13.9905 6.08049i 0.399730 0.173728i
\(36\) 0 0
\(37\) 21.6691 5.80622i 0.585652 0.156925i 0.0461868 0.998933i \(-0.485293\pi\)
0.539465 + 0.842008i \(0.318626\pi\)
\(38\) 90.7169 42.3020i 2.38729 1.11321i
\(39\) 0 0
\(40\) 80.3413 + 84.6902i 2.00853 + 2.11726i
\(41\) 10.7753 + 9.04151i 0.262811 + 0.220525i 0.764665 0.644427i \(-0.222904\pi\)
−0.501854 + 0.864952i \(0.667349\pi\)
\(42\) 0 0
\(43\) 21.6979 10.1179i 0.504603 0.235300i −0.153610 0.988131i \(-0.549090\pi\)
0.658214 + 0.752831i \(0.271312\pi\)
\(44\) −77.1755 44.5573i −1.75399 1.01267i
\(45\) 0 0
\(46\) −54.7302 94.7954i −1.18979 2.06077i
\(47\) −13.8013 + 19.7104i −0.293646 + 0.419369i −0.938683 0.344782i \(-0.887953\pi\)
0.645037 + 0.764151i \(0.276842\pi\)
\(48\) 0 0
\(49\) 13.5754 + 37.2980i 0.277048 + 0.761184i
\(50\) 35.2572 + 87.3482i 0.705144 + 1.74696i
\(51\) 0 0
\(52\) −152.610 13.3517i −2.93481 0.256763i
\(53\) −35.7379 + 35.7379i −0.674300 + 0.674300i −0.958704 0.284404i \(-0.908204\pi\)
0.284404 + 0.958704i \(0.408204\pi\)
\(54\) 0 0
\(55\) −27.1975 34.2036i −0.494500 0.621883i
\(56\) 54.5659 45.7863i 0.974392 0.817612i
\(57\) 0 0
\(58\) −10.7367 15.3335i −0.185115 0.264371i
\(59\) 7.15372 + 19.6547i 0.121250 + 0.333130i 0.985437 0.170039i \(-0.0543894\pi\)
−0.864188 + 0.503169i \(0.832167\pi\)
\(60\) 0 0
\(61\) −13.4180 76.0970i −0.219966 1.24749i −0.872077 0.489368i \(-0.837227\pi\)
0.652111 0.758124i \(-0.273884\pi\)
\(62\) −13.2158 + 49.3221i −0.213158 + 0.795517i
\(63\) 0 0
\(64\) 111.904 + 64.6080i 1.74851 + 1.00950i
\(65\) −67.2226 33.5299i −1.03419 0.515845i
\(66\) 0 0
\(67\) −8.95949 102.407i −0.133724 1.52847i −0.705884 0.708328i \(-0.749450\pi\)
0.572160 0.820142i \(-0.306106\pi\)
\(68\) −253.875 + 22.2112i −3.73345 + 0.326635i
\(69\) 0 0
\(70\) 54.5099 18.2287i 0.778713 0.260410i
\(71\) 12.6791 21.9608i 0.178579 0.309308i −0.762815 0.646617i \(-0.776183\pi\)
0.941394 + 0.337309i \(0.109517\pi\)
\(72\) 0 0
\(73\) 86.6915 + 23.2289i 1.18755 + 0.318204i 0.797919 0.602765i \(-0.205934\pi\)
0.389635 + 0.920969i \(0.372601\pi\)
\(74\) 83.2413 14.6777i 1.12488 0.198347i
\(75\) 0 0
\(76\) 254.541 92.6453i 3.34922 1.21902i
\(77\) −21.8424 + 15.2942i −0.283667 + 0.198626i
\(78\) 0 0
\(79\) −6.63920 7.91230i −0.0840406 0.100156i 0.722386 0.691490i \(-0.243046\pi\)
−0.806426 + 0.591335i \(0.798601\pi\)
\(80\) 146.826 + 184.649i 1.83532 + 2.30811i
\(81\) 0 0
\(82\) 37.4756 + 37.4756i 0.457019 + 0.457019i
\(83\) −6.03693 + 69.0024i −0.0727341 + 0.831354i 0.868960 + 0.494883i \(0.164789\pi\)
−0.941694 + 0.336471i \(0.890766\pi\)
\(84\) 0 0
\(85\) −119.815 35.5126i −1.40959 0.417795i
\(86\) 84.7654 30.8521i 0.985644 0.358745i
\(87\) 0 0
\(88\) −167.146 117.037i −1.89939 1.32997i
\(89\) −61.3185 + 35.4023i −0.688972 + 0.397778i −0.803227 0.595673i \(-0.796885\pi\)
0.114255 + 0.993452i \(0.463552\pi\)
\(90\) 0 0
\(91\) −22.9190 + 39.6969i −0.251857 + 0.436229i
\(92\) −125.188 268.467i −1.36074 2.91812i
\(93\) 0 0
\(94\) −58.2757 + 69.4503i −0.619954 + 0.738833i
\(95\) 132.783 + 3.49913i 1.39771 + 0.0368330i
\(96\) 0 0
\(97\) −32.6054 69.9225i −0.336138 0.720850i 0.663488 0.748187i \(-0.269075\pi\)
−0.999626 + 0.0273363i \(0.991298\pi\)
\(98\) 38.7067 + 144.455i 0.394966 + 1.47403i
\(99\) 0 0
\(100\) 74.4478 + 243.798i 0.744478 + 2.43798i
\(101\) −31.7898 180.289i −0.314750 1.78504i −0.573617 0.819124i \(-0.694460\pi\)
0.258867 0.965913i \(-0.416651\pi\)
\(102\) 0 0
\(103\) −77.3039 + 165.779i −0.750523 + 1.60950i 0.0415948 + 0.999135i \(0.486756\pi\)
−0.792118 + 0.610368i \(0.791022\pi\)
\(104\) −345.441 60.9106i −3.32155 0.585679i
\(105\) 0 0
\(106\) −145.877 + 122.406i −1.37620 + 1.15477i
\(107\) 5.45487 + 5.45487i 0.0509801 + 0.0509801i 0.732137 0.681157i \(-0.238523\pi\)
−0.681157 + 0.732137i \(0.738523\pi\)
\(108\) 0 0
\(109\) 30.3525i 0.278463i 0.990260 + 0.139231i \(0.0444632\pi\)
−0.990260 + 0.139231i \(0.955537\pi\)
\(110\) −90.8532 137.314i −0.825938 1.24831i
\(111\) 0 0
\(112\) 117.916 82.5659i 1.05282 0.737195i
\(113\) 8.63948 18.5274i 0.0764556 0.163959i −0.864365 0.502865i \(-0.832279\pi\)
0.940820 + 0.338906i \(0.110057\pi\)
\(114\) 0 0
\(115\) −8.84362 144.987i −0.0769010 1.26076i
\(116\) −25.3284 43.8700i −0.218348 0.378190i
\(117\) 0 0
\(118\) 20.3970 + 76.1227i 0.172856 + 0.645107i
\(119\) −26.0804 + 71.6552i −0.219163 + 0.602144i
\(120\) 0 0
\(121\) −34.1782 28.6789i −0.282465 0.237016i
\(122\) −25.3748 290.035i −0.207990 2.37733i
\(123\) 0 0
\(124\) −47.2616 + 129.850i −0.381142 + 1.04718i
\(125\) −9.86954 + 124.610i −0.0789563 + 0.996878i
\(126\) 0 0
\(127\) −13.0107 + 48.5567i −0.102447 + 0.382336i −0.998043 0.0625315i \(-0.980083\pi\)
0.895596 + 0.444868i \(0.146749\pi\)
\(128\) 122.321 + 85.6504i 0.955637 + 0.669144i
\(129\) 0 0
\(130\) −241.308 147.929i −1.85622 1.13791i
\(131\) −35.4480 + 201.036i −0.270596 + 1.53462i 0.482018 + 0.876161i \(0.339904\pi\)
−0.752614 + 0.658462i \(0.771207\pi\)
\(132\) 0 0
\(133\) 7.06405 80.7425i 0.0531132 0.607086i
\(134\) 387.327i 2.89050i
\(135\) 0 0
\(136\) −583.525 −4.29062
\(137\) −37.1184 3.24744i −0.270937 0.0237039i −0.0491224 0.998793i \(-0.515642\pi\)
−0.221815 + 0.975089i \(0.571198\pi\)
\(138\) 0 0
\(139\) 182.916 + 32.2530i 1.31594 + 0.232036i 0.787173 0.616732i \(-0.211544\pi\)
0.528766 + 0.848768i \(0.322655\pi\)
\(140\) 151.253 36.2859i 1.08038 0.259185i
\(141\) 0 0
\(142\) 54.8024 78.2659i 0.385932 0.551169i
\(143\) 126.833 + 33.9849i 0.886947 + 0.237657i
\(144\) 0 0
\(145\) −3.66756 24.5681i −0.0252935 0.169435i
\(146\) 317.767 + 115.658i 2.17648 + 0.792175i
\(147\) 0 0
\(148\) 227.872 19.9362i 1.53967 0.134704i
\(149\) −25.6513 + 30.5701i −0.172157 + 0.205168i −0.845223 0.534414i \(-0.820532\pi\)
0.673066 + 0.739582i \(0.264977\pi\)
\(150\) 0 0
\(151\) 143.221 + 52.1282i 0.948484 + 0.345220i 0.769511 0.638634i \(-0.220500\pi\)
0.178973 + 0.983854i \(0.442722\pi\)
\(152\) 599.100 160.528i 3.94145 1.05611i
\(153\) 0 0
\(154\) −87.0072 + 50.2337i −0.564982 + 0.326193i
\(155\) −44.9080 + 50.7423i −0.289729 + 0.327369i
\(156\) 0 0
\(157\) 111.147 + 51.8286i 0.707942 + 0.330119i 0.743023 0.669266i \(-0.233391\pi\)
−0.0350814 + 0.999384i \(0.511169\pi\)
\(158\) −22.3218 31.8789i −0.141277 0.201765i
\(159\) 0 0
\(160\) 232.814 + 351.871i 1.45509 + 2.19920i
\(161\) −88.6343 −0.550524
\(162\) 0 0
\(163\) 20.2656 20.2656i 0.124329 0.124329i −0.642205 0.766533i \(-0.721980\pi\)
0.766533 + 0.642205i \(0.221980\pi\)
\(164\) 92.1913 + 109.869i 0.562142 + 0.669935i
\(165\) 0 0
\(166\) −45.3190 + 257.017i −0.273006 + 1.54829i
\(167\) 120.543 + 56.2102i 0.721815 + 0.336588i 0.748571 0.663054i \(-0.230740\pi\)
−0.0267565 + 0.999642i \(0.508518\pi\)
\(168\) 0 0
\(169\) 55.8638 9.85029i 0.330555 0.0582858i
\(170\) −438.062 172.642i −2.57684 1.01554i
\(171\) 0 0
\(172\) 235.795 63.1812i 1.37090 0.367333i
\(173\) 19.7354 9.20275i 0.114077 0.0531951i −0.364742 0.931109i \(-0.618843\pi\)
0.478819 + 0.877914i \(0.341065\pi\)
\(174\) 0 0
\(175\) 75.5279 + 10.6404i 0.431588 + 0.0608021i
\(176\) −315.884 265.058i −1.79480 1.50601i
\(177\) 0 0
\(178\) −241.784 + 112.746i −1.35833 + 0.633402i
\(179\) 186.793 + 107.845i 1.04354 + 0.602487i 0.920833 0.389957i \(-0.127510\pi\)
0.122704 + 0.992443i \(0.460843\pi\)
\(180\) 0 0
\(181\) 12.7646 + 22.1089i 0.0705224 + 0.122148i 0.899130 0.437681i \(-0.144200\pi\)
−0.828608 + 0.559829i \(0.810867\pi\)
\(182\) −99.0619 + 141.475i −0.544296 + 0.777335i
\(183\) 0 0
\(184\) −231.980 637.361i −1.26076 3.46392i
\(185\) 107.543 + 31.8752i 0.581315 + 0.172298i
\(186\) 0 0
\(187\) 217.606 + 19.0380i 1.16367 + 0.101808i
\(188\) −173.486 + 173.486i −0.922797 + 0.922797i
\(189\) 0 0
\(190\) 497.249 + 56.7381i 2.61710 + 0.298621i
\(191\) 241.803 202.897i 1.26599 1.06229i 0.270969 0.962588i \(-0.412656\pi\)
0.995017 0.0997005i \(-0.0317885\pi\)
\(192\) 0 0
\(193\) 54.2892 + 77.5331i 0.281291 + 0.401726i 0.934789 0.355203i \(-0.115588\pi\)
−0.653498 + 0.756928i \(0.726699\pi\)
\(194\) −99.4221 273.160i −0.512485 1.40804i
\(195\) 0 0
\(196\) 70.2779 + 398.566i 0.358561 + 2.03350i
\(197\) 26.1273 97.5085i 0.132626 0.494967i −0.867370 0.497663i \(-0.834192\pi\)
0.999996 + 0.00269614i \(0.000858211\pi\)
\(198\) 0 0
\(199\) −10.4704 6.04508i −0.0526150 0.0303773i 0.473462 0.880814i \(-0.343004\pi\)
−0.526077 + 0.850437i \(0.676338\pi\)
\(200\) 121.163 + 570.963i 0.605817 + 2.85481i
\(201\) 0 0
\(202\) −60.1178 687.149i −0.297613 3.40173i
\(203\) −15.0997 + 1.32105i −0.0743826 + 0.00650764i
\(204\) 0 0
\(205\) 22.3051 + 66.6998i 0.108805 + 0.325365i
\(206\) −344.598 + 596.862i −1.67281 + 2.89739i
\(207\) 0 0
\(208\) −684.712 183.468i −3.29189 0.882058i
\(209\) −228.651 + 40.3174i −1.09403 + 0.192906i
\(210\) 0 0
\(211\) −43.6801 + 15.8982i −0.207015 + 0.0753471i −0.443446 0.896301i \(-0.646244\pi\)
0.236432 + 0.971648i \(0.424022\pi\)
\(212\) −422.141 + 295.586i −1.99123 + 1.39428i
\(213\) 0 0
\(214\) 18.6834 + 22.2661i 0.0873058 + 0.104047i
\(215\) 118.933 + 13.5708i 0.553179 + 0.0631199i
\(216\) 0 0
\(217\) 29.2367 + 29.2367i 0.134731 + 0.134731i
\(218\) −9.96735 + 113.927i −0.0457218 + 0.522603i
\(219\) 0 0
\(220\) −212.544 391.612i −0.966108 1.78006i
\(221\) 352.860 128.431i 1.59665 0.581134i
\(222\) 0 0
\(223\) −85.5949 59.9342i −0.383834 0.268763i 0.365696 0.930735i \(-0.380831\pi\)
−0.749529 + 0.661971i \(0.769720\pi\)
\(224\) 222.959 128.726i 0.995353 0.574667i
\(225\) 0 0
\(226\) 38.5123 66.7052i 0.170408 0.295156i
\(227\) −46.1908 99.0566i −0.203484 0.436373i 0.777911 0.628375i \(-0.216280\pi\)
−0.981394 + 0.192002i \(0.938502\pi\)
\(228\) 0 0
\(229\) −186.679 + 222.475i −0.815192 + 0.971508i −0.999936 0.0112785i \(-0.996410\pi\)
0.184744 + 0.982787i \(0.440854\pi\)
\(230\) 14.4176 547.112i 0.0626854 2.37875i
\(231\) 0 0
\(232\) −49.0195 105.123i −0.211291 0.453115i
\(233\) −77.6767 289.894i −0.333377 1.24418i −0.905618 0.424093i \(-0.860593\pi\)
0.572242 0.820085i \(-0.306074\pi\)
\(234\) 0 0
\(235\) −110.339 + 47.9550i −0.469528 + 0.204064i
\(236\) 37.0339 + 210.030i 0.156923 + 0.889956i
\(237\) 0 0
\(238\) −121.423 + 260.392i −0.510179 + 1.09408i
\(239\) 59.1436 + 10.4286i 0.247463 + 0.0436344i 0.296004 0.955187i \(-0.404346\pi\)
−0.0485408 + 0.998821i \(0.515457\pi\)
\(240\) 0 0
\(241\) 352.232 295.558i 1.46154 1.22638i 0.537967 0.842966i \(-0.319193\pi\)
0.923577 0.383414i \(-0.125252\pi\)
\(242\) −118.869 118.869i −0.491196 0.491196i
\(243\) 0 0
\(244\) 787.889i 3.22905i
\(245\) −39.5986 + 194.468i −0.161627 + 0.793746i
\(246\) 0 0
\(247\) −326.947 + 228.931i −1.32367 + 0.926846i
\(248\) −133.718 + 286.758i −0.539184 + 1.15628i
\(249\) 0 0
\(250\) −77.9653 + 464.479i −0.311861 + 1.85792i
\(251\) 43.4873 + 75.3221i 0.173256 + 0.300088i 0.939556 0.342394i \(-0.111238\pi\)
−0.766300 + 0.642483i \(0.777905\pi\)
\(252\) 0 0
\(253\) 65.7148 + 245.251i 0.259742 + 0.969371i
\(254\) −64.7809 + 177.984i −0.255043 + 0.700724i
\(255\) 0 0
\(256\) 35.0638 + 29.4220i 0.136968 + 0.114930i
\(257\) 16.0932 + 183.946i 0.0626194 + 0.715743i 0.961004 + 0.276534i \(0.0891858\pi\)
−0.898385 + 0.439209i \(0.855259\pi\)
\(258\) 0 0
\(259\) 23.4091 64.3159i 0.0903826 0.248324i
\(260\) −615.651 455.716i −2.36789 1.75275i
\(261\) 0 0
\(262\) −199.071 + 742.943i −0.759813 + 2.83566i
\(263\) −288.870 202.269i −1.09836 0.769083i −0.123603 0.992332i \(-0.539445\pi\)
−0.974762 + 0.223248i \(0.928334\pi\)
\(264\) 0 0
\(265\) −245.733 + 58.9520i −0.927293 + 0.222460i
\(266\) 53.0295 300.746i 0.199359 1.13062i
\(267\) 0 0
\(268\) 91.3550 1044.19i 0.340877 3.89624i
\(269\) 359.275i 1.33560i 0.744342 + 0.667798i \(0.232763\pi\)
−0.744342 + 0.667798i \(0.767237\pi\)
\(270\) 0 0
\(271\) 350.436 1.29312 0.646562 0.762862i \(-0.276206\pi\)
0.646562 + 0.762862i \(0.276206\pi\)
\(272\) −1174.75 102.777i −4.31893 0.377857i
\(273\) 0 0
\(274\) −138.257 24.3784i −0.504586 0.0889722i
\(275\) −26.5556 216.874i −0.0965659 0.788634i
\(276\) 0 0
\(277\) −77.3848 + 110.517i −0.279368 + 0.398978i −0.934174 0.356819i \(-0.883861\pi\)
0.654806 + 0.755797i \(0.272750\pi\)
\(278\) 675.978 + 181.128i 2.43158 + 0.651539i
\(279\) 0 0
\(280\) 352.251 52.5843i 1.25804 0.187801i
\(281\) 11.3445 + 4.12907i 0.0403720 + 0.0146942i 0.362127 0.932129i \(-0.382051\pi\)
−0.321755 + 0.946823i \(0.604273\pi\)
\(282\) 0 0
\(283\) 248.503 21.7412i 0.878102 0.0768240i 0.360817 0.932637i \(-0.382498\pi\)
0.517286 + 0.855813i \(0.326942\pi\)
\(284\) 166.201 198.071i 0.585216 0.697434i
\(285\) 0 0
\(286\) 464.907 + 169.212i 1.62555 + 0.591651i
\(287\) 41.4527 11.1072i 0.144434 0.0387011i
\(288\) 0 0
\(289\) 290.702 167.837i 1.00589 0.580751i
\(290\) −5.69824 93.4204i −0.0196491 0.322139i
\(291\) 0 0
\(292\) 829.387 + 386.749i 2.84037 + 1.32448i
\(293\) 10.4865 + 14.9763i 0.0357901 + 0.0511136i 0.836648 0.547740i \(-0.184512\pi\)
−0.800858 + 0.598854i \(0.795623\pi\)
\(294\) 0 0
\(295\) −20.8670 + 102.477i −0.0707356 + 0.347381i
\(296\) 523.757 1.76945
\(297\) 0 0
\(298\) −106.321 + 106.321i −0.356781 + 0.356781i
\(299\) 280.559 + 334.358i 0.938326 + 1.11825i
\(300\) 0 0
\(301\) 12.6838 71.9332i 0.0421388 0.238981i
\(302\) 520.459 + 242.694i 1.72338 + 0.803623i
\(303\) 0 0
\(304\) 1234.38 217.654i 4.06045 0.715968i
\(305\) 141.659 359.448i 0.464456 1.17852i
\(306\) 0 0
\(307\) −473.261 + 126.810i −1.54157 + 0.413062i −0.926772 0.375625i \(-0.877428\pi\)
−0.614796 + 0.788687i \(0.710761\pi\)
\(308\) −246.411 + 114.903i −0.800035 + 0.373062i
\(309\) 0 0
\(310\) −185.224 + 175.713i −0.597498 + 0.566816i
\(311\) 157.780 + 132.394i 0.507333 + 0.425703i 0.860189 0.509975i \(-0.170345\pi\)
−0.352857 + 0.935677i \(0.614790\pi\)
\(312\) 0 0
\(313\) −465.356 + 216.999i −1.48676 + 0.693288i −0.985133 0.171796i \(-0.945043\pi\)
−0.501628 + 0.865084i \(0.667265\pi\)
\(314\) 400.168 + 231.037i 1.27442 + 0.735786i
\(315\) 0 0
\(316\) −52.6584 91.2070i −0.166640 0.288630i
\(317\) 263.349 376.101i 0.830753 1.18644i −0.149514 0.988760i \(-0.547771\pi\)
0.980267 0.197679i \(-0.0633402\pi\)
\(318\) 0 0
\(319\) 14.8504 + 40.8013i 0.0465531 + 0.127904i
\(320\) 308.188 + 567.838i 0.963089 + 1.77449i
\(321\) 0 0
\(322\) −332.687 29.1064i −1.03319 0.0903924i
\(323\) −469.499 + 469.499i −1.45356 + 1.45356i
\(324\) 0 0
\(325\) −198.934 318.597i −0.612104 0.980297i
\(326\) 82.7215 69.4116i 0.253747 0.212919i
\(327\) 0 0
\(328\) 188.364 + 269.011i 0.574280 + 0.820157i
\(329\) 25.1083 + 68.9844i 0.0763170 + 0.209679i
\(330\) 0 0
\(331\) −47.9543 271.962i −0.144877 0.821638i −0.967466 0.253001i \(-0.918582\pi\)
0.822589 0.568636i \(-0.192529\pi\)
\(332\) −182.795 + 682.202i −0.550588 + 2.05482i
\(333\) 0 0
\(334\) 433.997 + 250.568i 1.29939 + 0.750205i
\(335\) 229.419 459.952i 0.684833 1.37299i
\(336\) 0 0
\(337\) 28.0105 + 320.162i 0.0831173 + 0.950036i 0.917208 + 0.398408i \(0.130437\pi\)
−0.834091 + 0.551627i \(0.814007\pi\)
\(338\) 212.918 18.6279i 0.629936 0.0551122i
\(339\) 0 0
\(340\) −1140.25 568.745i −3.35368 1.67278i
\(341\) 59.2212 102.574i 0.173669 0.300804i
\(342\) 0 0
\(343\) 261.374 + 70.0349i 0.762022 + 0.204183i
\(344\) 550.461 97.0612i 1.60018 0.282155i
\(345\) 0 0
\(346\) 77.0984 28.0615i 0.222828 0.0811026i
\(347\) −360.044 + 252.105i −1.03759 + 0.726528i −0.962675 0.270661i \(-0.912758\pi\)
−0.0749155 + 0.997190i \(0.523869\pi\)
\(348\) 0 0
\(349\) 129.078 + 153.829i 0.369851 + 0.440771i 0.918584 0.395227i \(-0.129334\pi\)
−0.548733 + 0.835998i \(0.684890\pi\)
\(350\) 279.998 + 64.7408i 0.799995 + 0.184974i
\(351\) 0 0
\(352\) −521.488 521.488i −1.48150 1.48150i
\(353\) 24.8659 284.218i 0.0704415 0.805150i −0.876008 0.482297i \(-0.839802\pi\)
0.946449 0.322853i \(-0.104642\pi\)
\(354\) 0 0
\(355\) 111.436 60.4809i 0.313905 0.170369i
\(356\) −678.416 + 246.923i −1.90566 + 0.693604i
\(357\) 0 0
\(358\) 665.710 + 466.135i 1.85952 + 1.30205i
\(359\) −163.907 + 94.6319i −0.456566 + 0.263599i −0.710599 0.703597i \(-0.751576\pi\)
0.254033 + 0.967196i \(0.418243\pi\)
\(360\) 0 0
\(361\) 172.371 298.555i 0.477481 0.827021i
\(362\) 40.6512 + 87.1768i 0.112296 + 0.240820i
\(363\) 0 0
\(364\) −300.429 + 358.037i −0.825354 + 0.983619i
\(365\) 308.844 + 325.562i 0.846147 + 0.891950i
\(366\) 0 0
\(367\) −185.946 398.763i −0.506666 1.08655i −0.978762 0.205001i \(-0.934280\pi\)
0.472096 0.881547i \(-0.343498\pi\)
\(368\) −354.762 1323.99i −0.964027 3.59780i
\(369\) 0 0
\(370\) 393.194 + 154.959i 1.06269 + 0.418807i
\(371\) 26.7762 + 151.856i 0.0721732 + 0.409314i
\(372\) 0 0
\(373\) 115.252 247.160i 0.308988 0.662626i −0.689085 0.724680i \(-0.741987\pi\)
0.998073 + 0.0620543i \(0.0197652\pi\)
\(374\) 810.527 + 142.918i 2.16719 + 0.382133i
\(375\) 0 0
\(376\) −430.345 + 361.102i −1.14453 + 0.960378i
\(377\) 52.7793 + 52.7793i 0.139998 + 0.139998i
\(378\) 0 0
\(379\) 373.089i 0.984403i 0.870481 + 0.492202i \(0.163808\pi\)
−0.870481 + 0.492202i \(0.836192\pi\)
\(380\) 1327.15 + 270.241i 3.49250 + 0.711161i
\(381\) 0 0
\(382\) 974.233 682.165i 2.55035 1.78577i
\(383\) −153.867 + 329.969i −0.401742 + 0.861538i 0.596520 + 0.802598i \(0.296550\pi\)
−0.998262 + 0.0589394i \(0.981228\pi\)
\(384\) 0 0
\(385\) −133.076 + 8.11705i −0.345651 + 0.0210832i
\(386\) 178.313 + 308.847i 0.461950 + 0.800121i
\(387\) 0 0
\(388\) −203.604 759.860i −0.524753 1.95840i
\(389\) 186.117 511.351i 0.478449 1.31453i −0.432361 0.901701i \(-0.642319\pi\)
0.910810 0.412827i \(-0.135458\pi\)
\(390\) 0 0
\(391\) 556.221 + 466.725i 1.42256 + 1.19367i
\(392\) 80.7660 + 923.159i 0.206036 + 2.35500i
\(393\) 0 0
\(394\) 130.089 357.416i 0.330175 0.907148i
\(395\) −7.62495 51.0778i −0.0193037 0.129311i
\(396\) 0 0
\(397\) −30.6816 + 114.505i −0.0772837 + 0.288427i −0.993741 0.111705i \(-0.964369\pi\)
0.916458 + 0.400132i \(0.131036\pi\)
\(398\) −37.3153 26.1284i −0.0937570 0.0656493i
\(399\) 0 0
\(400\) 143.361 + 1170.80i 0.358402 + 2.92700i
\(401\) 28.2142 160.011i 0.0703596 0.399029i −0.929206 0.369562i \(-0.879508\pi\)
0.999566 0.0294672i \(-0.00938106\pi\)
\(402\) 0 0
\(403\) 17.7457 202.835i 0.0440341 0.503312i
\(404\) 1866.66i 4.62045i
\(405\) 0 0
\(406\) −57.1101 −0.140665
\(407\) −195.318 17.0881i −0.479896 0.0419855i
\(408\) 0 0
\(409\) 241.096 + 42.5117i 0.589476 + 0.103941i 0.460427 0.887698i \(-0.347696\pi\)
0.129049 + 0.991638i \(0.458807\pi\)
\(410\) 61.8184 + 257.681i 0.150777 + 0.628490i
\(411\) 0 0
\(412\) −1069.78 + 1527.80i −2.59655 + 3.70825i
\(413\) 61.6395 + 16.5163i 0.149248 + 0.0399909i
\(414\) 0 0
\(415\) −206.051 + 278.365i −0.496509 + 0.670760i
\(416\) −1191.34 433.612i −2.86380 1.04234i
\(417\) 0 0
\(418\) −871.478 + 76.2445i −2.08488 + 0.182403i
\(419\) 39.9401 47.5987i 0.0953223 0.113601i −0.716275 0.697819i \(-0.754154\pi\)
0.811597 + 0.584218i \(0.198599\pi\)
\(420\) 0 0
\(421\) 20.0465 + 7.29634i 0.0476165 + 0.0173310i 0.365719 0.930725i \(-0.380823\pi\)
−0.318102 + 0.948056i \(0.603045\pi\)
\(422\) −169.173 + 45.3298i −0.400884 + 0.107417i
\(423\) 0 0
\(424\) −1021.90 + 589.993i −2.41014 + 1.39149i
\(425\) −417.943 464.483i −0.983396 1.09290i
\(426\) 0 0
\(427\) −213.662 99.6322i −0.500379 0.233331i
\(428\) 45.1169 + 64.4337i 0.105413 + 0.150546i
\(429\) 0 0
\(430\) 441.958 + 89.9938i 1.02781 + 0.209288i
\(431\) 486.219 1.12812 0.564059 0.825734i \(-0.309239\pi\)
0.564059 + 0.825734i \(0.309239\pi\)
\(432\) 0 0
\(433\) −120.602 + 120.602i −0.278526 + 0.278526i −0.832520 0.553995i \(-0.813103\pi\)
0.553995 + 0.832520i \(0.313103\pi\)
\(434\) 100.138 + 119.340i 0.230733 + 0.274977i
\(435\) 0 0
\(436\) −53.7419 + 304.785i −0.123261 + 0.699049i
\(437\) −699.464 326.165i −1.60060 0.746374i
\(438\) 0 0
\(439\) 427.090 75.3075i 0.972870 0.171543i 0.335448 0.942059i \(-0.391112\pi\)
0.637421 + 0.770515i \(0.280001\pi\)
\(440\) −406.664 935.689i −0.924237 2.12657i
\(441\) 0 0
\(442\) 1366.63 366.187i 3.09192 0.828478i
\(443\) 271.289 126.504i 0.612392 0.285563i −0.0915725 0.995798i \(-0.529189\pi\)
0.703964 + 0.710236i \(0.251412\pi\)
\(444\) 0 0
\(445\) −353.900 9.32607i −0.795281 0.0209575i
\(446\) −301.597 253.070i −0.676227 0.567421i
\(447\) 0 0
\(448\) 357.295 166.610i 0.797534 0.371896i
\(449\) −624.818 360.739i −1.39158 0.803428i −0.398087 0.917347i \(-0.630326\pi\)
−0.993490 + 0.113920i \(0.963659\pi\)
\(450\) 0 0
\(451\) −61.4672 106.464i −0.136291 0.236063i
\(452\) 119.558 170.747i 0.264509 0.377758i
\(453\) 0 0
\(454\) −140.847 386.975i −0.310237 0.852368i
\(455\) −201.434 + 109.326i −0.442713 + 0.240278i
\(456\) 0 0
\(457\) −726.121 63.5274i −1.58889 0.139010i −0.741858 0.670557i \(-0.766055\pi\)
−0.847029 + 0.531547i \(0.821611\pi\)
\(458\) −773.754 + 773.754i −1.68942 + 1.68942i
\(459\) 0 0
\(460\) 167.910 1471.56i 0.365023 3.19904i
\(461\) −684.108 + 574.034i −1.48396 + 1.24519i −0.582142 + 0.813087i \(0.697785\pi\)
−0.901822 + 0.432107i \(0.857770\pi\)
\(462\) 0 0
\(463\) −340.262 485.944i −0.734907 1.04956i −0.996435 0.0843598i \(-0.973115\pi\)
0.261529 0.965196i \(-0.415773\pi\)
\(464\) −80.1704 220.266i −0.172781 0.474712i
\(465\) 0 0
\(466\) −196.361 1113.62i −0.421375 2.38974i
\(467\) −32.2601 + 120.396i −0.0690794 + 0.257808i −0.991826 0.127600i \(-0.959273\pi\)
0.922746 + 0.385408i \(0.125939\pi\)
\(468\) 0 0
\(469\) −271.615 156.817i −0.579136 0.334364i
\(470\) −429.903 + 143.764i −0.914688 + 0.305881i
\(471\) 0 0
\(472\) 42.5607 + 486.471i 0.0901710 + 1.03066i
\(473\) −208.443 + 18.2364i −0.440682 + 0.0385547i
\(474\) 0 0
\(475\) 556.878 + 361.904i 1.17238 + 0.761904i
\(476\) −388.759 + 673.351i −0.816721 + 1.41460i
\(477\) 0 0
\(478\) 218.570 + 58.5656i 0.457259 + 0.122522i
\(479\) −291.942 + 51.4772i −0.609482 + 0.107468i −0.469866 0.882738i \(-0.655698\pi\)
−0.139616 + 0.990206i \(0.544587\pi\)
\(480\) 0 0
\(481\) −316.719 + 115.276i −0.658459 + 0.239659i
\(482\) 1419.15 993.701i 2.94430 2.06162i
\(483\) 0 0
\(484\) −292.423 348.496i −0.604180 0.720034i
\(485\) 43.7324 383.268i 0.0901699 0.790243i
\(486\) 0 0
\(487\) −187.665 187.665i −0.385349 0.385349i 0.487676 0.873025i \(-0.337845\pi\)
−0.873025 + 0.487676i \(0.837845\pi\)
\(488\) 157.233 1797.19i 0.322200 3.68276i
\(489\) 0 0
\(490\) −212.493 + 716.927i −0.433660 + 1.46312i
\(491\) 223.725 81.4291i 0.455651 0.165843i −0.103990 0.994578i \(-0.533161\pi\)
0.559641 + 0.828735i \(0.310939\pi\)
\(492\) 0 0
\(493\) 101.714 + 71.2207i 0.206316 + 0.144464i
\(494\) −1302.37 + 751.922i −2.63637 + 1.52211i
\(495\) 0 0
\(496\) −319.707 + 553.748i −0.644570 + 1.11643i
\(497\) −32.6965 70.1180i −0.0657878 0.141082i
\(498\) 0 0
\(499\) 206.163 245.695i 0.413152 0.492375i −0.518831 0.854877i \(-0.673633\pi\)
0.931983 + 0.362501i \(0.118077\pi\)
\(500\) −319.739 + 1233.80i −0.639477 + 2.46760i
\(501\) 0 0
\(502\) 138.494 + 297.001i 0.275884 + 0.591635i
\(503\) 209.119 + 780.441i 0.415743 + 1.55157i 0.783344 + 0.621589i \(0.213513\pi\)
−0.367601 + 0.929984i \(0.619821\pi\)
\(504\) 0 0
\(505\) 335.618 851.602i 0.664591 1.68634i
\(506\) 166.122 + 942.124i 0.328304 + 1.86190i
\(507\) 0 0
\(508\) −216.622 + 464.547i −0.426421 + 0.914463i
\(509\) −14.3637 2.53271i −0.0282195 0.00497586i 0.159521 0.987195i \(-0.449005\pi\)
−0.187740 + 0.982219i \(0.560116\pi\)
\(510\) 0 0
\(511\) 209.760 176.009i 0.410488 0.344441i
\(512\) −300.411 300.411i −0.586740 0.586740i
\(513\) 0 0
\(514\) 695.722i 1.35355i
\(515\) −762.742 + 504.665i −1.48105 + 0.979933i
\(516\) 0 0
\(517\) 172.264 120.621i 0.333199 0.233309i
\(518\) 108.986 233.721i 0.210398 0.451199i
\(519\) 0 0
\(520\) −1313.36 1162.36i −2.52570 2.23530i
\(521\) −193.021 334.321i −0.370481 0.641692i 0.619159 0.785266i \(-0.287474\pi\)
−0.989640 + 0.143574i \(0.954140\pi\)
\(522\) 0 0
\(523\) 39.5642 + 147.655i 0.0756485 + 0.282324i 0.993380 0.114878i \(-0.0366478\pi\)
−0.917731 + 0.397202i \(0.869981\pi\)
\(524\) −711.905 + 1955.94i −1.35860 + 3.73272i
\(525\) 0 0
\(526\) −1017.85 854.073i −1.93507 1.62371i
\(527\) −29.5210 337.426i −0.0560170 0.640277i
\(528\) 0 0
\(529\) −107.731 + 295.987i −0.203650 + 0.559523i
\(530\) −941.712 + 140.580i −1.77682 + 0.265245i
\(531\) 0 0
\(532\) 213.896 798.271i 0.402060 1.50051i
\(533\) −173.113 121.215i −0.324789 0.227420i
\(534\) 0 0
\(535\) 8.99816 + 37.5075i 0.0168190 + 0.0701075i
\(536\) 416.764 2363.59i 0.777545 4.40968i
\(537\) 0 0
\(538\) −117.981 + 1348.53i −0.219296 + 2.50657i
\(539\) 346.896i 0.643592i
\(540\) 0 0
\(541\) −596.238 −1.10210 −0.551051 0.834471i \(-0.685773\pi\)
−0.551051 + 0.834471i \(0.685773\pi\)
\(542\) 1315.36 + 115.079i 2.42686 + 0.212322i
\(543\) 0 0
\(544\) −2077.01 366.232i −3.81802 0.673221i
\(545\) −79.3171 + 129.385i −0.145536 + 0.237405i
\(546\) 0 0
\(547\) 24.2447 34.6251i 0.0443231 0.0632999i −0.796379 0.604798i \(-0.793254\pi\)
0.840702 + 0.541498i \(0.182143\pi\)
\(548\) −366.976 98.3309i −0.669664 0.179436i
\(549\) 0 0
\(550\) −28.4573 822.754i −0.0517406 1.49592i
\(551\) −124.021 45.1401i −0.225084 0.0819240i
\(552\) 0 0
\(553\) −31.3926 + 2.74650i −0.0567679 + 0.00496655i
\(554\) −326.755 + 389.411i −0.589810 + 0.702908i
\(555\) 0 0
\(556\) 1779.65 + 647.739i 3.20080 + 1.16500i
\(557\) 369.552 99.0213i 0.663469 0.177776i 0.0886581 0.996062i \(-0.471742\pi\)
0.574811 + 0.818286i \(0.305075\pi\)
\(558\) 0 0
\(559\) −311.504 + 179.847i −0.557252 + 0.321730i
\(560\) 718.411 43.8200i 1.28288 0.0782500i
\(561\) 0 0
\(562\) 41.2256 + 19.2238i 0.0733551 + 0.0342060i
\(563\) −144.583 206.487i −0.256809 0.366761i 0.669957 0.742400i \(-0.266312\pi\)
−0.926766 + 0.375638i \(0.877423\pi\)
\(564\) 0 0
\(565\) 85.2440 56.4014i 0.150874 0.0998254i
\(566\) 939.890 1.66058
\(567\) 0 0
\(568\) 418.635 418.635i 0.737034 0.737034i
\(569\) 457.282 + 544.967i 0.803658 + 0.957763i 0.999739 0.0228251i \(-0.00726609\pi\)
−0.196081 + 0.980588i \(0.562822\pi\)
\(570\) 0 0
\(571\) 9.87196 55.9867i 0.0172889 0.0980502i −0.974942 0.222458i \(-0.928592\pi\)
0.992231 + 0.124408i \(0.0397031\pi\)
\(572\) 1213.43 + 565.832i 2.12138 + 0.989216i
\(573\) 0 0
\(574\) 159.239 28.0782i 0.277420 0.0489167i
\(575\) 341.183 641.158i 0.593362 1.11506i
\(576\) 0 0
\(577\) −430.452 + 115.339i −0.746017 + 0.199895i −0.611751 0.791051i \(-0.709534\pi\)
−0.134266 + 0.990945i \(0.542868\pi\)
\(578\) 1146.26 534.510i 1.98315 0.924757i
\(579\) 0 0
\(580\) 6.67228 253.196i 0.0115039 0.436544i
\(581\) 161.886 + 135.838i 0.278633 + 0.233801i
\(582\) 0 0
\(583\) 400.331 186.678i 0.686675 0.320202i
\(584\) 1814.66 + 1047.70i 3.10730 + 1.79400i
\(585\) 0 0
\(586\) 34.4429 + 59.6568i 0.0587763 + 0.101803i
\(587\) −514.229 + 734.395i −0.876028 + 1.25110i 0.0908509 + 0.995865i \(0.471041\pi\)
−0.966879 + 0.255234i \(0.917848\pi\)
\(588\) 0 0
\(589\) 123.135 + 338.311i 0.209058 + 0.574382i
\(590\) −111.976 + 377.795i −0.189790 + 0.640330i
\(591\) 0 0
\(592\) 1054.43 + 92.2503i 1.78112 + 0.155828i
\(593\) 536.873 536.873i 0.905351 0.905351i −0.0905416 0.995893i \(-0.528860\pi\)
0.995893 + 0.0905416i \(0.0288598\pi\)
\(594\) 0 0
\(595\) −298.424 + 237.296i −0.501553 + 0.398817i
\(596\) −311.706 + 261.553i −0.522997 + 0.438847i
\(597\) 0 0
\(598\) 943.275 + 1347.14i 1.57738 + 2.25274i
\(599\) −72.2154 198.410i −0.120560 0.331236i 0.864703 0.502284i \(-0.167507\pi\)
−0.985263 + 0.171048i \(0.945285\pi\)
\(600\) 0 0
\(601\) −167.417 949.470i −0.278564 1.57982i −0.727407 0.686206i \(-0.759275\pi\)
0.448843 0.893611i \(-0.351836\pi\)
\(602\) 71.2302 265.835i 0.118323 0.441586i
\(603\) 0 0
\(604\) 1345.86 + 777.034i 2.22825 + 1.28648i
\(605\) −70.7500 211.566i −0.116942 0.349696i
\(606\) 0 0
\(607\) −3.18451 36.3991i −0.00524631 0.0599656i 0.993120 0.117099i \(-0.0373595\pi\)
−0.998367 + 0.0571335i \(0.981804\pi\)
\(608\) 2233.19 195.379i 3.67302 0.321347i
\(609\) 0 0
\(610\) 649.753 1302.66i 1.06517 2.13551i
\(611\) 180.755 313.077i 0.295835 0.512401i
\(612\) 0 0
\(613\) −1112.65 298.135i −1.81510 0.486353i −0.818934 0.573888i \(-0.805434\pi\)
−0.996161 + 0.0875346i \(0.972101\pi\)
\(614\) −1818.02 + 320.566i −2.96094 + 0.522094i
\(615\) 0 0
\(616\) −584.997 + 212.921i −0.949670 + 0.345652i
\(617\) 283.392 198.434i 0.459307 0.321610i −0.320920 0.947106i \(-0.603992\pi\)
0.780227 + 0.625496i \(0.215103\pi\)
\(618\) 0 0
\(619\) −426.792 508.631i −0.689487 0.821698i 0.301807 0.953369i \(-0.402410\pi\)
−0.991294 + 0.131671i \(0.957966\pi\)
\(620\) −540.790 + 430.017i −0.872241 + 0.693575i
\(621\) 0 0
\(622\) 548.749 + 548.749i 0.882234 + 0.882234i
\(623\) −18.8275 + 215.199i −0.0302207 + 0.345424i
\(624\) 0 0
\(625\) −367.702 + 505.391i −0.588323 + 0.808626i
\(626\) −1817.96 + 661.685i −2.90410 + 1.05700i
\(627\) 0 0
\(628\) 1024.32 + 717.235i 1.63108 + 1.14209i
\(629\) −485.573 + 280.346i −0.771977 + 0.445701i
\(630\) 0 0
\(631\) 285.716 494.875i 0.452799 0.784270i −0.545760 0.837942i \(-0.683759\pi\)
0.998559 + 0.0536712i \(0.0170923\pi\)
\(632\) −101.913 218.553i −0.161255 0.345812i
\(633\) 0 0
\(634\) 1111.98 1325.21i 1.75391 2.09023i
\(635\) −182.350 + 172.986i −0.287165 + 0.272419i
\(636\) 0 0
\(637\) −252.022 540.463i −0.395639 0.848450i
\(638\) 42.3422 + 158.023i 0.0663672 + 0.247686i
\(639\) 0 0
\(640\) 297.606 + 684.759i 0.465010 + 1.06994i
\(641\) −84.2379 477.737i −0.131416 0.745299i −0.977288 0.211913i \(-0.932031\pi\)
0.845872 0.533386i \(-0.179081\pi\)
\(642\) 0 0
\(643\) 212.723 456.186i 0.330829 0.709465i −0.668587 0.743634i \(-0.733101\pi\)
0.999416 + 0.0341686i \(0.0108783\pi\)
\(644\) −890.025 156.935i −1.38203 0.243689i
\(645\) 0 0
\(646\) −1916.43 + 1608.08i −2.96661 + 2.48928i
\(647\) −802.350 802.350i −1.24011 1.24011i −0.959955 0.280153i \(-0.909615\pi\)
−0.280153 0.959955i \(-0.590385\pi\)
\(648\) 0 0
\(649\) 182.802i 0.281667i
\(650\) −642.072 1261.17i −0.987802 1.94027i
\(651\) 0 0
\(652\) 239.380 167.616i 0.367147 0.257079i
\(653\) −337.025 + 722.752i −0.516118 + 1.10682i 0.459668 + 0.888091i \(0.347968\pi\)
−0.975786 + 0.218727i \(0.929809\pi\)
\(654\) 0 0
\(655\) −676.453 + 764.335i −1.03275 + 1.16692i
\(656\) 331.832 + 574.749i 0.505841 + 0.876142i
\(657\) 0 0
\(658\) 71.5898 + 267.177i 0.108799 + 0.406044i
\(659\) 254.736 699.880i 0.386549 1.06203i −0.581996 0.813192i \(-0.697728\pi\)
0.968544 0.248842i \(-0.0800499\pi\)
\(660\) 0 0
\(661\) 415.794 + 348.892i 0.629037 + 0.527825i 0.900630 0.434587i \(-0.143106\pi\)
−0.271592 + 0.962412i \(0.587550\pi\)
\(662\) −90.6865 1036.55i −0.136989 1.56579i
\(663\) 0 0
\(664\) −553.101 + 1519.63i −0.832983 + 2.28860i
\(665\) 241.109 325.727i 0.362570 0.489814i
\(666\) 0 0
\(667\) −37.3552 + 139.412i −0.0560048 + 0.209013i
\(668\) 1110.91 + 777.870i 1.66304 + 1.16448i
\(669\) 0 0
\(670\) 1012.16 1651.08i 1.51069 2.46430i
\(671\) −117.270 + 665.070i −0.174769 + 0.991162i
\(672\) 0 0
\(673\) −110.861 + 1267.15i −0.164727 + 1.88284i 0.243417 + 0.969922i \(0.421732\pi\)
−0.408144 + 0.912918i \(0.633824\pi\)
\(674\) 1210.92i 1.79662i
\(675\) 0 0
\(676\) 578.399 0.855620
\(677\) 596.336 + 52.1727i 0.880851 + 0.0770645i 0.518601 0.855016i \(-0.326453\pi\)
0.362250 + 0.932081i \(0.382009\pi\)
\(678\) 0 0
\(679\) −231.808 40.8739i −0.341396 0.0601973i
\(680\) −2487.43 1524.87i −3.65798 2.24245i
\(681\) 0 0
\(682\) 255.970 365.563i 0.375322 0.536016i
\(683\) 747.832 + 200.381i 1.09492 + 0.293384i 0.760696 0.649109i \(-0.224858\pi\)
0.334227 + 0.942493i \(0.391525\pi\)
\(684\) 0 0
\(685\) −149.741 110.841i −0.218600 0.161811i
\(686\) 958.062 + 348.706i 1.39659 + 0.508318i
\(687\) 0 0
\(688\) 1125.28 98.4493i 1.63558 0.143095i
\(689\) 488.092 581.686i 0.708407 0.844247i
\(690\) 0 0
\(691\) −79.8263 29.0544i −0.115523 0.0420469i 0.283612 0.958939i \(-0.408467\pi\)
−0.399135 + 0.916892i \(0.630689\pi\)
\(692\) 214.468 57.4665i 0.309925 0.0830440i
\(693\) 0 0
\(694\) −1434.21 + 828.039i −2.06658 + 1.19314i
\(695\) 695.443 + 615.482i 1.00064 + 0.885586i
\(696\) 0 0
\(697\) −318.622 148.576i −0.457134 0.213165i
\(698\) 433.976 + 619.782i 0.621742 + 0.887940i
\(699\) 0 0
\(700\) 739.577 + 240.575i 1.05654 + 0.343679i
\(701\) 430.049 0.613479 0.306740 0.951793i \(-0.400762\pi\)
0.306740 + 0.951793i \(0.400762\pi\)
\(702\) 0 0
\(703\) 421.411 421.411i 0.599446 0.599446i
\(704\) −725.912 865.108i −1.03112 1.22885i
\(705\) 0 0
\(706\) 186.667 1058.64i 0.264401 1.49949i
\(707\) −506.207 236.048i −0.715993 0.333873i
\(708\) 0 0
\(709\) 316.132 55.7426i 0.445885 0.0786215i 0.0538023 0.998552i \(-0.482866\pi\)
0.392082 + 0.919930i \(0.371755\pi\)
\(710\) 438.135 190.420i 0.617091 0.268197i
\(711\) 0 0
\(712\) −1596.75 + 427.849i −2.24263 + 0.600911i
\(713\) 356.821 166.388i 0.500450 0.233364i
\(714\) 0 0
\(715\) 451.852 + 476.311i 0.631961 + 0.666170i
\(716\) 1684.74 + 1413.67i 2.35299 + 1.97439i
\(717\) 0 0
\(718\) −646.298 + 301.374i −0.900137 + 0.419741i
\(719\) 483.899 + 279.379i 0.673016 + 0.388566i 0.797219 0.603691i \(-0.206304\pi\)
−0.124202 + 0.992257i \(0.539637\pi\)
\(720\) 0 0
\(721\) 279.035 + 483.302i 0.387011 + 0.670322i
\(722\) 745.031 1064.01i 1.03190 1.47370i
\(723\) 0 0
\(724\) 89.0300 + 244.608i 0.122970 + 0.337856i
\(725\) 48.5675 114.312i 0.0669897 0.157672i
\(726\) 0 0
\(727\) 783.774 + 68.5713i 1.07809 + 0.0943210i 0.612341 0.790594i \(-0.290228\pi\)
0.465753 + 0.884915i \(0.345784\pi\)
\(728\) −756.734 + 756.734i −1.03947 + 1.03947i
\(729\) 0 0
\(730\) 1052.33 + 1323.41i 1.44155 + 1.81289i
\(731\) −458.378 + 384.625i −0.627056 + 0.526162i
\(732\) 0 0
\(733\) −719.641 1027.75i −0.981774 1.40212i −0.914592 0.404378i \(-0.867488\pi\)
−0.0671824 0.997741i \(-0.521401\pi\)
\(734\) −566.997 1557.81i −0.772476 2.12236i
\(735\) 0 0
\(736\) −425.693 2414.23i −0.578387 3.28020i
\(737\) −232.532 + 867.823i −0.315512 + 1.17751i
\(738\) 0 0
\(739\) −236.827 136.732i −0.320469 0.185023i 0.331132 0.943584i \(-0.392569\pi\)
−0.651602 + 0.758561i \(0.725903\pi\)
\(740\) 1023.46 + 510.492i 1.38306 + 0.689854i
\(741\) 0 0
\(742\) 50.6367 + 578.780i 0.0682435 + 0.780027i
\(743\) −1104.17 + 96.6026i −1.48610 + 0.130017i −0.801103 0.598527i \(-0.795753\pi\)
−0.684999 + 0.728544i \(0.740197\pi\)
\(744\) 0 0
\(745\) −189.232 + 63.2810i −0.254002 + 0.0849409i
\(746\) 513.761 889.861i 0.688688 1.19284i
\(747\) 0 0
\(748\) 2151.39 + 576.463i 2.87619 + 0.770673i
\(749\) 23.1785 4.08700i 0.0309460 0.00545661i
\(750\) 0 0
\(751\) −165.200 + 60.1277i −0.219973 + 0.0800636i −0.449656 0.893202i \(-0.648453\pi\)
0.229683 + 0.973266i \(0.426231\pi\)
\(752\) −929.969 + 651.172i −1.23666 + 0.865920i
\(753\) 0 0
\(754\) 180.774 + 215.438i 0.239753 + 0.285727i
\(755\) 474.297 + 596.476i 0.628207 + 0.790035i
\(756\) 0 0
\(757\) −712.642 712.642i −0.941402 0.941402i 0.0569733 0.998376i \(-0.481855\pi\)
−0.998376 + 0.0569733i \(0.981855\pi\)
\(758\) −122.517 + 1400.38i −0.161633 + 1.84747i
\(759\) 0 0
\(760\) 2973.31 + 881.274i 3.91226 + 1.15957i
\(761\) 435.097 158.362i 0.571744 0.208098i −0.0399372 0.999202i \(-0.512716\pi\)
0.611681 + 0.791104i \(0.290494\pi\)
\(762\) 0 0
\(763\) 75.8566 + 53.1154i 0.0994189 + 0.0696139i
\(764\) 2787.33 1609.26i 3.64833 2.10637i
\(765\) 0 0
\(766\) −685.894 + 1188.00i −0.895423 + 1.55092i
\(767\) −132.806 284.804i −0.173150 0.371322i
\(768\) 0 0
\(769\) −284.787 + 339.396i −0.370334 + 0.441347i −0.918739 0.394866i \(-0.870791\pi\)
0.548405 + 0.836213i \(0.315235\pi\)
\(770\) −502.162 13.2331i −0.652159 0.0171859i
\(771\) 0 0
\(772\) 407.868 + 874.676i 0.528326 + 1.13300i
\(773\) −298.276 1113.18i −0.385868 1.44008i −0.836795 0.547517i \(-0.815573\pi\)
0.450927 0.892561i \(-0.351094\pi\)
\(774\) 0 0
\(775\) −324.032 + 98.9488i −0.418106 + 0.127676i
\(776\) −312.784 1773.88i −0.403072 2.28593i
\(777\) 0 0
\(778\) 866.506 1858.23i 1.11376 2.38847i
\(779\) 368.000 + 64.8883i 0.472401 + 0.0832970i
\(780\) 0 0
\(781\) −169.774 + 142.458i −0.217381 + 0.182404i
\(782\) 1934.50 + 1934.50i 2.47378 + 2.47378i
\(783\) 0 0
\(784\) 1872.72i 2.38868i
\(785\) 338.354 + 511.382i 0.431025 + 0.651443i
\(786\) 0 0
\(787\) 760.113 532.237i 0.965837 0.676286i 0.0196158 0.999808i \(-0.493756\pi\)
0.946221 + 0.323522i \(0.104867\pi\)
\(788\) 435.007 932.875i 0.552039 1.18385i
\(789\) 0 0
\(790\) −11.8468 194.224i −0.0149960 0.245853i
\(791\) −31.1849 54.0138i −0.0394247 0.0682855i
\(792\) 0 0
\(793\) 300.471 + 1121.37i 0.378904 + 1.41409i
\(794\) −152.765 + 419.718i −0.192399 + 0.528612i
\(795\) 0 0
\(796\) −94.4355 79.2408i −0.118638 0.0995487i
\(797\) 27.1813 + 310.684i 0.0341045 + 0.389817i 0.993994 + 0.109437i \(0.0349048\pi\)
−0.959889 + 0.280380i \(0.909540\pi\)
\(798\) 0 0
\(799\) 205.688 565.123i 0.257432 0.707287i
\(800\) 72.9229 + 2108.34i 0.0911536 + 2.63542i
\(801\) 0 0
\(802\) 158.447 591.331i 0.197565 0.737321i
\(803\) −642.535 449.908i −0.800168 0.560284i
\(804\) 0 0
\(805\) −377.828 231.619i −0.469351 0.287726i
\(806\) 133.217 755.508i 0.165281 0.937355i
\(807\) 0 0
\(808\) 372.517 4257.89i 0.461035 5.26966i
\(809\) 458.912i 0.567258i 0.958934 + 0.283629i \(0.0915385\pi\)
−0.958934 + 0.283629i \(0.908462\pi\)
\(810\) 0 0
\(811\) −581.518 −0.717039 −0.358519 0.933522i \(-0.616718\pi\)
−0.358519 + 0.933522i \(0.616718\pi\)
\(812\) −153.963 13.4700i −0.189610 0.0165887i
\(813\) 0 0
\(814\) −727.510 128.280i −0.893746 0.157592i
\(815\) 139.346 33.4294i 0.170976 0.0410177i
\(816\) 0 0
\(817\) 364.802 520.991i 0.446514 0.637688i
\(818\) 890.988 + 238.740i 1.08923 + 0.291858i
\(819\) 0 0
\(820\) 105.879 + 709.262i 0.129121 + 0.864953i
\(821\) −334.376 121.703i −0.407279 0.148238i 0.130253 0.991481i \(-0.458421\pi\)
−0.537532 + 0.843243i \(0.680643\pi\)
\(822\) 0 0
\(823\) 681.301 59.6061i 0.827826 0.0724254i 0.334636 0.942347i \(-0.391387\pi\)
0.493189 + 0.869922i \(0.335831\pi\)
\(824\) −2745.07 + 3271.45i −3.33139 + 3.97020i
\(825\) 0 0
\(826\) 225.939 + 82.2351i 0.273534 + 0.0995582i
\(827\) 229.843 61.5862i 0.277924 0.0744695i −0.117165 0.993112i \(-0.537381\pi\)
0.395089 + 0.918643i \(0.370714\pi\)
\(828\) 0 0
\(829\) −289.902 + 167.375i −0.349701 + 0.201900i −0.664553 0.747241i \(-0.731378\pi\)
0.314853 + 0.949140i \(0.398045\pi\)
\(830\) −864.821 + 977.175i −1.04195 + 1.17732i
\(831\) 0 0
\(832\) −1759.47 820.456i −2.11475 0.986125i
\(833\) −569.007 812.626i −0.683082 0.975542i
\(834\) 0 0
\(835\) 366.959 + 554.614i 0.439471 + 0.664209i
\(836\) −2367.40 −2.83182
\(837\) 0 0
\(838\) 165.545 165.545i 0.197548 0.197548i
\(839\) −126.171 150.364i −0.150382 0.179218i 0.685594 0.727984i \(-0.259542\pi\)
−0.835976 + 0.548765i \(0.815098\pi\)
\(840\) 0 0
\(841\) 141.752 803.917i 0.168552 0.955906i
\(842\) 72.8482 + 33.9697i 0.0865181 + 0.0403440i
\(843\) 0 0
\(844\) −466.764 + 82.3032i −0.553038 + 0.0975156i
\(845\) 263.875 + 103.994i 0.312278 + 0.123070i
\(846\) 0 0
\(847\) −131.484 + 35.2312i −0.155236 + 0.0415952i
\(848\) −2161.20 + 1007.78i −2.54858 + 1.18842i
\(849\) 0 0
\(850\) −1416.21 1880.68i −1.66613 2.21256i
\(851\) −499.250 418.921i −0.586663 0.492269i
\(852\) 0 0
\(853\) −307.011 + 143.161i −0.359919 + 0.167833i −0.594163 0.804345i \(-0.702516\pi\)
0.234244 + 0.972178i \(0.424739\pi\)
\(854\) −769.258 444.131i −0.900770 0.520060i
\(855\) 0 0
\(856\) 90.0538 + 155.978i 0.105203 + 0.182217i
\(857\) −914.569 + 1306.14i −1.06717 + 1.52408i −0.233084 + 0.972457i \(0.574882\pi\)
−0.834091 + 0.551627i \(0.814007\pi\)
\(858\) 0 0
\(859\) 399.816 + 1098.49i 0.465444 + 1.27880i 0.921338 + 0.388762i \(0.127097\pi\)
−0.455894 + 0.890034i \(0.650680\pi\)
\(860\) 1170.25 + 346.854i 1.36075 + 0.403319i
\(861\) 0 0
\(862\) 1825.01 + 159.668i 2.11719 + 0.185230i
\(863\) 373.723 373.723i 0.433051 0.433051i −0.456614 0.889665i \(-0.650938\pi\)
0.889665 + 0.456614i \(0.150938\pi\)
\(864\) 0 0
\(865\) 108.176 + 12.3433i 0.125059 + 0.0142697i
\(866\) −492.280 + 413.072i −0.568452 + 0.476988i
\(867\) 0 0
\(868\) 241.815 + 345.347i 0.278589 + 0.397866i
\(869\) 30.8745 + 84.8270i 0.0355288 + 0.0976145i
\(870\) 0 0
\(871\) 268.193 + 1521.00i 0.307914 + 1.74627i
\(872\) −183.410 + 684.495i −0.210332 + 0.784971i
\(873\) 0 0
\(874\) −2518.32 1453.95i −2.88137 1.66356i
\(875\) 294.153 + 242.727i 0.336174 + 0.277402i
\(876\) 0 0
\(877\) −4.43847 50.7319i −0.00506097 0.0578471i 0.993244 0.116043i \(-0.0370209\pi\)
−0.998305 + 0.0581955i \(0.981465\pi\)
\(878\) 1627.80 142.414i 1.85399 0.162203i
\(879\) 0 0
\(880\) −653.890 1955.35i −0.743056 2.22199i
\(881\) 174.009 301.392i 0.197513 0.342102i −0.750209 0.661201i \(-0.770047\pi\)
0.947721 + 0.319099i \(0.103380\pi\)
\(882\) 0 0
\(883\) 644.574 + 172.713i 0.729982 + 0.195598i 0.604621 0.796513i \(-0.293324\pi\)
0.125361 + 0.992111i \(0.459991\pi\)
\(884\) 3770.66 664.869i 4.26545 0.752114i
\(885\) 0 0
\(886\) 1059.82 385.744i 1.19619 0.435377i
\(887\) −421.577 + 295.192i −0.475284 + 0.332798i −0.786551 0.617525i \(-0.788136\pi\)
0.311267 + 0.950323i \(0.399247\pi\)
\(888\) 0 0
\(889\) 98.5843 + 117.488i 0.110894 + 0.132158i
\(890\) −1325.29 151.221i −1.48909 0.169912i
\(891\) 0 0
\(892\) −753.385 753.385i −0.844602 0.844602i
\(893\) −55.7120 + 636.791i −0.0623875 + 0.713092i
\(894\) 0 0
\(895\) 514.435 + 947.847i 0.574788 + 1.05905i
\(896\) 428.114 155.821i 0.477806 0.173907i
\(897\) 0 0
\(898\) −2226.78 1559.21i −2.47971 1.73631i
\(899\) 58.3078 33.6640i 0.0648585 0.0374461i
\(900\) 0 0
\(901\) 631.598 1093.96i 0.700997 1.21416i
\(902\) −195.754 419.797i −0.217023 0.465407i
\(903\) 0 0
\(904\) 306.789 365.616i 0.339368 0.404443i
\(905\) −3.36258 + 127.601i −0.00371556 + 0.140996i
\(906\) 0 0
\(907\) 306.690 + 657.700i 0.338137 + 0.725138i 0.999693 0.0247580i \(-0.00788152\pi\)
−0.661556 + 0.749895i \(0.730104\pi\)
\(908\) −288.438 1076.47i −0.317663 1.18554i
\(909\) 0 0
\(910\) −791.981 + 344.206i −0.870308 + 0.378249i
\(911\) −118.300 670.913i −0.129857 0.736458i −0.978304 0.207176i \(-0.933573\pi\)
0.848446 0.529282i \(-0.177539\pi\)
\(912\) 0 0
\(913\) 255.840 548.650i 0.280219 0.600931i
\(914\) −2704.62 476.898i −2.95910 0.521770i
\(915\) 0 0
\(916\) −2268.46 + 1903.46i −2.47648 + 2.07802i
\(917\) 440.394 + 440.394i 0.480256 + 0.480256i
\(918\) 0 0
\(919\) 1623.73i 1.76685i 0.468574 + 0.883424i \(0.344768\pi\)
−0.468574 + 0.883424i \(0.655232\pi\)
\(920\) 676.674 3323.13i 0.735515 3.61210i
\(921\) 0 0
\(922\) −2756.29 + 1929.97i −2.98947 + 2.09325i
\(923\) −161.012 + 345.290i −0.174444 + 0.374096i
\(924\) 0 0
\(925\) 375.135 + 416.909i 0.405552 + 0.450712i
\(926\) −1117.59 1935.72i −1.20690 2.09041i
\(927\) 0 0
\(928\) −108.504 404.941i −0.116922 0.436358i
\(929\) 14.1415 38.8534i 0.0152223 0.0418228i −0.931849 0.362847i \(-0.881805\pi\)
0.947071 + 0.321024i \(0.104027\pi\)
\(930\) 0 0
\(931\) 807.749 + 677.782i 0.867614 + 0.728015i
\(932\) −266.710 3048.51i −0.286170 3.27094i
\(933\) 0 0
\(934\) −160.624 + 441.311i −0.171974 + 0.472496i
\(935\) 877.853 + 649.803i 0.938880 + 0.694976i
\(936\) 0 0
\(937\) −82.7125 + 308.687i −0.0882737 + 0.329442i −0.995914 0.0903068i \(-0.971215\pi\)
0.907640 + 0.419749i \(0.137882\pi\)
\(938\) −968.004 677.803i −1.03199 0.722605i
\(939\) 0 0
\(940\) −1192.88 + 286.176i −1.26902 + 0.304443i
\(941\) 194.531 1103.24i 0.206728 1.17241i −0.687969 0.725740i \(-0.741497\pi\)
0.894697 0.446674i \(-0.147392\pi\)
\(942\) 0 0
\(943\) 35.6153 407.085i 0.0377681 0.431691i
\(944\) 986.857i 1.04540i
\(945\) 0 0
\(946\) −788.374 −0.833376
\(947\) 633.129 + 55.3916i 0.668563 + 0.0584916i 0.416384 0.909189i \(-0.363297\pi\)
0.252179 + 0.967681i \(0.418853\pi\)
\(948\) 0 0
\(949\) −1327.93 234.149i −1.39929 0.246733i
\(950\) 1971.39 + 1541.27i 2.07514 + 1.62239i
\(951\) 0 0
\(952\) −1021.14 + 1458.34i −1.07263 + 1.53187i
\(953\) −1460.67 391.386i −1.53271 0.410688i −0.608807 0.793319i \(-0.708352\pi\)
−0.923901 + 0.382631i \(0.875018\pi\)
\(954\) 0 0
\(955\) 1560.96 233.022i 1.63452 0.244002i
\(956\) 575.428 + 209.439i 0.601912 + 0.219078i
\(957\) 0 0
\(958\) −1112.70 + 97.3488i −1.16148 + 0.101617i
\(959\) −73.0714 + 87.0831i −0.0761954 + 0.0908061i
\(960\) 0 0
\(961\) 730.460 + 265.866i 0.760104 + 0.276655i
\(962\) −1226.65 + 328.681i −1.27511 + 0.341664i
\(963\) 0 0
\(964\) 4060.26 2344.19i 4.21189 2.43174i
\(965\) 28.8128 + 472.374i 0.0298578 + 0.489507i
\(966\) 0 0
\(967\) 795.561 + 370.976i 0.822710 + 0.383636i 0.787934 0.615759i \(-0.211151\pi\)
0.0347756 + 0.999395i \(0.488928\pi\)
\(968\) −597.475 853.282i −0.617226 0.881490i
\(969\) 0 0
\(970\) 290.009 1424.23i 0.298978 1.46827i
\(971\) 195.094 0.200920 0.100460 0.994941i \(-0.467968\pi\)
0.100460 + 0.994941i \(0.467968\pi\)
\(972\) 0 0
\(973\) 400.700 400.700i 0.411819 0.411819i
\(974\) −642.770 766.023i −0.659928 0.786471i
\(975\) 0 0
\(976\) 633.083 3590.39i 0.648650 3.67868i
\(977\) −518.912 241.973i −0.531128 0.247669i 0.138504 0.990362i \(-0.455771\pi\)
−0.669632 + 0.742693i \(0.733548\pi\)
\(978\) 0 0
\(979\) 609.414 107.456i 0.622486 0.109761i
\(980\) −741.955 + 1882.64i −0.757096 + 1.92106i
\(981\) 0 0
\(982\) 866.486 232.174i 0.882369 0.236430i
\(983\) 1349.02 629.058i 1.37235 0.639937i 0.410083 0.912048i \(-0.365500\pi\)
0.962266 + 0.272111i \(0.0877218\pi\)
\(984\) 0 0
\(985\) 366.184 347.380i 0.371761 0.352670i
\(986\) 358.392 + 300.727i 0.363481 + 0.304997i
\(987\) 0 0
\(988\) −3688.40 + 1719.93i −3.73320 + 1.74082i
\(989\) −602.338 347.760i −0.609037 0.351628i
\(990\) 0 0
\(991\) −758.343 1313.49i −0.765230 1.32542i −0.940125 0.340830i \(-0.889292\pi\)
0.174895 0.984587i \(-0.444042\pi\)
\(992\) −655.931 + 936.767i −0.661221 + 0.944322i
\(993\) 0 0
\(994\) −99.7000 273.923i −0.100302 0.275577i
\(995\) −28.8358 53.1300i −0.0289807 0.0533970i
\(996\) 0 0
\(997\) −1365.17 119.437i −1.36928 0.119796i −0.621328 0.783551i \(-0.713406\pi\)
−0.747951 + 0.663754i \(0.768962\pi\)
\(998\) 854.511 854.511i 0.856223 0.856223i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.37.34 408
3.2 odd 2 135.3.r.a.22.1 408
5.3 odd 4 inner 405.3.s.a.118.34 408
15.8 even 4 135.3.r.a.103.1 yes 408
27.11 odd 18 135.3.r.a.97.1 yes 408
27.16 even 9 inner 405.3.s.a.127.34 408
135.38 even 36 135.3.r.a.43.1 yes 408
135.43 odd 36 inner 405.3.s.a.208.34 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.1 408 3.2 odd 2
135.3.r.a.43.1 yes 408 135.38 even 36
135.3.r.a.97.1 yes 408 27.11 odd 18
135.3.r.a.103.1 yes 408 15.8 even 4
405.3.s.a.37.34 408 1.1 even 1 trivial
405.3.s.a.118.34 408 5.3 odd 4 inner
405.3.s.a.127.34 408 27.16 even 9 inner
405.3.s.a.208.34 408 135.43 odd 36 inner