Properties

Label 405.3.s.a.118.34
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.34
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.328387 - 3.75348i) q^{2} +(-10.0415 - 1.77059i) q^{4} +(1.58573 - 4.74188i) q^{5} +(-2.49919 - 1.74995i) q^{7} +(-6.04267 + 22.5515i) q^{8} +(-17.2778 - 7.50920i) q^{10} +(-8.21269 - 2.98918i) q^{11} +(-1.30944 - 14.9670i) q^{13} +(-7.38912 + 8.80601i) q^{14} +(44.3363 + 16.1371i) q^{16} +(6.46879 + 24.1418i) q^{17} +(-23.0066 + 13.2829i) q^{19} +(-24.3192 + 44.8081i) q^{20} +(-13.9168 + 29.8446i) q^{22} +(23.7975 - 16.6632i) q^{23} +(-19.9709 - 15.0387i) q^{25} -56.6083 q^{26} +(21.9973 + 21.9973i) q^{28} +(3.19342 + 3.80577i) q^{29} +(-2.35330 + 13.3462i) q^{31} +(35.6622 - 76.4778i) q^{32} +(92.7402 - 16.3526i) q^{34} +(-12.2611 + 9.07591i) q^{35} +(-5.80622 - 21.6691i) q^{37} +(42.3020 + 90.7169i) q^{38} +(97.3547 + 64.4144i) q^{40} +(10.7753 + 9.04151i) q^{41} +(10.1179 + 21.6979i) q^{43} +(77.1755 + 44.5573i) q^{44} +(-54.7302 - 94.7954i) q^{46} +(19.7104 + 13.8013i) q^{47} +(-13.5754 - 37.2980i) q^{49} +(-63.0058 + 70.0218i) q^{50} +(-13.3517 + 152.610i) q^{52} +(-35.7379 - 35.7379i) q^{53} +(-27.1975 + 34.2036i) q^{55} +(54.5659 - 45.7863i) q^{56} +(15.3335 - 10.7367i) q^{58} +(-7.15372 - 19.6547i) q^{59} +(-13.4180 - 76.0970i) q^{61} +(49.3221 + 13.2158i) q^{62} +(-111.904 - 64.6080i) q^{64} +(-73.0482 - 17.5245i) q^{65} +(-102.407 + 8.95949i) q^{67} +(-22.2112 - 253.875i) q^{68} +(30.0399 + 49.0023i) q^{70} +(12.6791 - 21.9608i) q^{71} +(-23.2289 + 86.6915i) q^{73} +(-83.2413 + 14.6777i) q^{74} +(254.541 - 92.6453i) q^{76} +(15.2942 + 21.8424i) q^{77} +(6.63920 + 7.91230i) q^{79} +(146.826 - 184.649i) q^{80} +(37.4756 - 37.4756i) q^{82} +(-69.0024 - 6.03693i) q^{83} +(124.736 + 7.60834i) q^{85} +(84.7654 - 30.8521i) q^{86} +(117.037 - 167.146i) q^{88} +(61.3185 - 35.4023i) q^{89} +(-22.9190 + 39.6969i) q^{91} +(-268.467 + 125.188i) q^{92} +(58.2757 - 69.4503i) q^{94} +(26.5035 + 130.158i) q^{95} +(-69.9225 + 32.6054i) q^{97} +(-144.455 + 38.7067i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.328387 3.75348i 0.164193 1.87674i −0.252367 0.967632i \(-0.581209\pi\)
0.416560 0.909108i \(-0.363236\pi\)
\(3\) 0 0
\(4\) −10.0415 1.77059i −2.51039 0.442649i
\(5\) 1.58573 4.74188i 0.317147 0.948376i
\(6\) 0 0
\(7\) −2.49919 1.74995i −0.357027 0.249993i 0.381277 0.924461i \(-0.375484\pi\)
−0.738305 + 0.674467i \(0.764373\pi\)
\(8\) −6.04267 + 22.5515i −0.755334 + 2.81894i
\(9\) 0 0
\(10\) −17.2778 7.50920i −1.72778 0.750920i
\(11\) −8.21269 2.98918i −0.746608 0.271743i −0.0594306 0.998232i \(-0.518928\pi\)
−0.687178 + 0.726489i \(0.741151\pi\)
\(12\) 0 0
\(13\) −1.30944 14.9670i −0.100726 1.15131i −0.863399 0.504522i \(-0.831669\pi\)
0.762672 0.646785i \(-0.223887\pi\)
\(14\) −7.38912 + 8.80601i −0.527794 + 0.629000i
\(15\) 0 0
\(16\) 44.3363 + 16.1371i 2.77102 + 1.00857i
\(17\) 6.46879 + 24.1418i 0.380517 + 1.42011i 0.845114 + 0.534586i \(0.179533\pi\)
−0.464597 + 0.885522i \(0.653801\pi\)
\(18\) 0 0
\(19\) −23.0066 + 13.2829i −1.21088 + 0.699100i −0.962950 0.269679i \(-0.913082\pi\)
−0.247926 + 0.968779i \(0.579749\pi\)
\(20\) −24.3192 + 44.8081i −1.21596 + 2.24041i
\(21\) 0 0
\(22\) −13.9168 + 29.8446i −0.632580 + 1.35657i
\(23\) 23.7975 16.6632i 1.03467 0.724487i 0.0726240 0.997359i \(-0.476863\pi\)
0.962050 + 0.272873i \(0.0879738\pi\)
\(24\) 0 0
\(25\) −19.9709 15.0387i −0.798836 0.601549i
\(26\) −56.6083 −2.17724
\(27\) 0 0
\(28\) 21.9973 + 21.9973i 0.785617 + 0.785617i
\(29\) 3.19342 + 3.80577i 0.110118 + 0.131233i 0.818288 0.574809i \(-0.194923\pi\)
−0.708170 + 0.706042i \(0.750479\pi\)
\(30\) 0 0
\(31\) −2.35330 + 13.3462i −0.0759130 + 0.430524i 0.923037 + 0.384711i \(0.125699\pi\)
−0.998950 + 0.0458129i \(0.985412\pi\)
\(32\) 35.6622 76.4778i 1.11444 2.38993i
\(33\) 0 0
\(34\) 92.7402 16.3526i 2.72765 0.480959i
\(35\) −12.2611 + 9.07591i −0.350318 + 0.259312i
\(36\) 0 0
\(37\) −5.80622 21.6691i −0.156925 0.585652i −0.998933 0.0461868i \(-0.985293\pi\)
0.842008 0.539465i \(-0.181374\pi\)
\(38\) 42.3020 + 90.7169i 1.11321 + 2.38729i
\(39\) 0 0
\(40\) 97.3547 + 64.4144i 2.43387 + 1.61036i
\(41\) 10.7753 + 9.04151i 0.262811 + 0.220525i 0.764665 0.644427i \(-0.222904\pi\)
−0.501854 + 0.864952i \(0.667349\pi\)
\(42\) 0 0
\(43\) 10.1179 + 21.6979i 0.235300 + 0.504603i 0.988131 0.153610i \(-0.0490901\pi\)
−0.752831 + 0.658214i \(0.771312\pi\)
\(44\) 77.1755 + 44.5573i 1.75399 + 1.01267i
\(45\) 0 0
\(46\) −54.7302 94.7954i −1.18979 2.06077i
\(47\) 19.7104 + 13.8013i 0.419369 + 0.293646i 0.764151 0.645037i \(-0.223158\pi\)
−0.344782 + 0.938683i \(0.612047\pi\)
\(48\) 0 0
\(49\) −13.5754 37.2980i −0.277048 0.761184i
\(50\) −63.0058 + 70.0218i −1.26012 + 1.40044i
\(51\) 0 0
\(52\) −13.3517 + 152.610i −0.256763 + 2.93481i
\(53\) −35.7379 35.7379i −0.674300 0.674300i 0.284404 0.958704i \(-0.408204\pi\)
−0.958704 + 0.284404i \(0.908204\pi\)
\(54\) 0 0
\(55\) −27.1975 + 34.2036i −0.494500 + 0.621883i
\(56\) 54.5659 45.7863i 0.974392 0.817612i
\(57\) 0 0
\(58\) 15.3335 10.7367i 0.264371 0.185115i
\(59\) −7.15372 19.6547i −0.121250 0.333130i 0.864188 0.503169i \(-0.167833\pi\)
−0.985437 + 0.170039i \(0.945611\pi\)
\(60\) 0 0
\(61\) −13.4180 76.0970i −0.219966 1.24749i −0.872077 0.489368i \(-0.837227\pi\)
0.652111 0.758124i \(-0.273884\pi\)
\(62\) 49.3221 + 13.2158i 0.795517 + 0.213158i
\(63\) 0 0
\(64\) −111.904 64.6080i −1.74851 1.00950i
\(65\) −73.0482 17.5245i −1.12382 0.269607i
\(66\) 0 0
\(67\) −102.407 + 8.95949i −1.52847 + 0.133724i −0.820142 0.572160i \(-0.806106\pi\)
−0.708328 + 0.705884i \(0.750550\pi\)
\(68\) −22.2112 253.875i −0.326635 3.73345i
\(69\) 0 0
\(70\) 30.0399 + 49.0023i 0.429141 + 0.700033i
\(71\) 12.6791 21.9608i 0.178579 0.309308i −0.762815 0.646617i \(-0.776183\pi\)
0.941394 + 0.337309i \(0.109517\pi\)
\(72\) 0 0
\(73\) −23.2289 + 86.6915i −0.318204 + 1.18755i 0.602765 + 0.797919i \(0.294066\pi\)
−0.920969 + 0.389635i \(0.872601\pi\)
\(74\) −83.2413 + 14.6777i −1.12488 + 0.198347i
\(75\) 0 0
\(76\) 254.541 92.6453i 3.34922 1.21902i
\(77\) 15.2942 + 21.8424i 0.198626 + 0.283667i
\(78\) 0 0
\(79\) 6.63920 + 7.91230i 0.0840406 + 0.100156i 0.806426 0.591335i \(-0.201399\pi\)
−0.722386 + 0.691490i \(0.756954\pi\)
\(80\) 146.826 184.649i 1.83532 2.30811i
\(81\) 0 0
\(82\) 37.4756 37.4756i 0.457019 0.457019i
\(83\) −69.0024 6.03693i −0.831354 0.0727341i −0.336471 0.941694i \(-0.609234\pi\)
−0.494883 + 0.868960i \(0.664789\pi\)
\(84\) 0 0
\(85\) 124.736 + 7.60834i 1.46748 + 0.0895099i
\(86\) 84.7654 30.8521i 0.985644 0.358745i
\(87\) 0 0
\(88\) 117.037 167.146i 1.32997 1.89939i
\(89\) 61.3185 35.4023i 0.688972 0.397778i −0.114255 0.993452i \(-0.536448\pi\)
0.803227 + 0.595673i \(0.203115\pi\)
\(90\) 0 0
\(91\) −22.9190 + 39.6969i −0.251857 + 0.436229i
\(92\) −268.467 + 125.188i −2.91812 + 1.36074i
\(93\) 0 0
\(94\) 58.2757 69.4503i 0.619954 0.738833i
\(95\) 26.5035 + 130.158i 0.278984 + 1.37008i
\(96\) 0 0
\(97\) −69.9225 + 32.6054i −0.720850 + 0.336138i −0.748187 0.663488i \(-0.769075\pi\)
0.0273363 + 0.999626i \(0.491298\pi\)
\(98\) −144.455 + 38.7067i −1.47403 + 0.394966i
\(99\) 0 0
\(100\) 173.911 + 186.372i 1.73911 + 1.86372i
\(101\) −31.7898 180.289i −0.314750 1.78504i −0.573617 0.819124i \(-0.694460\pi\)
0.258867 0.965913i \(-0.416651\pi\)
\(102\) 0 0
\(103\) −165.779 77.3039i −1.60950 0.750523i −0.610368 0.792118i \(-0.708978\pi\)
−0.999135 + 0.0415948i \(0.986756\pi\)
\(104\) 345.441 + 60.9106i 3.32155 + 0.585679i
\(105\) 0 0
\(106\) −145.877 + 122.406i −1.37620 + 1.15477i
\(107\) 5.45487 5.45487i 0.0509801 0.0509801i −0.681157 0.732137i \(-0.738523\pi\)
0.732137 + 0.681157i \(0.238523\pi\)
\(108\) 0 0
\(109\) 30.3525i 0.278463i −0.990260 0.139231i \(-0.955537\pi\)
0.990260 0.139231i \(-0.0444632\pi\)
\(110\) 119.451 + 113.317i 1.08592 + 1.03016i
\(111\) 0 0
\(112\) −82.5659 117.916i −0.737195 1.05282i
\(113\) 18.5274 + 8.63948i 0.163959 + 0.0764556i 0.502865 0.864365i \(-0.332279\pi\)
−0.338906 + 0.940820i \(0.610057\pi\)
\(114\) 0 0
\(115\) −41.2784 139.268i −0.358942 1.21103i
\(116\) −25.3284 43.8700i −0.218348 0.378190i
\(117\) 0 0
\(118\) −76.1227 + 20.3970i −0.645107 + 0.172856i
\(119\) 26.0804 71.6552i 0.219163 0.602144i
\(120\) 0 0
\(121\) −34.1782 28.6789i −0.282465 0.237016i
\(122\) −290.035 + 25.3748i −2.37733 + 0.207990i
\(123\) 0 0
\(124\) 47.2616 129.850i 0.381142 1.04718i
\(125\) −102.980 + 70.8522i −0.823844 + 0.566817i
\(126\) 0 0
\(127\) 48.5567 + 13.0107i 0.382336 + 0.102447i 0.444868 0.895596i \(-0.353251\pi\)
−0.0625315 + 0.998043i \(0.519917\pi\)
\(128\) −85.6504 + 122.321i −0.669144 + 0.955637i
\(129\) 0 0
\(130\) −89.7658 + 268.430i −0.690506 + 2.06485i
\(131\) −35.4480 + 201.036i −0.270596 + 1.53462i 0.482018 + 0.876161i \(0.339904\pi\)
−0.752614 + 0.658462i \(0.771207\pi\)
\(132\) 0 0
\(133\) 80.7425 + 7.06405i 0.607086 + 0.0531132i
\(134\) 387.327i 2.89050i
\(135\) 0 0
\(136\) −583.525 −4.29062
\(137\) −3.24744 + 37.1184i −0.0237039 + 0.270937i 0.975089 + 0.221815i \(0.0711980\pi\)
−0.998793 + 0.0491224i \(0.984358\pi\)
\(138\) 0 0
\(139\) −182.916 32.2530i −1.31594 0.232036i −0.528766 0.848768i \(-0.677345\pi\)
−0.787173 + 0.616732i \(0.788456\pi\)
\(140\) 139.190 69.4267i 0.994217 0.495905i
\(141\) 0 0
\(142\) −78.2659 54.8024i −0.551169 0.385932i
\(143\) −33.9849 + 126.833i −0.237657 + 0.886947i
\(144\) 0 0
\(145\) 23.1104 9.10787i 0.159382 0.0628129i
\(146\) 317.767 + 115.658i 2.17648 + 0.792175i
\(147\) 0 0
\(148\) 19.9362 + 227.872i 0.134704 + 1.53967i
\(149\) 25.6513 30.5701i 0.172157 0.205168i −0.673066 0.739582i \(-0.735023\pi\)
0.845223 + 0.534414i \(0.179468\pi\)
\(150\) 0 0
\(151\) 143.221 + 52.1282i 0.948484 + 0.345220i 0.769511 0.638634i \(-0.220500\pi\)
0.178973 + 0.983854i \(0.442722\pi\)
\(152\) −160.528 599.100i −1.05611 3.94145i
\(153\) 0 0
\(154\) 87.0072 50.2337i 0.564982 0.326193i
\(155\) 59.5546 + 32.3227i 0.384223 + 0.208534i
\(156\) 0 0
\(157\) 51.8286 111.147i 0.330119 0.707942i −0.669266 0.743023i \(-0.733391\pi\)
0.999384 + 0.0350814i \(0.0111690\pi\)
\(158\) 31.8789 22.3218i 0.201765 0.141277i
\(159\) 0 0
\(160\) −306.098 290.379i −1.91311 1.81487i
\(161\) −88.6343 −0.550524
\(162\) 0 0
\(163\) 20.2656 + 20.2656i 0.124329 + 0.124329i 0.766533 0.642205i \(-0.221980\pi\)
−0.642205 + 0.766533i \(0.721980\pi\)
\(164\) −92.1913 109.869i −0.562142 0.669935i
\(165\) 0 0
\(166\) −45.3190 + 257.017i −0.273006 + 1.54829i
\(167\) 56.2102 120.543i 0.336588 0.721815i −0.663054 0.748571i \(-0.730740\pi\)
0.999642 + 0.0267565i \(0.00851789\pi\)
\(168\) 0 0
\(169\) −55.8638 + 9.85029i −0.330555 + 0.0582858i
\(170\) 69.5193 465.694i 0.408937 2.73938i
\(171\) 0 0
\(172\) −63.1812 235.795i −0.367333 1.37090i
\(173\) 9.20275 + 19.7354i 0.0531951 + 0.114077i 0.931109 0.364742i \(-0.118843\pi\)
−0.877914 + 0.478819i \(0.841065\pi\)
\(174\) 0 0
\(175\) 23.5940 + 72.5328i 0.134823 + 0.414473i
\(176\) −315.884 265.058i −1.79480 1.50601i
\(177\) 0 0
\(178\) −112.746 241.784i −0.633402 1.35833i
\(179\) −186.793 107.845i −1.04354 0.602487i −0.122704 0.992443i \(-0.539157\pi\)
−0.920833 + 0.389957i \(0.872490\pi\)
\(180\) 0 0
\(181\) 12.7646 + 22.1089i 0.0705224 + 0.122148i 0.899130 0.437681i \(-0.144200\pi\)
−0.828608 + 0.559829i \(0.810867\pi\)
\(182\) 141.475 + 99.0619i 0.777335 + 0.544296i
\(183\) 0 0
\(184\) 231.980 + 637.361i 1.26076 + 3.46392i
\(185\) −111.960 6.82906i −0.605187 0.0369138i
\(186\) 0 0
\(187\) 19.0380 217.606i 0.101808 1.16367i
\(188\) −173.486 173.486i −0.922797 0.922797i
\(189\) 0 0
\(190\) 497.249 56.7381i 2.61710 0.298621i
\(191\) 241.803 202.897i 1.26599 1.06229i 0.270969 0.962588i \(-0.412656\pi\)
0.995017 0.0997005i \(-0.0317885\pi\)
\(192\) 0 0
\(193\) −77.5331 + 54.2892i −0.401726 + 0.281291i −0.756928 0.653498i \(-0.773301\pi\)
0.355203 + 0.934789i \(0.384412\pi\)
\(194\) 99.4221 + 273.160i 0.512485 + 1.40804i
\(195\) 0 0
\(196\) 70.2779 + 398.566i 0.358561 + 2.03350i
\(197\) −97.5085 26.1273i −0.494967 0.132626i 0.00269614 0.999996i \(-0.499142\pi\)
−0.497663 + 0.867370i \(0.665808\pi\)
\(198\) 0 0
\(199\) 10.4704 + 6.04508i 0.0526150 + 0.0303773i 0.526077 0.850437i \(-0.323662\pi\)
−0.473462 + 0.880814i \(0.656996\pi\)
\(200\) 459.824 359.500i 2.29912 1.79750i
\(201\) 0 0
\(202\) −687.149 + 60.1178i −3.40173 + 0.297613i
\(203\) −1.32105 15.0997i −0.00650764 0.0743826i
\(204\) 0 0
\(205\) 59.9605 36.7576i 0.292490 0.179305i
\(206\) −344.598 + 596.862i −1.67281 + 2.89739i
\(207\) 0 0
\(208\) 183.468 684.712i 0.882058 3.29189i
\(209\) 228.651 40.3174i 1.09403 0.192906i
\(210\) 0 0
\(211\) −43.6801 + 15.8982i −0.207015 + 0.0753471i −0.443446 0.896301i \(-0.646244\pi\)
0.236432 + 0.971648i \(0.424022\pi\)
\(212\) 295.586 + 422.141i 1.39428 + 1.99123i
\(213\) 0 0
\(214\) −18.6834 22.2661i −0.0873058 0.104047i
\(215\) 118.933 13.5708i 0.553179 0.0631199i
\(216\) 0 0
\(217\) 29.2367 29.2367i 0.134731 0.134731i
\(218\) −113.927 9.96735i −0.522603 0.0457218i
\(219\) 0 0
\(220\) 333.665 295.301i 1.51666 1.34228i
\(221\) 352.860 128.431i 1.59665 0.581134i
\(222\) 0 0
\(223\) 59.9342 85.5949i 0.268763 0.383834i −0.661971 0.749529i \(-0.730280\pi\)
0.930735 + 0.365696i \(0.119169\pi\)
\(224\) −222.959 + 128.726i −0.995353 + 0.574667i
\(225\) 0 0
\(226\) 38.5123 66.7052i 0.170408 0.295156i
\(227\) −99.0566 + 46.1908i −0.436373 + 0.203484i −0.628375 0.777911i \(-0.716280\pi\)
0.192002 + 0.981394i \(0.438502\pi\)
\(228\) 0 0
\(229\) 186.679 222.475i 0.815192 0.971508i −0.184744 0.982787i \(-0.559146\pi\)
0.999936 + 0.0112785i \(0.00359014\pi\)
\(230\) −536.296 + 109.204i −2.33172 + 0.474798i
\(231\) 0 0
\(232\) −105.123 + 49.0195i −0.453115 + 0.211291i
\(233\) 289.894 77.6767i 1.24418 0.333377i 0.424093 0.905618i \(-0.360593\pi\)
0.820085 + 0.572242i \(0.193926\pi\)
\(234\) 0 0
\(235\) 96.6998 71.5789i 0.411488 0.304591i
\(236\) 37.0339 + 210.030i 0.156923 + 0.889956i
\(237\) 0 0
\(238\) −260.392 121.423i −1.09408 0.510179i
\(239\) −59.1436 10.4286i −0.247463 0.0436344i 0.0485408 0.998821i \(-0.484543\pi\)
−0.296004 + 0.955187i \(0.595654\pi\)
\(240\) 0 0
\(241\) 352.232 295.558i 1.46154 1.22638i 0.537967 0.842966i \(-0.319193\pi\)
0.923577 0.383414i \(-0.125252\pi\)
\(242\) −118.869 + 118.869i −0.491196 + 0.491196i
\(243\) 0 0
\(244\) 787.889i 3.22905i
\(245\) −198.390 + 5.22802i −0.809754 + 0.0213389i
\(246\) 0 0
\(247\) 228.931 + 326.947i 0.926846 + 1.32367i
\(248\) −286.758 133.718i −1.15628 0.539184i
\(249\) 0 0
\(250\) 232.125 + 409.802i 0.928499 + 1.63921i
\(251\) 43.4873 + 75.3221i 0.173256 + 0.300088i 0.939556 0.342394i \(-0.111238\pi\)
−0.766300 + 0.642483i \(0.777905\pi\)
\(252\) 0 0
\(253\) −245.251 + 65.7148i −0.969371 + 0.259742i
\(254\) 64.7809 177.984i 0.255043 0.700724i
\(255\) 0 0
\(256\) 35.0638 + 29.4220i 0.136968 + 0.114930i
\(257\) 183.946 16.0932i 0.715743 0.0626194i 0.276534 0.961004i \(-0.410814\pi\)
0.439209 + 0.898385i \(0.355259\pi\)
\(258\) 0 0
\(259\) −23.4091 + 64.3159i −0.0903826 + 0.248324i
\(260\) 702.487 + 305.311i 2.70187 + 1.17427i
\(261\) 0 0
\(262\) 742.943 + 199.071i 2.83566 + 0.759813i
\(263\) 202.269 288.870i 0.769083 1.09836i −0.223248 0.974762i \(-0.571666\pi\)
0.992332 0.123603i \(-0.0394450\pi\)
\(264\) 0 0
\(265\) −226.136 + 112.794i −0.853343 + 0.425638i
\(266\) 53.0295 300.746i 0.199359 1.13062i
\(267\) 0 0
\(268\) 1044.19 + 91.3550i 3.89624 + 0.340877i
\(269\) 359.275i 1.33560i −0.744342 0.667798i \(-0.767237\pi\)
0.744342 0.667798i \(-0.232763\pi\)
\(270\) 0 0
\(271\) 350.436 1.29312 0.646562 0.762862i \(-0.276206\pi\)
0.646562 + 0.762862i \(0.276206\pi\)
\(272\) −102.777 + 1174.75i −0.377857 + 4.31893i
\(273\) 0 0
\(274\) 138.257 + 24.3784i 0.504586 + 0.0889722i
\(275\) 119.061 + 183.205i 0.432950 + 0.666200i
\(276\) 0 0
\(277\) 110.517 + 77.3848i 0.398978 + 0.279368i 0.755797 0.654806i \(-0.227250\pi\)
−0.356819 + 0.934174i \(0.616139\pi\)
\(278\) −181.128 + 675.978i −0.651539 + 2.43158i
\(279\) 0 0
\(280\) −130.586 331.350i −0.466378 1.18339i
\(281\) 11.3445 + 4.12907i 0.0403720 + 0.0146942i 0.362127 0.932129i \(-0.382051\pi\)
−0.321755 + 0.946823i \(0.604273\pi\)
\(282\) 0 0
\(283\) 21.7412 + 248.503i 0.0768240 + 0.878102i 0.932637 + 0.360817i \(0.117502\pi\)
−0.855813 + 0.517286i \(0.826942\pi\)
\(284\) −166.201 + 198.071i −0.585216 + 0.697434i
\(285\) 0 0
\(286\) 464.907 + 169.212i 1.62555 + 0.591651i
\(287\) −11.1072 41.4527i −0.0387011 0.144434i
\(288\) 0 0
\(289\) −290.702 + 167.837i −1.00589 + 0.580751i
\(290\) −26.5970 89.7353i −0.0917140 0.309432i
\(291\) 0 0
\(292\) 386.749 829.387i 1.32448 2.84037i
\(293\) −14.9763 + 10.4865i −0.0511136 + 0.0357901i −0.598854 0.800858i \(-0.704377\pi\)
0.547740 + 0.836648i \(0.315488\pi\)
\(294\) 0 0
\(295\) −104.544 + 2.75498i −0.354387 + 0.00933890i
\(296\) 523.757 1.76945
\(297\) 0 0
\(298\) −106.321 106.321i −0.356781 0.356781i
\(299\) −280.559 334.358i −0.938326 1.11825i
\(300\) 0 0
\(301\) 12.6838 71.9332i 0.0421388 0.238981i
\(302\) 242.694 520.459i 0.803623 1.72338i
\(303\) 0 0
\(304\) −1234.38 + 217.654i −4.06045 + 0.715968i
\(305\) −382.120 57.0433i −1.25285 0.187027i
\(306\) 0 0
\(307\) 126.810 + 473.261i 0.413062 + 1.54157i 0.788687 + 0.614796i \(0.210761\pi\)
−0.375625 + 0.926772i \(0.622572\pi\)
\(308\) −114.903 246.411i −0.373062 0.800035i
\(309\) 0 0
\(310\) 140.880 212.923i 0.454450 0.686847i
\(311\) 157.780 + 132.394i 0.507333 + 0.425703i 0.860189 0.509975i \(-0.170345\pi\)
−0.352857 + 0.935677i \(0.614790\pi\)
\(312\) 0 0
\(313\) −216.999 465.356i −0.693288 1.48676i −0.865084 0.501628i \(-0.832735\pi\)
0.171796 0.985133i \(-0.445043\pi\)
\(314\) −400.168 231.037i −1.27442 0.735786i
\(315\) 0 0
\(316\) −52.6584 91.2070i −0.166640 0.288630i
\(317\) −376.101 263.349i −1.18644 0.830753i −0.197679 0.980267i \(-0.563340\pi\)
−0.988760 + 0.149514i \(0.952229\pi\)
\(318\) 0 0
\(319\) −14.8504 40.8013i −0.0465531 0.127904i
\(320\) −483.814 + 428.186i −1.51192 + 1.33808i
\(321\) 0 0
\(322\) −29.1064 + 332.687i −0.0903924 + 1.03319i
\(323\) −469.499 469.499i −1.45356 1.45356i
\(324\) 0 0
\(325\) −198.934 + 318.597i −0.612104 + 0.980297i
\(326\) 82.7215 69.4116i 0.253747 0.212919i
\(327\) 0 0
\(328\) −269.011 + 188.364i −0.820157 + 0.574280i
\(329\) −25.1083 68.9844i −0.0763170 0.209679i
\(330\) 0 0
\(331\) −47.9543 271.962i −0.144877 0.821638i −0.967466 0.253001i \(-0.918582\pi\)
0.822589 0.568636i \(-0.192529\pi\)
\(332\) 682.202 + 182.795i 2.05482 + 0.550588i
\(333\) 0 0
\(334\) −433.997 250.568i −1.29939 0.750205i
\(335\) −119.906 + 499.812i −0.357929 + 1.49198i
\(336\) 0 0
\(337\) 320.162 28.0105i 0.950036 0.0831173i 0.398408 0.917208i \(-0.369563\pi\)
0.551627 + 0.834091i \(0.314007\pi\)
\(338\) 18.6279 + 212.918i 0.0551122 + 0.629936i
\(339\) 0 0
\(340\) −1239.07 297.256i −3.64431 0.874281i
\(341\) 59.2212 102.574i 0.173669 0.300804i
\(342\) 0 0
\(343\) −70.0349 + 261.374i −0.204183 + 0.762022i
\(344\) −550.461 + 97.0612i −1.60018 + 0.282155i
\(345\) 0 0
\(346\) 77.0984 28.0615i 0.222828 0.0811026i
\(347\) 252.105 + 360.044i 0.726528 + 1.03759i 0.997190 + 0.0749155i \(0.0238687\pi\)
−0.270661 + 0.962675i \(0.587242\pi\)
\(348\) 0 0
\(349\) −129.078 153.829i −0.369851 0.440771i 0.548733 0.835998i \(-0.315110\pi\)
−0.918584 + 0.395227i \(0.870666\pi\)
\(350\) 279.998 64.7408i 0.799995 0.184974i
\(351\) 0 0
\(352\) −521.488 + 521.488i −1.48150 + 1.48150i
\(353\) 284.218 + 24.8659i 0.805150 + 0.0704415i 0.482297 0.876008i \(-0.339802\pi\)
0.322853 + 0.946449i \(0.395358\pi\)
\(354\) 0 0
\(355\) −84.0300 94.9469i −0.236704 0.267456i
\(356\) −678.416 + 246.923i −1.90566 + 0.693604i
\(357\) 0 0
\(358\) −466.135 + 665.710i −1.30205 + 1.85952i
\(359\) 163.907 94.6319i 0.456566 0.263599i −0.254033 0.967196i \(-0.581757\pi\)
0.710599 + 0.703597i \(0.248424\pi\)
\(360\) 0 0
\(361\) 172.371 298.555i 0.477481 0.827021i
\(362\) 87.1768 40.6512i 0.240820 0.112296i
\(363\) 0 0
\(364\) 300.429 358.037i 0.825354 0.983619i
\(365\) 374.246 + 247.618i 1.02533 + 0.678407i
\(366\) 0 0
\(367\) −398.763 + 185.946i −1.08655 + 0.506666i −0.881547 0.472096i \(-0.843498\pi\)
−0.205001 + 0.978762i \(0.565720\pi\)
\(368\) 1323.99 354.762i 3.59780 0.964027i
\(369\) 0 0
\(370\) −62.3988 + 417.995i −0.168645 + 1.12972i
\(371\) 26.7762 + 151.856i 0.0721732 + 0.409314i
\(372\) 0 0
\(373\) 247.160 + 115.252i 0.662626 + 0.308988i 0.724680 0.689085i \(-0.241987\pi\)
−0.0620543 + 0.998073i \(0.519765\pi\)
\(374\) −810.527 142.918i −2.16719 0.382133i
\(375\) 0 0
\(376\) −430.345 + 361.102i −1.14453 + 0.960378i
\(377\) 52.7793 52.7793i 0.139998 0.139998i
\(378\) 0 0
\(379\) 373.089i 0.984403i −0.870481 0.492202i \(-0.836192\pi\)
0.870481 0.492202i \(-0.163808\pi\)
\(380\) −35.6787 1353.91i −0.0938913 3.56293i
\(381\) 0 0
\(382\) −682.165 974.233i −1.78577 2.55035i
\(383\) −329.969 153.867i −0.861538 0.401742i −0.0589394 0.998262i \(-0.518772\pi\)
−0.802598 + 0.596520i \(0.796550\pi\)
\(384\) 0 0
\(385\) 127.826 37.8870i 0.332017 0.0984078i
\(386\) 178.313 + 308.847i 0.461950 + 0.800121i
\(387\) 0 0
\(388\) 759.860 203.604i 1.95840 0.524753i
\(389\) −186.117 + 511.351i −0.478449 + 1.31453i 0.432361 + 0.901701i \(0.357681\pi\)
−0.910810 + 0.412827i \(0.864542\pi\)
\(390\) 0 0
\(391\) 556.221 + 466.725i 1.42256 + 1.19367i
\(392\) 923.159 80.7660i 2.35500 0.206036i
\(393\) 0 0
\(394\) −130.089 + 357.416i −0.330175 + 0.907148i
\(395\) 48.0472 18.9355i 0.121638 0.0479380i
\(396\) 0 0
\(397\) 114.505 + 30.6816i 0.288427 + 0.0772837i 0.400132 0.916458i \(-0.368964\pi\)
−0.111705 + 0.993741i \(0.535631\pi\)
\(398\) 26.1284 37.3153i 0.0656493 0.0937570i
\(399\) 0 0
\(400\) −642.754 989.035i −1.60689 2.47259i
\(401\) 28.2142 160.011i 0.0703596 0.399029i −0.929206 0.369562i \(-0.879508\pi\)
0.999566 0.0294672i \(-0.00938106\pi\)
\(402\) 0 0
\(403\) 202.835 + 17.7457i 0.503312 + 0.0440341i
\(404\) 1866.66i 4.62045i
\(405\) 0 0
\(406\) −57.1101 −0.140665
\(407\) −17.0881 + 195.318i −0.0419855 + 0.479896i
\(408\) 0 0
\(409\) −241.096 42.5117i −0.589476 0.103941i −0.129049 0.991638i \(-0.541193\pi\)
−0.460427 + 0.887698i \(0.652304\pi\)
\(410\) −118.278 237.131i −0.288484 0.578369i
\(411\) 0 0
\(412\) 1527.80 + 1069.78i 3.70825 + 2.59655i
\(413\) −16.5163 + 61.6395i −0.0399909 + 0.149248i
\(414\) 0 0
\(415\) −138.046 + 317.628i −0.332641 + 0.765369i
\(416\) −1191.34 433.612i −2.86380 1.04234i
\(417\) 0 0
\(418\) −76.2445 871.478i −0.182403 2.08488i
\(419\) −39.9401 + 47.5987i −0.0953223 + 0.113601i −0.811597 0.584218i \(-0.801401\pi\)
0.716275 + 0.697819i \(0.245846\pi\)
\(420\) 0 0
\(421\) 20.0465 + 7.29634i 0.0476165 + 0.0173310i 0.365719 0.930725i \(-0.380823\pi\)
−0.318102 + 0.948056i \(0.603045\pi\)
\(422\) 45.3298 + 169.173i 0.107417 + 0.400884i
\(423\) 0 0
\(424\) 1021.90 589.993i 2.41014 1.39149i
\(425\) 233.875 579.417i 0.550295 1.36333i
\(426\) 0 0
\(427\) −99.6322 + 213.662i −0.233331 + 0.500379i
\(428\) −64.4337 + 45.1169i −0.150546 + 0.105413i
\(429\) 0 0
\(430\) −11.8815 450.871i −0.0276313 1.04854i
\(431\) 486.219 1.12812 0.564059 0.825734i \(-0.309239\pi\)
0.564059 + 0.825734i \(0.309239\pi\)
\(432\) 0 0
\(433\) −120.602 120.602i −0.278526 0.278526i 0.553995 0.832520i \(-0.313103\pi\)
−0.832520 + 0.553995i \(0.813103\pi\)
\(434\) −100.138 119.340i −0.230733 0.274977i
\(435\) 0 0
\(436\) −53.7419 + 304.785i −0.123261 + 0.699049i
\(437\) −326.165 + 699.464i −0.746374 + 1.60060i
\(438\) 0 0
\(439\) −427.090 + 75.3075i −0.972870 + 0.171543i −0.637421 0.770515i \(-0.719999\pi\)
−0.335448 + 0.942059i \(0.608888\pi\)
\(440\) −606.998 820.026i −1.37954 1.86370i
\(441\) 0 0
\(442\) −366.187 1366.63i −0.828478 3.09192i
\(443\) 126.504 + 271.289i 0.285563 + 0.612392i 0.995798 0.0915725i \(-0.0291893\pi\)
−0.710236 + 0.703964i \(0.751412\pi\)
\(444\) 0 0
\(445\) −70.6385 346.904i −0.158738 0.779559i
\(446\) −301.597 253.070i −0.676227 0.567421i
\(447\) 0 0
\(448\) 166.610 + 357.295i 0.371896 + 0.797534i
\(449\) 624.818 + 360.739i 1.39158 + 0.803428i 0.993490 0.113920i \(-0.0363407\pi\)
0.398087 + 0.917347i \(0.369674\pi\)
\(450\) 0 0
\(451\) −61.4672 106.464i −0.136291 0.236063i
\(452\) −170.747 119.558i −0.377758 0.264509i
\(453\) 0 0
\(454\) 140.847 + 386.975i 0.310237 + 0.852368i
\(455\) 151.894 + 171.628i 0.333834 + 0.377204i
\(456\) 0 0
\(457\) −63.5274 + 726.121i −0.139010 + 1.58889i 0.531547 + 0.847029i \(0.321611\pi\)
−0.670557 + 0.741858i \(0.733945\pi\)
\(458\) −773.754 773.754i −1.68942 1.68942i
\(459\) 0 0
\(460\) 167.910 + 1471.56i 0.365023 + 3.19904i
\(461\) −684.108 + 574.034i −1.48396 + 1.24519i −0.582142 + 0.813087i \(0.697785\pi\)
−0.901822 + 0.432107i \(0.857770\pi\)
\(462\) 0 0
\(463\) 485.944 340.262i 1.04956 0.734907i 0.0843598 0.996435i \(-0.473115\pi\)
0.965196 + 0.261529i \(0.0842266\pi\)
\(464\) 80.1704 + 220.266i 0.172781 + 0.474712i
\(465\) 0 0
\(466\) −196.361 1113.62i −0.421375 2.38974i
\(467\) 120.396 + 32.2601i 0.257808 + 0.0690794i 0.385408 0.922746i \(-0.374061\pi\)
−0.127600 + 0.991826i \(0.540727\pi\)
\(468\) 0 0
\(469\) 271.615 + 156.817i 0.579136 + 0.334364i
\(470\) −236.915 386.466i −0.504075 0.822269i
\(471\) 0 0
\(472\) 486.471 42.5607i 1.03066 0.0901710i
\(473\) −18.2364 208.443i −0.0385547 0.440682i
\(474\) 0 0
\(475\) 659.221 + 80.7197i 1.38783 + 0.169936i
\(476\) −388.759 + 673.351i −0.816721 + 1.41460i
\(477\) 0 0
\(478\) −58.5656 + 218.570i −0.122522 + 0.457259i
\(479\) 291.942 51.4772i 0.609482 0.107468i 0.139616 0.990206i \(-0.455413\pi\)
0.469866 + 0.882738i \(0.344302\pi\)
\(480\) 0 0
\(481\) −316.719 + 115.276i −0.658459 + 0.239659i
\(482\) −993.701 1419.15i −2.06162 2.94430i
\(483\) 0 0
\(484\) 292.423 + 348.496i 0.604180 + 0.720034i
\(485\) 43.7324 + 383.268i 0.0901699 + 0.790243i
\(486\) 0 0
\(487\) −187.665 + 187.665i −0.385349 + 0.385349i −0.873025 0.487676i \(-0.837845\pi\)
0.487676 + 0.873025i \(0.337845\pi\)
\(488\) 1797.19 + 157.233i 3.68276 + 0.322200i
\(489\) 0 0
\(490\) −45.5253 + 746.368i −0.0929088 + 1.52320i
\(491\) 223.725 81.4291i 0.455651 0.165843i −0.103990 0.994578i \(-0.533161\pi\)
0.559641 + 0.828735i \(0.310939\pi\)
\(492\) 0 0
\(493\) −71.2207 + 101.714i −0.144464 + 0.206316i
\(494\) 1302.37 751.922i 2.63637 1.52211i
\(495\) 0 0
\(496\) −319.707 + 553.748i −0.644570 + 1.11643i
\(497\) −70.1180 + 32.6965i −0.141082 + 0.0657878i
\(498\) 0 0
\(499\) −206.163 + 245.695i −0.413152 + 0.492375i −0.931983 0.362501i \(-0.881923\pi\)
0.518831 + 0.854877i \(0.326367\pi\)
\(500\) 1159.53 529.128i 2.31907 1.05826i
\(501\) 0 0
\(502\) 297.001 138.494i 0.591635 0.275884i
\(503\) −780.441 + 209.119i −1.55157 + 0.415743i −0.929984 0.367601i \(-0.880179\pi\)
−0.621589 + 0.783344i \(0.713513\pi\)
\(504\) 0 0
\(505\) −905.318 135.147i −1.79271 0.267617i
\(506\) 166.122 + 942.124i 0.328304 + 1.86190i
\(507\) 0 0
\(508\) −464.547 216.622i −0.914463 0.426421i
\(509\) 14.3637 + 2.53271i 0.0282195 + 0.00497586i 0.187740 0.982219i \(-0.439884\pi\)
−0.159521 + 0.987195i \(0.550995\pi\)
\(510\) 0 0
\(511\) 209.760 176.009i 0.410488 0.344441i
\(512\) −300.411 + 300.411i −0.586740 + 0.586740i
\(513\) 0 0
\(514\) 695.722i 1.35355i
\(515\) −629.447 + 663.520i −1.22223 + 1.28839i
\(516\) 0 0
\(517\) −120.621 172.264i −0.233309 0.333199i
\(518\) 233.721 + 108.986i 0.451199 + 0.210398i
\(519\) 0 0
\(520\) 836.610 1541.45i 1.60886 2.96434i
\(521\) −193.021 334.321i −0.370481 0.641692i 0.619159 0.785266i \(-0.287474\pi\)
−0.989640 + 0.143574i \(0.954140\pi\)
\(522\) 0 0
\(523\) −147.655 + 39.5642i −0.282324 + 0.0756485i −0.397202 0.917731i \(-0.630019\pi\)
0.114878 + 0.993380i \(0.463352\pi\)
\(524\) 711.905 1955.94i 1.35860 3.73272i
\(525\) 0 0
\(526\) −1017.85 854.073i −1.93507 1.62371i
\(527\) −337.426 + 29.5210i −0.640277 + 0.0560170i
\(528\) 0 0
\(529\) 107.731 295.987i 0.203650 0.559523i
\(530\) 349.110 + 885.836i 0.658699 + 1.67139i
\(531\) 0 0
\(532\) −798.271 213.896i −1.50051 0.402060i
\(533\) 121.215 173.113i 0.227420 0.324789i
\(534\) 0 0
\(535\) −17.2164 34.5163i −0.0321801 0.0645165i
\(536\) 416.764 2363.59i 0.777545 4.40968i
\(537\) 0 0
\(538\) −1348.53 117.981i −2.50657 0.219296i
\(539\) 346.896i 0.643592i
\(540\) 0 0
\(541\) −596.238 −1.10210 −0.551051 0.834471i \(-0.685773\pi\)
−0.551051 + 0.834471i \(0.685773\pi\)
\(542\) 115.079 1315.36i 0.212322 2.42686i
\(543\) 0 0
\(544\) 2077.01 + 366.232i 3.81802 + 0.673221i
\(545\) −143.928 48.1310i −0.264088 0.0883137i
\(546\) 0 0
\(547\) −34.6251 24.2447i −0.0632999 0.0443231i 0.541498 0.840702i \(-0.317857\pi\)
−0.604798 + 0.796379i \(0.706746\pi\)
\(548\) 98.3309 366.976i 0.179436 0.669664i
\(549\) 0 0
\(550\) 726.754 386.732i 1.32137 0.703150i
\(551\) −124.021 45.1401i −0.225084 0.0819240i
\(552\) 0 0
\(553\) −2.74650 31.3926i −0.00496655 0.0567679i
\(554\) 326.755 389.411i 0.589810 0.702908i
\(555\) 0 0
\(556\) 1779.65 + 647.739i 3.20080 + 1.16500i
\(557\) −99.0213 369.552i −0.177776 0.663469i −0.996062 0.0886581i \(-0.971742\pi\)
0.818286 0.574811i \(-0.194925\pi\)
\(558\) 0 0
\(559\) 311.504 179.847i 0.557252 0.321730i
\(560\) −690.073 + 204.534i −1.23227 + 0.365239i
\(561\) 0 0
\(562\) 19.2238 41.2256i 0.0342060 0.0733551i
\(563\) 206.487 144.583i 0.366761 0.256809i −0.375638 0.926766i \(-0.622577\pi\)
0.742400 + 0.669957i \(0.233688\pi\)
\(564\) 0 0
\(565\) 70.3470 74.1549i 0.124508 0.131248i
\(566\) 939.890 1.66058
\(567\) 0 0
\(568\) 418.635 + 418.635i 0.737034 + 0.737034i
\(569\) −457.282 544.967i −0.803658 0.957763i 0.196081 0.980588i \(-0.437178\pi\)
−0.999739 + 0.0228251i \(0.992734\pi\)
\(570\) 0 0
\(571\) 9.87196 55.9867i 0.0172889 0.0980502i −0.974942 0.222458i \(-0.928592\pi\)
0.992231 + 0.124408i \(0.0397031\pi\)
\(572\) 565.832 1213.43i 0.989216 2.12138i
\(573\) 0 0
\(574\) −159.239 + 28.0782i −0.277420 + 0.0489167i
\(575\) −725.851 25.1056i −1.26235 0.0436620i
\(576\) 0 0
\(577\) 115.339 + 430.452i 0.199895 + 0.746017i 0.990945 + 0.134266i \(0.0428677\pi\)
−0.791051 + 0.611751i \(0.790466\pi\)
\(578\) 534.510 + 1146.26i 0.924757 + 1.98315i
\(579\) 0 0
\(580\) −248.190 + 50.5379i −0.427914 + 0.0871343i
\(581\) 161.886 + 135.838i 0.278633 + 0.233801i
\(582\) 0 0
\(583\) 186.678 + 400.331i 0.320202 + 0.686675i
\(584\) −1814.66 1047.70i −3.10730 1.79400i
\(585\) 0 0
\(586\) 34.4429 + 59.6568i 0.0587763 + 0.101803i
\(587\) 734.395 + 514.229i 1.25110 + 0.876028i 0.995865 0.0908509i \(-0.0289587\pi\)
0.255234 + 0.966879i \(0.417848\pi\)
\(588\) 0 0
\(589\) −123.135 338.311i −0.209058 0.574382i
\(590\) −23.9902 + 393.309i −0.0406613 + 0.666625i
\(591\) 0 0
\(592\) 92.2503 1054.43i 0.155828 1.78112i
\(593\) 536.873 + 536.873i 0.905351 + 0.905351i 0.995893 0.0905416i \(-0.0288598\pi\)
−0.0905416 + 0.995893i \(0.528860\pi\)
\(594\) 0 0
\(595\) −298.424 237.296i −0.501553 0.398817i
\(596\) −311.706 + 261.553i −0.522997 + 0.438847i
\(597\) 0 0
\(598\) −1347.14 + 943.275i −2.25274 + 1.57738i
\(599\) 72.2154 + 198.410i 0.120560 + 0.331236i 0.985263 0.171048i \(-0.0547154\pi\)
−0.864703 + 0.502284i \(0.832493\pi\)
\(600\) 0 0
\(601\) −167.417 949.470i −0.278564 1.57982i −0.727407 0.686206i \(-0.759275\pi\)
0.448843 0.893611i \(-0.351836\pi\)
\(602\) −265.835 71.2302i −0.441586 0.118323i
\(603\) 0 0
\(604\) −1345.86 777.034i −2.22825 1.28648i
\(605\) −190.190 + 116.592i −0.314363 + 0.192714i
\(606\) 0 0
\(607\) −36.3991 + 3.18451i −0.0599656 + 0.00524631i −0.117099 0.993120i \(-0.537359\pi\)
0.0571335 + 0.998367i \(0.481804\pi\)
\(608\) 195.379 + 2233.19i 0.321347 + 3.67302i
\(609\) 0 0
\(610\) −339.594 + 1415.55i −0.556712 + 2.32057i
\(611\) 180.755 313.077i 0.295835 0.512401i
\(612\) 0 0
\(613\) 298.135 1112.65i 0.486353 1.81510i −0.0875346 0.996161i \(-0.527899\pi\)
0.573888 0.818934i \(-0.305434\pi\)
\(614\) 1818.02 320.566i 2.96094 0.522094i
\(615\) 0 0
\(616\) −584.997 + 212.921i −0.949670 + 0.345652i
\(617\) −198.434 283.392i −0.321610 0.459307i 0.625496 0.780227i \(-0.284897\pi\)
−0.947106 + 0.320920i \(0.896008\pi\)
\(618\) 0 0
\(619\) 426.792 + 508.631i 0.689487 + 0.821698i 0.991294 0.131671i \(-0.0420342\pi\)
−0.301807 + 0.953369i \(0.597590\pi\)
\(620\) −540.790 430.017i −0.872241 0.693575i
\(621\) 0 0
\(622\) 548.749 548.749i 0.882234 0.882234i
\(623\) −215.199 18.8275i −0.345424 0.0302207i
\(624\) 0 0
\(625\) 172.673 + 600.674i 0.276277 + 0.961078i
\(626\) −1817.96 + 661.685i −2.90410 + 1.05700i
\(627\) 0 0
\(628\) −717.235 + 1024.32i −1.14209 + 1.63108i
\(629\) 485.573 280.346i 0.771977 0.445701i
\(630\) 0 0
\(631\) 285.716 494.875i 0.452799 0.784270i −0.545760 0.837942i \(-0.683759\pi\)
0.998559 + 0.0536712i \(0.0170923\pi\)
\(632\) −218.553 + 101.913i −0.345812 + 0.161255i
\(633\) 0 0
\(634\) −1111.98 + 1325.21i −1.75391 + 2.09023i
\(635\) 138.693 209.619i 0.218415 0.330108i
\(636\) 0 0
\(637\) −540.463 + 252.022i −0.848450 + 0.395639i
\(638\) −158.023 + 42.3422i −0.247686 + 0.0663672i
\(639\) 0 0
\(640\) 444.215 + 600.114i 0.694086 + 0.937678i
\(641\) −84.2379 477.737i −0.131416 0.745299i −0.977288 0.211913i \(-0.932031\pi\)
0.845872 0.533386i \(-0.179081\pi\)
\(642\) 0 0
\(643\) 456.186 + 212.723i 0.709465 + 0.330829i 0.743634 0.668587i \(-0.233101\pi\)
−0.0341686 + 0.999416i \(0.510878\pi\)
\(644\) 890.025 + 156.935i 1.38203 + 0.243689i
\(645\) 0 0
\(646\) −1916.43 + 1608.08i −2.96661 + 2.48928i
\(647\) −802.350 + 802.350i −1.24011 + 1.24011i −0.280153 + 0.959955i \(0.590385\pi\)
−0.959955 + 0.280153i \(0.909615\pi\)
\(648\) 0 0
\(649\) 182.802i 0.281667i
\(650\) 1130.52 + 851.317i 1.73926 + 1.30972i
\(651\) 0 0
\(652\) −167.616 239.380i −0.257079 0.367147i
\(653\) −722.752 337.025i −1.10682 0.516118i −0.218727 0.975786i \(-0.570191\pi\)
−0.888091 + 0.459668i \(0.847968\pi\)
\(654\) 0 0
\(655\) 897.076 + 486.880i 1.36958 + 0.743328i
\(656\) 331.832 + 574.749i 0.505841 + 0.876142i
\(657\) 0 0
\(658\) −267.177 + 71.5898i −0.406044 + 0.108799i
\(659\) −254.736 + 699.880i −0.386549 + 1.06203i 0.581996 + 0.813192i \(0.302272\pi\)
−0.968544 + 0.248842i \(0.919950\pi\)
\(660\) 0 0
\(661\) 415.794 + 348.892i 0.629037 + 0.527825i 0.900630 0.434587i \(-0.143106\pi\)
−0.271592 + 0.962412i \(0.587550\pi\)
\(662\) −1036.55 + 90.6865i −1.56579 + 0.136989i
\(663\) 0 0
\(664\) 553.101 1519.63i 0.832983 2.28860i
\(665\) 161.533 371.670i 0.242907 0.558902i
\(666\) 0 0
\(667\) 139.412 + 37.3552i 0.209013 + 0.0560048i
\(668\) −777.870 + 1110.91i −1.16448 + 1.66304i
\(669\) 0 0
\(670\) 1836.66 + 614.197i 2.74128 + 0.916713i
\(671\) −117.270 + 665.070i −0.174769 + 0.991162i
\(672\) 0 0
\(673\) −1267.15 110.861i −1.88284 0.164727i −0.912918 0.408144i \(-0.866176\pi\)
−0.969922 + 0.243417i \(0.921732\pi\)
\(674\) 1210.92i 1.79662i
\(675\) 0 0
\(676\) 578.399 0.855620
\(677\) 52.1727 596.336i 0.0770645 0.880851i −0.855016 0.518601i \(-0.826453\pi\)
0.932081 0.362250i \(-0.117991\pi\)
\(678\) 0 0
\(679\) 231.808 + 40.8739i 0.341396 + 0.0601973i
\(680\) −925.316 + 2767.01i −1.36076 + 4.06913i
\(681\) 0 0
\(682\) −365.563 255.970i −0.536016 0.375322i
\(683\) −200.381 + 747.832i −0.293384 + 1.09492i 0.649109 + 0.760696i \(0.275142\pi\)
−0.942493 + 0.334227i \(0.891525\pi\)
\(684\) 0 0
\(685\) 170.861 + 74.2589i 0.249433 + 0.108407i
\(686\) 958.062 + 348.706i 1.39659 + 0.508318i
\(687\) 0 0
\(688\) 98.4493 + 1125.28i 0.143095 + 1.63558i
\(689\) −488.092 + 581.686i −0.708407 + 0.844247i
\(690\) 0 0
\(691\) −79.8263 29.0544i −0.115523 0.0420469i 0.283612 0.958939i \(-0.408467\pi\)
−0.399135 + 0.916892i \(0.630689\pi\)
\(692\) −57.4665 214.468i −0.0830440 0.309925i
\(693\) 0 0
\(694\) 1434.21 828.039i 2.06658 1.19314i
\(695\) −442.995 + 816.219i −0.637403 + 1.17442i
\(696\) 0 0
\(697\) −148.576 + 318.622i −0.213165 + 0.457134i
\(698\) −619.782 + 433.976i −0.887940 + 0.621742i
\(699\) 0 0
\(700\) −108.494 770.117i −0.154991 1.10017i
\(701\) 430.049 0.613479 0.306740 0.951793i \(-0.400762\pi\)
0.306740 + 0.951793i \(0.400762\pi\)
\(702\) 0 0
\(703\) 421.411 + 421.411i 0.599446 + 0.599446i
\(704\) 725.912 + 865.108i 1.03112 + 1.22885i
\(705\) 0 0
\(706\) 186.667 1058.64i 0.264401 1.49949i
\(707\) −236.048 + 506.207i −0.333873 + 0.715993i
\(708\) 0 0
\(709\) −316.132 + 55.7426i −0.445885 + 0.0786215i −0.392082 0.919930i \(-0.628245\pi\)
−0.0538023 + 0.998552i \(0.517134\pi\)
\(710\) −383.976 + 284.226i −0.540811 + 0.400318i
\(711\) 0 0
\(712\) 427.849 + 1596.75i 0.600911 + 2.24263i
\(713\) 166.388 + 356.821i 0.233364 + 0.500450i
\(714\) 0 0
\(715\) 547.538 + 362.277i 0.765788 + 0.506681i
\(716\) 1684.74 + 1413.67i 2.35299 + 1.97439i
\(717\) 0 0
\(718\) −301.374 646.298i −0.419741 0.900137i
\(719\) −483.899 279.379i −0.673016 0.388566i 0.124202 0.992257i \(-0.460363\pi\)
−0.797219 + 0.603691i \(0.793696\pi\)
\(720\) 0 0
\(721\) 279.035 + 483.302i 0.387011 + 0.670322i
\(722\) −1064.01 745.031i −1.47370 1.03190i
\(723\) 0 0
\(724\) −89.0300 244.608i −0.122970 0.337856i
\(725\) −6.54146 124.029i −0.00902271 0.171075i
\(726\) 0 0
\(727\) 68.5713 783.774i 0.0943210 1.07809i −0.790594 0.612341i \(-0.790228\pi\)
0.884915 0.465753i \(-0.154216\pi\)
\(728\) −756.734 756.734i −1.03947 1.03947i
\(729\) 0 0
\(730\) 1052.33 1323.41i 1.44155 1.81289i
\(731\) −458.378 + 384.625i −0.627056 + 0.526162i
\(732\) 0 0
\(733\) 1027.75 719.641i 1.40212 0.981774i 0.404378 0.914592i \(-0.367488\pi\)
0.997741 0.0671824i \(-0.0214010\pi\)
\(734\) 566.997 + 1557.81i 0.772476 + 2.12236i
\(735\) 0 0
\(736\) −425.693 2414.23i −0.578387 3.28020i
\(737\) 867.823 + 232.532i 1.17751 + 0.315512i
\(738\) 0 0
\(739\) 236.827 + 136.732i 0.320469 + 0.185023i 0.651602 0.758561i \(-0.274097\pi\)
−0.331132 + 0.943584i \(0.607431\pi\)
\(740\) 1112.16 + 266.809i 1.50291 + 0.360553i
\(741\) 0 0
\(742\) 578.780 50.6367i 0.780027 0.0682435i
\(743\) −96.6026 1104.17i −0.130017 1.48610i −0.728544 0.684999i \(-0.759803\pi\)
0.598527 0.801103i \(-0.295753\pi\)
\(744\) 0 0
\(745\) −104.284 170.112i −0.139978 0.228338i
\(746\) 513.761 889.861i 0.688688 1.19284i
\(747\) 0 0
\(748\) −576.463 + 2151.39i −0.770673 + 2.87619i
\(749\) −23.1785 + 4.08700i −0.0309460 + 0.00545661i
\(750\) 0 0
\(751\) −165.200 + 60.1277i −0.219973 + 0.0800636i −0.449656 0.893202i \(-0.648453\pi\)
0.229683 + 0.973266i \(0.426231\pi\)
\(752\) 651.172 + 929.969i 0.865920 + 1.23666i
\(753\) 0 0
\(754\) −180.774 215.438i −0.239753 0.285727i
\(755\) 474.297 596.476i 0.628207 0.790035i
\(756\) 0 0
\(757\) −712.642 + 712.642i −0.941402 + 0.941402i −0.998376 0.0569733i \(-0.981855\pi\)
0.0569733 + 0.998376i \(0.481855\pi\)
\(758\) −1400.38 122.517i −1.84747 0.161633i
\(759\) 0 0
\(760\) −3095.42 188.807i −4.07291 0.248430i
\(761\) 435.097 158.362i 0.571744 0.208098i −0.0399372 0.999202i \(-0.512716\pi\)
0.611681 + 0.791104i \(0.290494\pi\)
\(762\) 0 0
\(763\) −53.1154 + 75.8566i −0.0696139 + 0.0994189i
\(764\) −2787.33 + 1609.26i −3.64833 + 2.10637i
\(765\) 0 0
\(766\) −685.894 + 1188.00i −0.895423 + 1.55092i
\(767\) −284.804 + 132.806i −0.371322 + 0.173150i
\(768\) 0 0
\(769\) 284.787 339.396i 0.370334 0.441347i −0.548405 0.836213i \(-0.684765\pi\)
0.918739 + 0.394866i \(0.129209\pi\)
\(770\) −100.232 492.235i −0.130171 0.639267i
\(771\) 0 0
\(772\) 874.676 407.868i 1.13300 0.528326i
\(773\) 1113.18 298.276i 1.44008 0.385868i 0.547517 0.836795i \(-0.315573\pi\)
0.892561 + 0.450927i \(0.148906\pi\)
\(774\) 0 0
\(775\) 247.708 231.146i 0.319624 0.298252i
\(776\) −312.784 1773.88i −0.403072 2.28593i
\(777\) 0 0
\(778\) 1858.23 + 866.506i 2.38847 + 1.11376i
\(779\) −368.000 64.8883i −0.472401 0.0832970i
\(780\) 0 0
\(781\) −169.774 + 142.458i −0.217381 + 0.182404i
\(782\) 1934.50 1934.50i 2.47378 2.47378i
\(783\) 0 0
\(784\) 1872.72i 2.38868i
\(785\) −444.859 422.015i −0.566699 0.537598i
\(786\) 0 0
\(787\) −532.237 760.113i −0.676286 0.965837i −0.999808 0.0196158i \(-0.993756\pi\)
0.323522 0.946221i \(-0.395133\pi\)
\(788\) 932.875 + 435.007i 1.18385 + 0.552039i
\(789\) 0 0
\(790\) −55.2960 186.562i −0.0699950 0.236155i
\(791\) −31.1849 54.0138i −0.0394247 0.0682855i
\(792\) 0 0
\(793\) −1121.37 + 300.471i −1.41409 + 0.378904i
\(794\) 152.765 419.718i 0.192399 0.528612i
\(795\) 0 0
\(796\) −94.4355 79.2408i −0.118638 0.0995487i
\(797\) 310.684 27.1813i 0.389817 0.0341045i 0.109437 0.993994i \(-0.465095\pi\)
0.280380 + 0.959889i \(0.409540\pi\)
\(798\) 0 0
\(799\) −205.688 + 565.123i −0.257432 + 0.707287i
\(800\) −1862.33 + 991.015i −2.32792 + 1.23877i
\(801\) 0 0
\(802\) −591.331 158.447i −0.737321 0.197565i
\(803\) 449.908 642.535i 0.560284 0.800168i
\(804\) 0 0
\(805\) −140.551 + 420.294i −0.174597 + 0.522104i
\(806\) 133.217 755.508i 0.165281 0.937355i
\(807\) 0 0
\(808\) 4257.89 + 372.517i 5.26966 + 0.461035i
\(809\) 458.912i 0.567258i −0.958934 0.283629i \(-0.908462\pi\)
0.958934 0.283629i \(-0.0915385\pi\)
\(810\) 0 0
\(811\) −581.518 −0.717039 −0.358519 0.933522i \(-0.616718\pi\)
−0.358519 + 0.933522i \(0.616718\pi\)
\(812\) −13.4700 + 153.963i −0.0165887 + 0.189610i
\(813\) 0 0
\(814\) 727.510 + 128.280i 0.893746 + 0.157592i
\(815\) 128.233 63.9612i 0.157341 0.0784800i
\(816\) 0 0
\(817\) −520.991 364.802i −0.637688 0.446514i
\(818\) −238.740 + 890.988i −0.291858 + 1.08923i
\(819\) 0 0
\(820\) −667.178 + 262.937i −0.813632 + 0.320655i
\(821\) −334.376 121.703i −0.407279 0.148238i 0.130253 0.991481i \(-0.458421\pi\)
−0.537532 + 0.843243i \(0.680643\pi\)
\(822\) 0 0
\(823\) 59.6061 + 681.301i 0.0724254 + 0.827826i 0.942347 + 0.334636i \(0.108613\pi\)
−0.869922 + 0.493189i \(0.835831\pi\)
\(824\) 2745.07 3271.45i 3.33139 3.97020i
\(825\) 0 0
\(826\) 225.939 + 82.2351i 0.273534 + 0.0995582i
\(827\) −61.5862 229.843i −0.0744695 0.277924i 0.918643 0.395089i \(-0.129286\pi\)
−0.993112 + 0.117165i \(0.962619\pi\)
\(828\) 0 0
\(829\) 289.902 167.375i 0.349701 0.201900i −0.314853 0.949140i \(-0.601955\pi\)
0.664553 + 0.747241i \(0.268622\pi\)
\(830\) 1146.88 + 622.458i 1.38178 + 0.749949i
\(831\) 0 0
\(832\) −820.456 + 1759.47i −0.986125 + 2.11475i
\(833\) 812.626 569.007i 0.975542 0.683082i
\(834\) 0 0
\(835\) −482.467 457.691i −0.577804 0.548133i
\(836\) −2367.40 −2.83182
\(837\) 0 0
\(838\) 165.545 + 165.545i 0.197548 + 0.197548i
\(839\) 126.171 + 150.364i 0.150382 + 0.179218i 0.835976 0.548765i \(-0.184902\pi\)
−0.685594 + 0.727984i \(0.740458\pi\)
\(840\) 0 0
\(841\) 141.752 803.917i 0.168552 0.955906i
\(842\) 33.9697 72.8482i 0.0403440 0.0865181i
\(843\) 0 0
\(844\) 466.764 82.3032i 0.553038 0.0975156i
\(845\) −41.8762 + 280.519i −0.0495577 + 0.331976i
\(846\) 0 0
\(847\) 35.2312 + 131.484i 0.0415952 + 0.155236i
\(848\) −1007.78 2161.20i −1.18842 2.54858i
\(849\) 0 0
\(850\) −2098.03 1068.12i −2.46827 1.25661i
\(851\) −499.250 418.921i −0.586663 0.492269i
\(852\) 0 0
\(853\) −143.161 307.011i −0.167833 0.359919i 0.804345 0.594163i \(-0.202516\pi\)
−0.972178 + 0.234244i \(0.924739\pi\)
\(854\) 769.258 + 444.131i 0.900770 + 0.520060i
\(855\) 0 0
\(856\) 90.0538 + 155.978i 0.105203 + 0.182217i
\(857\) 1306.14 + 914.569i 1.52408 + 1.06717i 0.972457 + 0.233084i \(0.0748816\pi\)
0.551627 + 0.834091i \(0.314007\pi\)
\(858\) 0 0
\(859\) −399.816 1098.49i −0.465444 1.27880i −0.921338 0.388762i \(-0.872903\pi\)
0.455894 0.890034i \(-0.349320\pi\)
\(860\) −1218.30 74.3113i −1.41663 0.0864085i
\(861\) 0 0
\(862\) 159.668 1825.01i 0.185230 2.11719i
\(863\) 373.723 + 373.723i 0.433051 + 0.433051i 0.889665 0.456614i \(-0.150938\pi\)
−0.456614 + 0.889665i \(0.650938\pi\)
\(864\) 0 0
\(865\) 108.176 12.3433i 0.125059 0.0142697i
\(866\) −492.280 + 413.072i −0.568452 + 0.476988i
\(867\) 0 0
\(868\) −345.347 + 241.815i −0.397866 + 0.278589i
\(869\) −30.8745 84.8270i −0.0355288 0.0976145i
\(870\) 0 0
\(871\) 268.193 + 1521.00i 0.307914 + 1.74627i
\(872\) 684.495 + 183.410i 0.784971 + 0.210332i
\(873\) 0 0
\(874\) 2518.32 + 1453.95i 2.88137 + 1.66356i
\(875\) 381.356 + 3.13783i 0.435835 + 0.00358609i
\(876\) 0 0
\(877\) −50.7319 + 4.43847i −0.0578471 + 0.00506097i −0.116043 0.993244i \(-0.537021\pi\)
0.0581955 + 0.998305i \(0.481465\pi\)
\(878\) 142.414 + 1627.80i 0.162203 + 1.85399i
\(879\) 0 0
\(880\) −1757.78 + 1077.57i −1.99748 + 1.22451i
\(881\) 174.009 301.392i 0.197513 0.342102i −0.750209 0.661201i \(-0.770047\pi\)
0.947721 + 0.319099i \(0.103380\pi\)
\(882\) 0 0
\(883\) −172.713 + 644.574i −0.195598 + 0.729982i 0.796513 + 0.604621i \(0.206676\pi\)
−0.992111 + 0.125361i \(0.959991\pi\)
\(884\) −3770.66 + 664.869i −4.26545 + 0.752114i
\(885\) 0 0
\(886\) 1059.82 385.744i 1.19619 0.435377i
\(887\) 295.192 + 421.577i 0.332798 + 0.475284i 0.950323 0.311267i \(-0.100753\pi\)
−0.617525 + 0.786551i \(0.711864\pi\)
\(888\) 0 0
\(889\) −98.5843 117.488i −0.110894 0.132158i
\(890\) −1325.29 + 151.221i −1.48909 + 0.169912i
\(891\) 0 0
\(892\) −753.385 + 753.385i −0.844602 + 0.844602i
\(893\) −636.791 55.7120i −0.713092 0.0623875i
\(894\) 0 0
\(895\) −807.593 + 714.738i −0.902339 + 0.798590i
\(896\) 428.114 155.821i 0.477806 0.173907i
\(897\) 0 0
\(898\) 1559.21 2226.78i 1.73631 2.47971i
\(899\) −58.3078 + 33.6640i −0.0648585 + 0.0374461i
\(900\) 0 0
\(901\) 631.598 1093.96i 0.700997 1.21416i
\(902\) −419.797 + 195.754i −0.465407 + 0.217023i
\(903\) 0 0
\(904\) −306.789 + 365.616i −0.339368 + 0.404443i
\(905\) 125.079 25.4692i 0.138209 0.0281428i
\(906\) 0 0
\(907\) 657.700 306.690i 0.725138 0.338137i −0.0247580 0.999693i \(-0.507882\pi\)
0.749895 + 0.661556i \(0.230104\pi\)
\(908\) 1076.47 288.438i 1.18554 0.317663i
\(909\) 0 0
\(910\) 694.082 513.772i 0.762727 0.564585i
\(911\) −118.300 670.913i −0.129857 0.736458i −0.978304 0.207176i \(-0.933573\pi\)
0.848446 0.529282i \(-0.177539\pi\)
\(912\) 0 0
\(913\) 548.650 + 255.840i 0.600931 + 0.280219i
\(914\) 2704.62 + 476.898i 2.95910 + 0.521770i
\(915\) 0 0
\(916\) −2268.46 + 1903.46i −2.47648 + 2.07802i
\(917\) 440.394 440.394i 0.480256 0.480256i
\(918\) 0 0
\(919\) 1623.73i 1.76685i −0.468574 0.883424i \(-0.655232\pi\)
0.468574 0.883424i \(-0.344768\pi\)
\(920\) 3390.15 89.3382i 3.68494 0.0971067i
\(921\) 0 0
\(922\) 1929.97 + 2756.29i 2.09325 + 2.98947i
\(923\) −345.290 161.012i −0.374096 0.174444i
\(924\) 0 0
\(925\) −209.921 + 520.070i −0.226941 + 0.562238i
\(926\) −1117.59 1935.72i −1.20690 2.09041i
\(927\) 0 0
\(928\) 404.941 108.504i 0.436358 0.116922i
\(929\) −14.1415 + 38.8534i −0.0152223 + 0.0418228i −0.947071 0.321024i \(-0.895973\pi\)
0.931849 + 0.362847i \(0.118195\pi\)
\(930\) 0 0
\(931\) 807.749 + 677.782i 0.867614 + 0.728015i
\(932\) −3048.51 + 266.710i −3.27094 + 0.286170i
\(933\) 0 0
\(934\) 160.624 441.311i 0.171974 0.472496i
\(935\) −1001.67 435.341i −1.07131 0.465606i
\(936\) 0 0
\(937\) 308.687 + 82.7125i 0.329442 + 0.0882737i 0.419749 0.907640i \(-0.362118\pi\)
−0.0903068 + 0.995914i \(0.528785\pi\)
\(938\) 677.803 968.004i 0.722605 1.03199i
\(939\) 0 0
\(940\) −1097.75 + 547.547i −1.16782 + 0.582497i
\(941\) 194.531 1103.24i 0.206728 1.17241i −0.687969 0.725740i \(-0.741497\pi\)
0.894697 0.446674i \(-0.147392\pi\)
\(942\) 0 0
\(943\) 407.085 + 35.6153i 0.431691 + 0.0377681i
\(944\) 986.857i 1.04540i
\(945\) 0 0
\(946\) −788.374 −0.833376
\(947\) 55.3916 633.129i 0.0584916 0.668563i −0.909189 0.416384i \(-0.863297\pi\)
0.967681 0.252179i \(-0.0811471\pi\)
\(948\) 0 0
\(949\) 1327.93 + 234.149i 1.39929 + 0.246733i
\(950\) 519.459 2447.87i 0.546799 2.57670i
\(951\) 0 0
\(952\) 1458.34 + 1021.14i 1.53187 + 1.07263i
\(953\) 391.386 1460.67i 0.410688 1.53271i −0.382631 0.923901i \(-0.624982\pi\)
0.793319 0.608807i \(-0.208352\pi\)
\(954\) 0 0
\(955\) −578.678 1468.34i −0.605946 1.53753i
\(956\) 575.428 + 209.439i 0.601912 + 0.219078i
\(957\) 0 0
\(958\) −97.3488 1112.70i −0.101617 1.16148i
\(959\) 73.0714 87.0831i 0.0761954 0.0908061i
\(960\) 0 0
\(961\) 730.460 + 265.866i 0.760104 + 0.276655i
\(962\) 328.681 + 1226.65i 0.341664 + 1.27511i
\(963\) 0 0
\(964\) −4060.26 + 2344.19i −4.21189 + 2.43174i
\(965\) 134.486 + 453.741i 0.139364 + 0.470198i
\(966\) 0 0
\(967\) 370.976 795.561i 0.383636 0.822710i −0.615759 0.787934i \(-0.711151\pi\)
0.999395 0.0347756i \(-0.0110717\pi\)
\(968\) 853.282 597.475i 0.881490 0.617226i
\(969\) 0 0
\(970\) 1452.95 38.2885i 1.49789 0.0394727i
\(971\) 195.094 0.200920 0.100460 0.994941i \(-0.467968\pi\)
0.100460 + 0.994941i \(0.467968\pi\)
\(972\) 0 0
\(973\) 400.700 + 400.700i 0.411819 + 0.411819i
\(974\) 642.770 + 766.023i 0.659928 + 0.786471i
\(975\) 0 0
\(976\) 633.083 3590.39i 0.648650 3.67868i
\(977\) −241.973 + 518.912i −0.247669 + 0.531128i −0.990362 0.138504i \(-0.955771\pi\)
0.742693 + 0.669632i \(0.233548\pi\)
\(978\) 0 0
\(979\) −609.414 + 107.456i −0.622486 + 0.109761i
\(980\) 2001.39 + 298.770i 2.04224 + 0.304868i
\(981\) 0 0
\(982\) −232.174 866.486i −0.236430 0.882369i
\(983\) 629.058 + 1349.02i 0.639937 + 1.37235i 0.912048 + 0.410083i \(0.134500\pi\)
−0.272111 + 0.962266i \(0.587722\pi\)
\(984\) 0 0
\(985\) −278.515 + 420.943i −0.282757 + 0.427353i
\(986\) 358.392 + 300.727i 0.363481 + 0.304997i
\(987\) 0 0
\(988\) −1719.93 3688.40i −1.74082 3.73320i
\(989\) 602.338 + 347.760i 0.609037 + 0.351628i
\(990\) 0 0
\(991\) −758.343 1313.49i −0.765230 1.32542i −0.940125 0.340830i \(-0.889292\pi\)
0.174895 0.984587i \(-0.444042\pi\)
\(992\) 936.767 + 655.931i 0.944322 + 0.661221i
\(993\) 0 0
\(994\) 99.7000 + 273.923i 0.100302 + 0.275577i
\(995\) 45.2683 40.0635i 0.0454958 0.0402648i
\(996\) 0 0
\(997\) −119.437 + 1365.17i −0.119796 + 1.36928i 0.663754 + 0.747951i \(0.268962\pi\)
−0.783551 + 0.621328i \(0.786594\pi\)
\(998\) 854.511 + 854.511i 0.856223 + 0.856223i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.34 408
3.2 odd 2 135.3.r.a.103.1 yes 408
5.2 odd 4 inner 405.3.s.a.37.34 408
15.2 even 4 135.3.r.a.22.1 408
27.11 odd 18 135.3.r.a.43.1 yes 408
27.16 even 9 inner 405.3.s.a.208.34 408
135.92 even 36 135.3.r.a.97.1 yes 408
135.97 odd 36 inner 405.3.s.a.127.34 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.1 408 15.2 even 4
135.3.r.a.43.1 yes 408 27.11 odd 18
135.3.r.a.97.1 yes 408 135.92 even 36
135.3.r.a.103.1 yes 408 3.2 odd 2
405.3.s.a.37.34 408 5.2 odd 4 inner
405.3.s.a.118.34 408 1.1 even 1 trivial
405.3.s.a.127.34 408 135.97 odd 36 inner
405.3.s.a.208.34 408 27.16 even 9 inner