Properties

Label 405.3.s.a.37.26
Level $405$
Weight $3$
Character 405.37
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 37.26
Character \(\chi\) \(=\) 405.37
Dual form 405.3.s.a.208.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.21433 + 0.193729i) q^{2} +(0.926495 + 0.163366i) q^{4} +(1.95462 + 4.60212i) q^{5} +(-4.75945 + 6.79720i) q^{7} +(-6.56828 - 1.75996i) q^{8} +(3.43660 + 10.5693i) q^{10} +(10.2854 + 3.74359i) q^{11} +(-8.91787 + 0.780213i) q^{13} +(-11.8558 + 14.1292i) q^{14} +(-17.7396 - 6.45668i) q^{16} +(2.30094 - 0.616536i) q^{17} +(-22.6505 + 13.0773i) q^{19} +(1.05911 + 4.58315i) q^{20} +(22.0501 + 10.2821i) q^{22} +(1.53390 + 2.19063i) q^{23} +(-17.3589 + 17.9907i) q^{25} -19.8983 q^{26} +(-5.52004 + 5.52004i) q^{28} +(18.9366 + 22.5678i) q^{29} +(-6.10711 + 34.6352i) q^{31} +(-13.3789 - 6.23870i) q^{32} +(5.21449 - 0.919455i) q^{34} +(-40.5844 - 8.61763i) q^{35} +(61.9402 - 16.5968i) q^{37} +(-52.6890 + 24.5693i) q^{38} +(-4.73890 - 33.6680i) q^{40} +(7.59358 + 6.37177i) q^{41} +(57.2506 - 26.6964i) q^{43} +(8.91781 + 5.14870i) q^{44} +(2.97217 + 5.14795i) q^{46} +(35.0118 - 50.0020i) q^{47} +(-6.79059 - 18.6570i) q^{49} +(-41.9238 + 36.4745i) q^{50} +(-8.38982 - 0.734014i) q^{52} +(-34.1539 + 34.1539i) q^{53} +(2.87563 + 54.6520i) q^{55} +(43.2242 - 36.2694i) q^{56} +(37.5599 + 53.6411i) q^{58} +(-20.8579 - 57.3066i) q^{59} +(-3.82205 - 21.6759i) q^{61} +(-20.2330 + 75.5106i) q^{62} +(36.9788 + 21.3497i) q^{64} +(-21.0216 - 39.5161i) q^{65} +(6.37962 + 72.9194i) q^{67} +(2.23253 - 0.195321i) q^{68} +(-88.1978 - 26.9446i) q^{70} +(-34.1068 + 59.0747i) q^{71} +(27.4196 + 7.34705i) q^{73} +(140.371 - 24.7513i) q^{74} +(-23.1219 + 8.41569i) q^{76} +(-74.3989 + 52.0946i) q^{77} +(-64.3561 - 76.6966i) q^{79} +(-4.95969 - 94.2600i) q^{80} +(15.5803 + 15.5803i) q^{82} +(9.53095 - 108.939i) q^{83} +(7.33483 + 9.38412i) q^{85} +(131.944 - 48.0236i) q^{86} +(-60.9689 - 42.6909i) q^{88} +(42.9194 - 24.7795i) q^{89} +(37.1409 - 64.3300i) q^{91} +(1.06327 + 2.28020i) q^{92} +(87.2144 - 103.938i) q^{94} +(-104.456 - 78.6791i) q^{95} +(-34.3548 - 73.6740i) q^{97} +(-11.4222 - 42.6283i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21433 + 0.193729i 1.10716 + 0.0968644i 0.626042 0.779789i \(-0.284674\pi\)
0.481122 + 0.876653i \(0.340229\pi\)
\(3\) 0 0
\(4\) 0.926495 + 0.163366i 0.231624 + 0.0408415i
\(5\) 1.95462 + 4.60212i 0.390923 + 0.920423i
\(6\) 0 0
\(7\) −4.75945 + 6.79720i −0.679922 + 0.971029i 0.319801 + 0.947485i \(0.396384\pi\)
−0.999723 + 0.0235443i \(0.992505\pi\)
\(8\) −6.56828 1.75996i −0.821035 0.219996i
\(9\) 0 0
\(10\) 3.43660 + 10.5693i 0.343660 + 1.05693i
\(11\) 10.2854 + 3.74359i 0.935038 + 0.340326i 0.764205 0.644974i \(-0.223132\pi\)
0.170833 + 0.985300i \(0.445354\pi\)
\(12\) 0 0
\(13\) −8.91787 + 0.780213i −0.685990 + 0.0600164i −0.424822 0.905277i \(-0.639663\pi\)
−0.261168 + 0.965293i \(0.584108\pi\)
\(14\) −11.8558 + 14.1292i −0.846844 + 1.00923i
\(15\) 0 0
\(16\) −17.7396 6.45668i −1.10872 0.403542i
\(17\) 2.30094 0.616536i 0.135350 0.0362668i −0.190508 0.981686i \(-0.561014\pi\)
0.325858 + 0.945419i \(0.394347\pi\)
\(18\) 0 0
\(19\) −22.6505 + 13.0773i −1.19213 + 0.688276i −0.958789 0.284119i \(-0.908299\pi\)
−0.233341 + 0.972395i \(0.574966\pi\)
\(20\) 1.05911 + 4.58315i 0.0529556 + 0.229158i
\(21\) 0 0
\(22\) 22.0501 + 10.2821i 1.00228 + 0.467369i
\(23\) 1.53390 + 2.19063i 0.0666912 + 0.0952450i 0.851112 0.524984i \(-0.175929\pi\)
−0.784421 + 0.620229i \(0.787040\pi\)
\(24\) 0 0
\(25\) −17.3589 + 17.9907i −0.694358 + 0.719630i
\(26\) −19.8983 −0.765318
\(27\) 0 0
\(28\) −5.52004 + 5.52004i −0.197144 + 0.197144i
\(29\) 18.9366 + 22.5678i 0.652987 + 0.778200i 0.986361 0.164595i \(-0.0526316\pi\)
−0.333374 + 0.942795i \(0.608187\pi\)
\(30\) 0 0
\(31\) −6.10711 + 34.6352i −0.197004 + 1.11726i 0.712533 + 0.701639i \(0.247548\pi\)
−0.909536 + 0.415624i \(0.863563\pi\)
\(32\) −13.3789 6.23870i −0.418092 0.194959i
\(33\) 0 0
\(34\) 5.21449 0.919455i 0.153367 0.0270428i
\(35\) −40.5844 8.61763i −1.15955 0.246218i
\(36\) 0 0
\(37\) 61.9402 16.5968i 1.67406 0.448563i 0.707859 0.706354i \(-0.249661\pi\)
0.966201 + 0.257791i \(0.0829945\pi\)
\(38\) −52.6890 + 24.5693i −1.38655 + 0.646561i
\(39\) 0 0
\(40\) −4.73890 33.6680i −0.118473 0.841701i
\(41\) 7.59358 + 6.37177i 0.185209 + 0.155409i 0.730678 0.682722i \(-0.239204\pi\)
−0.545469 + 0.838131i \(0.683648\pi\)
\(42\) 0 0
\(43\) 57.2506 26.6964i 1.33141 0.620847i 0.378924 0.925428i \(-0.376294\pi\)
0.952486 + 0.304581i \(0.0985164\pi\)
\(44\) 8.91781 + 5.14870i 0.202678 + 0.117016i
\(45\) 0 0
\(46\) 2.97217 + 5.14795i 0.0646124 + 0.111912i
\(47\) 35.0118 50.0020i 0.744931 1.06387i −0.250474 0.968123i \(-0.580587\pi\)
0.995406 0.0957488i \(-0.0305246\pi\)
\(48\) 0 0
\(49\) −6.79059 18.6570i −0.138583 0.380755i
\(50\) −41.9238 + 36.4745i −0.838475 + 0.729490i
\(51\) 0 0
\(52\) −8.38982 0.734014i −0.161343 0.0141157i
\(53\) −34.1539 + 34.1539i −0.644414 + 0.644414i −0.951637 0.307223i \(-0.900600\pi\)
0.307223 + 0.951637i \(0.400600\pi\)
\(54\) 0 0
\(55\) 2.87563 + 54.6520i 0.0522841 + 0.993672i
\(56\) 43.2242 36.2694i 0.771862 0.647669i
\(57\) 0 0
\(58\) 37.5599 + 53.6411i 0.647585 + 0.924847i
\(59\) −20.8579 57.3066i −0.353524 0.971299i −0.981229 0.192847i \(-0.938228\pi\)
0.627705 0.778451i \(-0.283994\pi\)
\(60\) 0 0
\(61\) −3.82205 21.6759i −0.0626566 0.355343i −0.999976 0.00687287i \(-0.997812\pi\)
0.937320 0.348470i \(-0.113299\pi\)
\(62\) −20.2330 + 75.5106i −0.326339 + 1.21791i
\(63\) 0 0
\(64\) 36.9788 + 21.3497i 0.577794 + 0.333589i
\(65\) −21.0216 39.5161i −0.323410 0.607939i
\(66\) 0 0
\(67\) 6.37962 + 72.9194i 0.0952183 + 1.08835i 0.882042 + 0.471172i \(0.156169\pi\)
−0.786823 + 0.617178i \(0.788276\pi\)
\(68\) 2.23253 0.195321i 0.0328314 0.00287237i
\(69\) 0 0
\(70\) −88.1978 26.9446i −1.25997 0.384924i
\(71\) −34.1068 + 59.0747i −0.480377 + 0.832038i −0.999747 0.0225119i \(-0.992834\pi\)
0.519369 + 0.854550i \(0.326167\pi\)
\(72\) 0 0
\(73\) 27.4196 + 7.34705i 0.375610 + 0.100644i 0.441685 0.897170i \(-0.354381\pi\)
−0.0660747 + 0.997815i \(0.521048\pi\)
\(74\) 140.371 24.7513i 1.89691 0.334476i
\(75\) 0 0
\(76\) −23.1219 + 8.41569i −0.304236 + 0.110733i
\(77\) −74.3989 + 52.0946i −0.966219 + 0.676554i
\(78\) 0 0
\(79\) −64.3561 76.6966i −0.814634 0.970843i 0.185296 0.982683i \(-0.440676\pi\)
−0.999930 + 0.0118396i \(0.996231\pi\)
\(80\) −4.95969 94.2600i −0.0619961 1.17825i
\(81\) 0 0
\(82\) 15.5803 + 15.5803i 0.190004 + 0.190004i
\(83\) 9.53095 108.939i 0.114831 1.31252i −0.692068 0.721832i \(-0.743300\pi\)
0.806899 0.590689i \(-0.201144\pi\)
\(84\) 0 0
\(85\) 7.33483 + 9.38412i 0.0862921 + 0.110401i
\(86\) 131.944 48.0236i 1.53423 0.558414i
\(87\) 0 0
\(88\) −60.9689 42.6909i −0.692828 0.485124i
\(89\) 42.9194 24.7795i 0.482240 0.278421i −0.239110 0.970993i \(-0.576856\pi\)
0.721349 + 0.692571i \(0.243522\pi\)
\(90\) 0 0
\(91\) 37.1409 64.3300i 0.408142 0.706923i
\(92\) 1.06327 + 2.28020i 0.0115573 + 0.0247848i
\(93\) 0 0
\(94\) 87.2144 103.938i 0.927813 1.10572i
\(95\) −104.456 78.6791i −1.09954 0.828201i
\(96\) 0 0
\(97\) −34.3548 73.6740i −0.354173 0.759526i 0.645819 0.763490i \(-0.276516\pi\)
−0.999992 + 0.00396432i \(0.998738\pi\)
\(98\) −11.4222 42.6283i −0.116553 0.434982i
\(99\) 0 0
\(100\) −19.0221 + 13.8325i −0.190221 + 0.138325i
\(101\) 1.90940 + 10.8287i 0.0189049 + 0.107215i 0.992800 0.119783i \(-0.0382199\pi\)
−0.973895 + 0.226998i \(0.927109\pi\)
\(102\) 0 0
\(103\) −3.71709 + 7.97133i −0.0360883 + 0.0773915i −0.923525 0.383537i \(-0.874706\pi\)
0.887437 + 0.460929i \(0.152484\pi\)
\(104\) 59.9482 + 10.5705i 0.576425 + 0.101639i
\(105\) 0 0
\(106\) −82.2447 + 69.0115i −0.775893 + 0.651052i
\(107\) 112.987 + 112.987i 1.05595 + 1.05595i 0.998339 + 0.0576110i \(0.0183483\pi\)
0.0576110 + 0.998339i \(0.481652\pi\)
\(108\) 0 0
\(109\) 16.9651i 0.155643i 0.996967 + 0.0778217i \(0.0247965\pi\)
−0.996967 + 0.0778217i \(0.975204\pi\)
\(110\) −4.22007 + 121.575i −0.0383642 + 1.10522i
\(111\) 0 0
\(112\) 128.318 89.8493i 1.14570 0.802226i
\(113\) 58.4147 125.271i 0.516944 1.10859i −0.458571 0.888658i \(-0.651639\pi\)
0.975515 0.219932i \(-0.0705836\pi\)
\(114\) 0 0
\(115\) −7.08337 + 11.3410i −0.0615945 + 0.0986176i
\(116\) 13.8579 + 24.0026i 0.119464 + 0.206919i
\(117\) 0 0
\(118\) −35.0843 130.937i −0.297325 1.10963i
\(119\) −6.76051 + 18.5743i −0.0568110 + 0.156087i
\(120\) 0 0
\(121\) −0.916012 0.768626i −0.00757035 0.00635228i
\(122\) −4.26403 48.7381i −0.0349511 0.399493i
\(123\) 0 0
\(124\) −11.3164 + 31.0916i −0.0912614 + 0.250739i
\(125\) −116.726 44.7229i −0.933805 0.357783i
\(126\) 0 0
\(127\) −57.4505 + 214.408i −0.452366 + 1.68825i 0.243353 + 0.969938i \(0.421753\pi\)
−0.695719 + 0.718314i \(0.744914\pi\)
\(128\) 126.117 + 88.3078i 0.985285 + 0.689904i
\(129\) 0 0
\(130\) −38.8935 91.5741i −0.299180 0.704416i
\(131\) −38.5218 + 218.468i −0.294059 + 1.66769i 0.376942 + 0.926237i \(0.376976\pi\)
−0.671001 + 0.741456i \(0.734135\pi\)
\(132\) 0 0
\(133\) 18.9151 216.200i 0.142219 1.62557i
\(134\) 162.704i 1.21421i
\(135\) 0 0
\(136\) −16.1983 −0.119105
\(137\) 98.2291 + 8.59393i 0.717001 + 0.0627295i 0.439817 0.898087i \(-0.355043\pi\)
0.277184 + 0.960817i \(0.410599\pi\)
\(138\) 0 0
\(139\) −86.9760 15.3362i −0.625727 0.110332i −0.148211 0.988956i \(-0.547351\pi\)
−0.477516 + 0.878623i \(0.658463\pi\)
\(140\) −36.1934 14.6143i −0.258524 0.104388i
\(141\) 0 0
\(142\) −86.9682 + 124.203i −0.612452 + 0.874672i
\(143\) −94.6448 25.3600i −0.661852 0.177343i
\(144\) 0 0
\(145\) −66.8458 + 131.260i −0.461005 + 0.905241i
\(146\) 59.2926 + 21.5807i 0.406114 + 0.147813i
\(147\) 0 0
\(148\) 60.0986 5.25795i 0.406072 0.0355267i
\(149\) 123.868 147.621i 0.831331 0.990742i −0.168656 0.985675i \(-0.553943\pi\)
0.999987 0.00506714i \(-0.00161293\pi\)
\(150\) 0 0
\(151\) 266.680 + 97.0637i 1.76610 + 0.642806i 1.00000 7.97203e-5i \(2.53758e-5\pi\)
0.766096 + 0.642727i \(0.222197\pi\)
\(152\) 171.790 46.0310i 1.13020 0.302836i
\(153\) 0 0
\(154\) −174.836 + 100.942i −1.13530 + 0.655464i
\(155\) −171.332 + 39.5928i −1.10537 + 0.255438i
\(156\) 0 0
\(157\) 182.422 + 85.0646i 1.16192 + 0.541813i 0.905331 0.424707i \(-0.139623\pi\)
0.256591 + 0.966520i \(0.417401\pi\)
\(158\) −127.647 182.299i −0.807894 1.15379i
\(159\) 0 0
\(160\) 2.56054 73.7657i 0.0160034 0.461036i
\(161\) −22.1907 −0.137830
\(162\) 0 0
\(163\) −74.5106 + 74.5106i −0.457121 + 0.457121i −0.897709 0.440589i \(-0.854770\pi\)
0.440589 + 0.897709i \(0.354770\pi\)
\(164\) 5.99448 + 7.14395i 0.0365517 + 0.0435606i
\(165\) 0 0
\(166\) 42.2093 239.381i 0.254273 1.44205i
\(167\) 27.1808 + 12.6746i 0.162759 + 0.0758960i 0.502291 0.864699i \(-0.332491\pi\)
−0.339531 + 0.940595i \(0.610268\pi\)
\(168\) 0 0
\(169\) −87.5128 + 15.4309i −0.517827 + 0.0913069i
\(170\) 14.4238 + 22.2005i 0.0848456 + 0.130591i
\(171\) 0 0
\(172\) 57.4037 15.3813i 0.333743 0.0894260i
\(173\) 186.451 86.9434i 1.07775 0.502563i 0.199075 0.979984i \(-0.436206\pi\)
0.878674 + 0.477421i \(0.158428\pi\)
\(174\) 0 0
\(175\) −39.6676 203.618i −0.226672 1.16353i
\(176\) −158.288 132.819i −0.899363 0.754655i
\(177\) 0 0
\(178\) 99.8381 46.5553i 0.560888 0.261546i
\(179\) 42.6513 + 24.6247i 0.238275 + 0.137568i 0.614384 0.789007i \(-0.289405\pi\)
−0.376109 + 0.926576i \(0.622738\pi\)
\(180\) 0 0
\(181\) −33.4818 57.9921i −0.184982 0.320398i 0.758588 0.651570i \(-0.225889\pi\)
−0.943570 + 0.331172i \(0.892556\pi\)
\(182\) 94.7048 135.253i 0.520356 0.743146i
\(183\) 0 0
\(184\) −6.21963 17.0883i −0.0338024 0.0928712i
\(185\) 197.450 + 252.616i 1.06730 + 1.36549i
\(186\) 0 0
\(187\) 25.9742 + 2.27245i 0.138900 + 0.0121521i
\(188\) 40.6068 40.6068i 0.215994 0.215994i
\(189\) 0 0
\(190\) −216.058 194.458i −1.13715 1.02346i
\(191\) −277.961 + 233.237i −1.45529 + 1.22113i −0.526688 + 0.850058i \(0.676567\pi\)
−0.928603 + 0.371076i \(0.878989\pi\)
\(192\) 0 0
\(193\) −1.11055 1.58604i −0.00575416 0.00821780i 0.816265 0.577678i \(-0.196041\pi\)
−0.822019 + 0.569460i \(0.807152\pi\)
\(194\) −61.8000 169.794i −0.318557 0.875227i
\(195\) 0 0
\(196\) −3.24353 18.3950i −0.0165486 0.0938518i
\(197\) −36.7752 + 137.247i −0.186676 + 0.696685i 0.807589 + 0.589745i \(0.200772\pi\)
−0.994265 + 0.106940i \(0.965895\pi\)
\(198\) 0 0
\(199\) 151.039 + 87.2026i 0.758992 + 0.438204i 0.828934 0.559347i \(-0.188948\pi\)
−0.0699420 + 0.997551i \(0.522281\pi\)
\(200\) 145.681 87.6171i 0.728407 0.438085i
\(201\) 0 0
\(202\) 2.13020 + 24.3483i 0.0105455 + 0.120536i
\(203\) −243.526 + 21.3058i −1.19964 + 0.104954i
\(204\) 0 0
\(205\) −14.4811 + 47.4009i −0.0706395 + 0.231224i
\(206\) −9.77514 + 16.9310i −0.0474521 + 0.0821895i
\(207\) 0 0
\(208\) 163.237 + 43.7392i 0.784793 + 0.210285i
\(209\) −281.925 + 49.7110i −1.34892 + 0.237852i
\(210\) 0 0
\(211\) −235.974 + 85.8877i −1.11836 + 0.407051i −0.834054 0.551682i \(-0.813986\pi\)
−0.284308 + 0.958733i \(0.591764\pi\)
\(212\) −37.2230 + 26.0639i −0.175580 + 0.122943i
\(213\) 0 0
\(214\) 228.301 + 272.079i 1.06683 + 1.27139i
\(215\) 234.763 + 211.293i 1.09192 + 0.982758i
\(216\) 0 0
\(217\) −206.356 206.356i −0.950948 0.950948i
\(218\) −3.28663 + 37.5664i −0.0150763 + 0.172323i
\(219\) 0 0
\(220\) −6.26402 + 51.1045i −0.0284728 + 0.232293i
\(221\) −20.0385 + 7.29341i −0.0906719 + 0.0330019i
\(222\) 0 0
\(223\) 260.413 + 182.343i 1.16777 + 0.817681i 0.986177 0.165693i \(-0.0529860\pi\)
0.181592 + 0.983374i \(0.441875\pi\)
\(224\) 106.082 61.2465i 0.473581 0.273422i
\(225\) 0 0
\(226\) 153.618 266.074i 0.679725 1.17732i
\(227\) −188.950 405.205i −0.832381 1.78505i −0.573660 0.819094i \(-0.694477\pi\)
−0.258721 0.965952i \(-0.583301\pi\)
\(228\) 0 0
\(229\) 26.8340 31.9795i 0.117179 0.139648i −0.704266 0.709936i \(-0.748724\pi\)
0.821445 + 0.570288i \(0.193168\pi\)
\(230\) −17.8820 + 23.7405i −0.0777478 + 0.103220i
\(231\) 0 0
\(232\) −84.6625 181.559i −0.364925 0.782584i
\(233\) −25.5129 95.2155i −0.109497 0.408650i 0.889319 0.457287i \(-0.151179\pi\)
−0.998817 + 0.0486371i \(0.984512\pi\)
\(234\) 0 0
\(235\) 298.550 + 63.3935i 1.27042 + 0.269760i
\(236\) −9.96279 56.5018i −0.0422152 0.239414i
\(237\) 0 0
\(238\) −18.5684 + 39.8200i −0.0780184 + 0.167311i
\(239\) 98.1358 + 17.3040i 0.410610 + 0.0724016i 0.375138 0.926969i \(-0.377595\pi\)
0.0354721 + 0.999371i \(0.488707\pi\)
\(240\) 0 0
\(241\) −118.754 + 99.6468i −0.492757 + 0.413472i −0.855013 0.518606i \(-0.826451\pi\)
0.362256 + 0.932079i \(0.382007\pi\)
\(242\) −1.87945 1.87945i −0.00776632 0.00776632i
\(243\) 0 0
\(244\) 20.7070i 0.0848649i
\(245\) 72.5887 67.7184i 0.296280 0.276401i
\(246\) 0 0
\(247\) 191.791 134.293i 0.776481 0.543698i
\(248\) 101.070 216.745i 0.407540 0.873972i
\(249\) 0 0
\(250\) −249.805 121.644i −0.999219 0.486577i
\(251\) 8.98206 + 15.5574i 0.0357851 + 0.0619816i 0.883363 0.468689i \(-0.155273\pi\)
−0.847578 + 0.530671i \(0.821940\pi\)
\(252\) 0 0
\(253\) 7.57596 + 28.2739i 0.0299445 + 0.111754i
\(254\) −168.751 + 463.640i −0.664375 + 1.82536i
\(255\) 0 0
\(256\) 131.317 + 110.188i 0.512958 + 0.430423i
\(257\) −0.883925 10.1033i −0.00343939 0.0393125i 0.994281 0.106795i \(-0.0340589\pi\)
−0.997720 + 0.0674825i \(0.978503\pi\)
\(258\) 0 0
\(259\) −181.990 + 500.012i −0.702662 + 1.93055i
\(260\) −13.0209 40.0457i −0.0500802 0.154022i
\(261\) 0 0
\(262\) −127.623 + 476.297i −0.487112 + 1.81793i
\(263\) −12.8003 8.96289i −0.0486704 0.0340794i 0.548988 0.835830i \(-0.315013\pi\)
−0.597658 + 0.801751i \(0.703902\pi\)
\(264\) 0 0
\(265\) −223.938 90.4226i −0.845050 0.341217i
\(266\) 83.7685 475.075i 0.314919 1.78599i
\(267\) 0 0
\(268\) −6.00187 + 68.6017i −0.0223950 + 0.255976i
\(269\) 302.818i 1.12572i −0.826553 0.562859i \(-0.809702\pi\)
0.826553 0.562859i \(-0.190298\pi\)
\(270\) 0 0
\(271\) −467.978 −1.72686 −0.863428 0.504471i \(-0.831687\pi\)
−0.863428 + 0.504471i \(0.831687\pi\)
\(272\) −44.7985 3.91936i −0.164701 0.0144094i
\(273\) 0 0
\(274\) 215.847 + 38.0596i 0.787762 + 0.138904i
\(275\) −245.894 + 120.058i −0.894160 + 0.436573i
\(276\) 0 0
\(277\) 107.574 153.631i 0.388353 0.554626i −0.576607 0.817022i \(-0.695624\pi\)
0.964960 + 0.262396i \(0.0845126\pi\)
\(278\) −189.622 50.8092i −0.682095 0.182767i
\(279\) 0 0
\(280\) 251.403 + 128.030i 0.897868 + 0.457251i
\(281\) 202.070 + 73.5475i 0.719110 + 0.261735i 0.675548 0.737316i \(-0.263907\pi\)
0.0435623 + 0.999051i \(0.486129\pi\)
\(282\) 0 0
\(283\) −121.219 + 10.6053i −0.428335 + 0.0374745i −0.299285 0.954164i \(-0.596748\pi\)
−0.129050 + 0.991638i \(0.541193\pi\)
\(284\) −41.2506 + 49.1605i −0.145248 + 0.173100i
\(285\) 0 0
\(286\) −204.662 74.4908i −0.715601 0.260457i
\(287\) −79.4515 + 21.2890i −0.276835 + 0.0741776i
\(288\) 0 0
\(289\) −245.367 + 141.663i −0.849021 + 0.490183i
\(290\) −173.447 + 277.703i −0.598095 + 0.957596i
\(291\) 0 0
\(292\) 24.2038 + 11.2864i 0.0828898 + 0.0386521i
\(293\) 101.496 + 144.952i 0.346404 + 0.494716i 0.954114 0.299443i \(-0.0968007\pi\)
−0.607710 + 0.794159i \(0.707912\pi\)
\(294\) 0 0
\(295\) 222.963 208.003i 0.755805 0.705095i
\(296\) −436.050 −1.47314
\(297\) 0 0
\(298\) 302.884 302.884i 1.01639 1.01639i
\(299\) −15.3883 18.3390i −0.0514658 0.0613345i
\(300\) 0 0
\(301\) −91.0208 + 516.205i −0.302395 + 1.71497i
\(302\) 571.714 + 266.595i 1.89309 + 0.882764i
\(303\) 0 0
\(304\) 486.245 85.7382i 1.59949 0.282034i
\(305\) 92.2846 59.9577i 0.302572 0.196583i
\(306\) 0 0
\(307\) 106.733 28.5989i 0.347664 0.0931562i −0.0807616 0.996733i \(-0.525735\pi\)
0.428425 + 0.903577i \(0.359069\pi\)
\(308\) −77.4407 + 36.1112i −0.251431 + 0.117244i
\(309\) 0 0
\(310\) −387.056 + 54.4796i −1.24857 + 0.175741i
\(311\) 67.0720 + 56.2801i 0.215665 + 0.180965i 0.744220 0.667934i \(-0.232821\pi\)
−0.528555 + 0.848899i \(0.677266\pi\)
\(312\) 0 0
\(313\) 54.1726 25.2611i 0.173075 0.0807063i −0.334150 0.942520i \(-0.608449\pi\)
0.507225 + 0.861814i \(0.330671\pi\)
\(314\) 387.462 + 223.701i 1.23396 + 0.712425i
\(315\) 0 0
\(316\) −47.0960 81.5726i −0.149038 0.258141i
\(317\) 105.485 150.648i 0.332760 0.475231i −0.617552 0.786530i \(-0.711875\pi\)
0.950312 + 0.311300i \(0.100764\pi\)
\(318\) 0 0
\(319\) 110.287 + 303.010i 0.345726 + 0.949875i
\(320\) −25.9745 + 211.911i −0.0811704 + 0.662222i
\(321\) 0 0
\(322\) −49.1375 4.29898i −0.152601 0.0133509i
\(323\) −44.0548 + 44.0548i −0.136393 + 0.136393i
\(324\) 0 0
\(325\) 140.768 173.983i 0.433133 0.535332i
\(326\) −179.426 + 150.556i −0.550387 + 0.461829i
\(327\) 0 0
\(328\) −38.6627 55.2160i −0.117874 0.168341i
\(329\) 173.237 + 475.964i 0.526556 + 1.44670i
\(330\) 0 0
\(331\) 27.2809 + 154.718i 0.0824198 + 0.467426i 0.997884 + 0.0650254i \(0.0207129\pi\)
−0.915464 + 0.402400i \(0.868176\pi\)
\(332\) 26.6273 99.3746i 0.0802029 0.299321i
\(333\) 0 0
\(334\) 57.7319 + 33.3315i 0.172850 + 0.0997949i
\(335\) −323.114 + 171.889i −0.964519 + 0.513102i
\(336\) 0 0
\(337\) 34.5167 + 394.528i 0.102423 + 1.17070i 0.857293 + 0.514829i \(0.172145\pi\)
−0.754869 + 0.655875i \(0.772300\pi\)
\(338\) −196.772 + 17.2153i −0.582165 + 0.0509328i
\(339\) 0 0
\(340\) 5.26264 + 9.89260i 0.0154783 + 0.0290959i
\(341\) −192.474 + 333.375i −0.564440 + 0.977638i
\(342\) 0 0
\(343\) −233.606 62.5944i −0.681066 0.182491i
\(344\) −423.023 + 74.5904i −1.22972 + 0.216832i
\(345\) 0 0
\(346\) 429.707 156.400i 1.24193 0.452024i
\(347\) −276.053 + 193.294i −0.795541 + 0.557044i −0.899184 0.437571i \(-0.855839\pi\)
0.103643 + 0.994615i \(0.466950\pi\)
\(348\) 0 0
\(349\) 34.7252 + 41.3839i 0.0994991 + 0.118578i 0.813496 0.581570i \(-0.197561\pi\)
−0.713997 + 0.700149i \(0.753117\pi\)
\(350\) −48.3905 458.563i −0.138259 1.31018i
\(351\) 0 0
\(352\) −114.253 114.253i −0.324582 0.324582i
\(353\) 22.2925 254.804i 0.0631514 0.721824i −0.896943 0.442147i \(-0.854217\pi\)
0.960094 0.279677i \(-0.0902275\pi\)
\(354\) 0 0
\(355\) −338.534 41.4951i −0.953618 0.116888i
\(356\) 43.8127 15.9465i 0.123069 0.0447936i
\(357\) 0 0
\(358\) 89.6734 + 62.7900i 0.250484 + 0.175391i
\(359\) −102.875 + 59.3949i −0.286560 + 0.165445i −0.636389 0.771368i \(-0.719573\pi\)
0.349830 + 0.936813i \(0.386240\pi\)
\(360\) 0 0
\(361\) 161.529 279.777i 0.447449 0.775004i
\(362\) −62.9049 134.900i −0.173771 0.372652i
\(363\) 0 0
\(364\) 44.9202 53.5338i 0.123407 0.147071i
\(365\) 19.7827 + 140.549i 0.0541993 + 0.385065i
\(366\) 0 0
\(367\) −166.553 357.174i −0.453823 0.973226i −0.991504 0.130077i \(-0.958477\pi\)
0.537681 0.843148i \(-0.319300\pi\)
\(368\) −13.0665 48.7648i −0.0355068 0.132513i
\(369\) 0 0
\(370\) 388.280 + 597.626i 1.04941 + 1.61521i
\(371\) −69.5972 394.705i −0.187594 1.06390i
\(372\) 0 0
\(373\) 23.6413 50.6990i 0.0633816 0.135922i −0.872065 0.489389i \(-0.837220\pi\)
0.935447 + 0.353467i \(0.114997\pi\)
\(374\) 57.0752 + 10.0639i 0.152608 + 0.0269088i
\(375\) 0 0
\(376\) −317.969 + 266.807i −0.845662 + 0.709594i
\(377\) −186.482 186.482i −0.494648 0.494648i
\(378\) 0 0
\(379\) 82.8766i 0.218672i −0.994005 0.109336i \(-0.965128\pi\)
0.994005 0.109336i \(-0.0348724\pi\)
\(380\) −83.9245 89.9603i −0.220854 0.236738i
\(381\) 0 0
\(382\) −660.681 + 462.614i −1.72953 + 1.21103i
\(383\) −130.902 + 280.720i −0.341781 + 0.732952i −0.999799 0.0200506i \(-0.993617\pi\)
0.658018 + 0.753002i \(0.271395\pi\)
\(384\) 0 0
\(385\) −385.167 240.567i −1.00043 0.624850i
\(386\) −2.15187 3.72715i −0.00557480 0.00965583i
\(387\) 0 0
\(388\) −19.7937 73.8710i −0.0510146 0.190389i
\(389\) −97.2536 + 267.202i −0.250009 + 0.686895i 0.749676 + 0.661805i \(0.230209\pi\)
−0.999685 + 0.0250898i \(0.992013\pi\)
\(390\) 0 0
\(391\) 4.88002 + 4.09482i 0.0124809 + 0.0104727i
\(392\) 11.7668 + 134.496i 0.0300174 + 0.343101i
\(393\) 0 0
\(394\) −108.021 + 296.786i −0.274165 + 0.753263i
\(395\) 227.175 446.087i 0.575127 1.12933i
\(396\) 0 0
\(397\) 168.158 627.574i 0.423572 1.58079i −0.343450 0.939171i \(-0.611596\pi\)
0.767022 0.641621i \(-0.221738\pi\)
\(398\) 317.557 + 222.356i 0.797882 + 0.558683i
\(399\) 0 0
\(400\) 424.101 207.067i 1.06025 0.517668i
\(401\) 48.8338 276.950i 0.121780 0.690649i −0.861388 0.507947i \(-0.830405\pi\)
0.983168 0.182702i \(-0.0584844\pi\)
\(402\) 0 0
\(403\) 27.4397 313.637i 0.0680885 0.778255i
\(404\) 10.3447i 0.0256057i
\(405\) 0 0
\(406\) −543.374 −1.33836
\(407\) 699.213 + 61.1732i 1.71797 + 0.150303i
\(408\) 0 0
\(409\) −696.105 122.742i −1.70197 0.300103i −0.763587 0.645705i \(-0.776564\pi\)
−0.938381 + 0.345602i \(0.887675\pi\)
\(410\) −41.2488 + 102.156i −0.100607 + 0.249161i
\(411\) 0 0
\(412\) −4.74611 + 6.77815i −0.0115197 + 0.0164518i
\(413\) 488.797 + 130.973i 1.18353 + 0.317125i
\(414\) 0 0
\(415\) 519.980 169.072i 1.25296 0.407402i
\(416\) 124.179 + 45.1975i 0.298508 + 0.108648i
\(417\) 0 0
\(418\) −633.906 + 55.4596i −1.51652 + 0.132678i
\(419\) −139.446 + 166.185i −0.332806 + 0.396623i −0.906333 0.422564i \(-0.861130\pi\)
0.573527 + 0.819186i \(0.305575\pi\)
\(420\) 0 0
\(421\) 546.181 + 198.794i 1.29734 + 0.472194i 0.896130 0.443792i \(-0.146367\pi\)
0.401211 + 0.915985i \(0.368589\pi\)
\(422\) −539.164 + 144.469i −1.27764 + 0.342343i
\(423\) 0 0
\(424\) 284.442 164.223i 0.670855 0.387318i
\(425\) −28.8500 + 52.0981i −0.0678824 + 0.122584i
\(426\) 0 0
\(427\) 165.527 + 77.1864i 0.387650 + 0.180764i
\(428\) 86.2234 + 123.140i 0.201456 + 0.287710i
\(429\) 0 0
\(430\) 478.909 + 513.352i 1.11374 + 1.19384i
\(431\) 197.302 0.457777 0.228889 0.973453i \(-0.426491\pi\)
0.228889 + 0.973453i \(0.426491\pi\)
\(432\) 0 0
\(433\) −46.8682 + 46.8682i −0.108241 + 0.108241i −0.759153 0.650912i \(-0.774387\pi\)
0.650912 + 0.759153i \(0.274387\pi\)
\(434\) −416.963 496.917i −0.960743 1.14497i
\(435\) 0 0
\(436\) −2.77152 + 15.7181i −0.00635671 + 0.0360507i
\(437\) −63.3910 29.5597i −0.145059 0.0676423i
\(438\) 0 0
\(439\) 356.651 62.8872i 0.812417 0.143251i 0.248021 0.968755i \(-0.420220\pi\)
0.564397 + 0.825504i \(0.309109\pi\)
\(440\) 77.2976 364.030i 0.175676 0.827341i
\(441\) 0 0
\(442\) −45.7848 + 12.2680i −0.103585 + 0.0277556i
\(443\) 497.142 231.821i 1.12222 0.523299i 0.229226 0.973373i \(-0.426380\pi\)
0.892991 + 0.450075i \(0.148603\pi\)
\(444\) 0 0
\(445\) 197.929 + 149.085i 0.444784 + 0.335023i
\(446\) 541.314 + 454.217i 1.21371 + 1.01842i
\(447\) 0 0
\(448\) −321.117 + 149.739i −0.716779 + 0.334240i
\(449\) 220.408 + 127.252i 0.490885 + 0.283413i 0.724942 0.688810i \(-0.241867\pi\)
−0.234056 + 0.972223i \(0.575200\pi\)
\(450\) 0 0
\(451\) 54.2499 + 93.9635i 0.120288 + 0.208345i
\(452\) 74.5858 106.520i 0.165013 0.235663i
\(453\) 0 0
\(454\) −339.899 933.864i −0.748675 2.05697i
\(455\) 368.650 + 45.1864i 0.810220 + 0.0993109i
\(456\) 0 0
\(457\) 70.2693 + 6.14777i 0.153762 + 0.0134525i 0.163777 0.986497i \(-0.447632\pi\)
−0.0100147 + 0.999950i \(0.503188\pi\)
\(458\) 65.6146 65.6146i 0.143263 0.143263i
\(459\) 0 0
\(460\) −8.41544 + 9.35022i −0.0182944 + 0.0203266i
\(461\) 470.717 394.978i 1.02108 0.856786i 0.0313151 0.999510i \(-0.490030\pi\)
0.989763 + 0.142724i \(0.0455860\pi\)
\(462\) 0 0
\(463\) 68.7580 + 98.1967i 0.148506 + 0.212088i 0.886512 0.462706i \(-0.153121\pi\)
−0.738006 + 0.674794i \(0.764233\pi\)
\(464\) −190.215 522.611i −0.409946 1.12632i
\(465\) 0 0
\(466\) −38.0480 215.781i −0.0816481 0.463050i
\(467\) 132.100 493.003i 0.282869 1.05568i −0.667514 0.744597i \(-0.732642\pi\)
0.950383 0.311083i \(-0.100692\pi\)
\(468\) 0 0
\(469\) −526.012 303.693i −1.12156 0.647533i
\(470\) 648.806 + 198.212i 1.38044 + 0.421727i
\(471\) 0 0
\(472\) 36.1429 + 413.115i 0.0765739 + 0.875244i
\(473\) 688.787 60.2611i 1.45621 0.127402i
\(474\) 0 0
\(475\) 157.919 634.506i 0.332461 1.33580i
\(476\) −9.29799 + 16.1046i −0.0195336 + 0.0338332i
\(477\) 0 0
\(478\) 213.953 + 57.3284i 0.447600 + 0.119934i
\(479\) −31.7508 + 5.59852i −0.0662856 + 0.0116879i −0.206693 0.978406i \(-0.566270\pi\)
0.140407 + 0.990094i \(0.455159\pi\)
\(480\) 0 0
\(481\) −539.426 + 196.335i −1.12147 + 0.408181i
\(482\) −282.266 + 197.645i −0.585614 + 0.410051i
\(483\) 0 0
\(484\) −0.723113 0.861773i −0.00149404 0.00178052i
\(485\) 271.906 302.109i 0.560631 0.622905i
\(486\) 0 0
\(487\) −508.915 508.915i −1.04500 1.04500i −0.998939 0.0460613i \(-0.985333\pi\)
−0.0460613 0.998939i \(-0.514667\pi\)
\(488\) −13.0446 + 149.100i −0.0267307 + 0.305533i
\(489\) 0 0
\(490\) 173.854 135.888i 0.354805 0.277323i
\(491\) 181.036 65.8918i 0.368709 0.134199i −0.151019 0.988531i \(-0.548255\pi\)
0.519728 + 0.854332i \(0.326033\pi\)
\(492\) 0 0
\(493\) 57.4860 + 40.2521i 0.116604 + 0.0816473i
\(494\) 450.705 260.215i 0.912358 0.526750i
\(495\) 0 0
\(496\) 331.966 574.982i 0.669286 1.15924i
\(497\) −239.213 512.994i −0.481314 1.03218i
\(498\) 0 0
\(499\) 137.298 163.626i 0.275147 0.327907i −0.610720 0.791846i \(-0.709120\pi\)
0.885867 + 0.463939i \(0.153564\pi\)
\(500\) −100.839 60.5045i −0.201679 0.121009i
\(501\) 0 0
\(502\) 16.8753 + 36.1892i 0.0336162 + 0.0720901i
\(503\) −95.0065 354.569i −0.188880 0.704909i −0.993767 0.111480i \(-0.964441\pi\)
0.804887 0.593428i \(-0.202226\pi\)
\(504\) 0 0
\(505\) −46.1029 + 29.9533i −0.0912929 + 0.0593134i
\(506\) 11.2982 + 64.0753i 0.0223285 + 0.126631i
\(507\) 0 0
\(508\) −88.2545 + 189.262i −0.173729 + 0.372564i
\(509\) −167.773 29.5829i −0.329613 0.0581196i 0.00639300 0.999980i \(-0.497965\pi\)
−0.336006 + 0.941860i \(0.609076\pi\)
\(510\) 0 0
\(511\) −180.441 + 151.408i −0.353114 + 0.296298i
\(512\) −166.031 166.031i −0.324280 0.324280i
\(513\) 0 0
\(514\) 22.5433i 0.0438585i
\(515\) −43.9505 1.52560i −0.0853407 0.00296233i
\(516\) 0 0
\(517\) 547.297 383.222i 1.05860 0.741241i
\(518\) −499.851 + 1071.93i −0.964964 + 2.06937i
\(519\) 0 0
\(520\) 68.5291 + 296.550i 0.131787 + 0.570288i
\(521\) −71.1832 123.293i −0.136628 0.236647i 0.789590 0.613634i \(-0.210293\pi\)
−0.926218 + 0.376988i \(0.876960\pi\)
\(522\) 0 0
\(523\) −37.4797 139.876i −0.0716629 0.267450i 0.920793 0.390052i \(-0.127543\pi\)
−0.992456 + 0.122602i \(0.960876\pi\)
\(524\) −71.3804 + 196.116i −0.136222 + 0.374267i
\(525\) 0 0
\(526\) −26.6078 22.3266i −0.0505851 0.0424460i
\(527\) 7.30170 + 83.4588i 0.0138552 + 0.158366i
\(528\) 0 0
\(529\) 178.483 490.377i 0.337396 0.926989i
\(530\) −478.356 243.609i −0.902558 0.459639i
\(531\) 0 0
\(532\) 52.8445 197.218i 0.0993318 0.370711i
\(533\) −72.6899 50.8980i −0.136379 0.0954935i
\(534\) 0 0
\(535\) −299.132 + 740.823i −0.559126 + 1.38472i
\(536\) 86.4325 490.183i 0.161255 0.914521i
\(537\) 0 0
\(538\) 58.6645 670.539i 0.109042 1.24635i
\(539\) 217.316i 0.403184i
\(540\) 0 0
\(541\) 697.034 1.28842 0.644208 0.764850i \(-0.277187\pi\)
0.644208 + 0.764850i \(0.277187\pi\)
\(542\) −1036.26 90.6608i −1.91192 0.167271i
\(543\) 0 0
\(544\) −34.6305 6.10630i −0.0636591 0.0112248i
\(545\) −78.0755 + 33.1603i −0.143258 + 0.0608446i
\(546\) 0 0
\(547\) 76.0594 108.624i 0.139048 0.198582i −0.743588 0.668638i \(-0.766878\pi\)
0.882636 + 0.470057i \(0.155766\pi\)
\(548\) 89.6048 + 24.0095i 0.163512 + 0.0438130i
\(549\) 0 0
\(550\) −567.749 + 218.210i −1.03227 + 0.396746i
\(551\) −724.048 263.532i −1.31406 0.478280i
\(552\) 0 0
\(553\) 827.622 72.4076i 1.49660 0.130936i
\(554\) 267.967 319.350i 0.483694 0.576445i
\(555\) 0 0
\(556\) −78.0774 28.4178i −0.140427 0.0511112i
\(557\) 36.4649 9.77073i 0.0654665 0.0175417i −0.225937 0.974142i \(-0.572544\pi\)
0.291404 + 0.956600i \(0.405878\pi\)
\(558\) 0 0
\(559\) −489.725 + 282.743i −0.876073 + 0.505801i
\(560\) 664.309 + 414.914i 1.18627 + 0.740917i
\(561\) 0 0
\(562\) 433.201 + 202.005i 0.770821 + 0.359440i
\(563\) −548.647 783.549i −0.974506 1.39174i −0.919429 0.393257i \(-0.871348\pi\)
−0.0550777 0.998482i \(-0.517541\pi\)
\(564\) 0 0
\(565\) 690.688 + 23.9750i 1.22246 + 0.0424336i
\(566\) −270.473 −0.477868
\(567\) 0 0
\(568\) 327.992 327.992i 0.577451 0.577451i
\(569\) 79.1792 + 94.3621i 0.139155 + 0.165838i 0.831121 0.556092i \(-0.187700\pi\)
−0.691966 + 0.721930i \(0.743255\pi\)
\(570\) 0 0
\(571\) 22.5624 127.958i 0.0395139 0.224095i −0.958656 0.284568i \(-0.908150\pi\)
0.998170 + 0.0604733i \(0.0192610\pi\)
\(572\) −83.5450 38.9577i −0.146058 0.0681078i
\(573\) 0 0
\(574\) −180.056 + 31.7488i −0.313687 + 0.0553114i
\(575\) −66.0380 10.4311i −0.114849 0.0181411i
\(576\) 0 0
\(577\) 969.281 259.718i 1.67986 0.450118i 0.712120 0.702058i \(-0.247735\pi\)
0.967743 + 0.251940i \(0.0810685\pi\)
\(578\) −570.768 + 266.153i −0.987488 + 0.460473i
\(579\) 0 0
\(580\) −83.3757 + 110.691i −0.143751 + 0.190847i
\(581\) 695.120 + 583.275i 1.19642 + 1.00392i
\(582\) 0 0
\(583\) −479.146 + 223.429i −0.821862 + 0.383241i
\(584\) −167.169 96.5149i −0.286248 0.165265i
\(585\) 0 0
\(586\) 196.665 + 340.634i 0.335606 + 0.581287i
\(587\) −351.488 + 501.977i −0.598787 + 0.855156i −0.998097 0.0616594i \(-0.980361\pi\)
0.399310 + 0.916816i \(0.369250\pi\)
\(588\) 0 0
\(589\) −314.604 864.367i −0.534132 1.46752i
\(590\) 534.009 417.393i 0.905100 0.707446i
\(591\) 0 0
\(592\) −1205.95 105.507i −2.03708 0.178222i
\(593\) −387.205 + 387.205i −0.652959 + 0.652959i −0.953704 0.300746i \(-0.902764\pi\)
0.300746 + 0.953704i \(0.402764\pi\)
\(594\) 0 0
\(595\) −98.6955 + 5.19307i −0.165875 + 0.00872785i
\(596\) 138.880 116.534i 0.233019 0.195527i
\(597\) 0 0
\(598\) −30.5219 43.5898i −0.0510400 0.0728927i
\(599\) −296.186 813.763i −0.494467 1.35854i −0.896554 0.442935i \(-0.853937\pi\)
0.402087 0.915601i \(-0.368285\pi\)
\(600\) 0 0
\(601\) −82.6600 468.788i −0.137537 0.780014i −0.973059 0.230556i \(-0.925945\pi\)
0.835522 0.549458i \(-0.185166\pi\)
\(602\) −301.554 + 1125.41i −0.500920 + 1.86946i
\(603\) 0 0
\(604\) 231.221 + 133.496i 0.382816 + 0.221019i
\(605\) 1.74685 5.71796i 0.00288736 0.00945118i
\(606\) 0 0
\(607\) 20.3033 + 232.067i 0.0334485 + 0.382318i 0.994406 + 0.105623i \(0.0336837\pi\)
−0.960958 + 0.276695i \(0.910761\pi\)
\(608\) 384.624 33.6503i 0.632606 0.0553458i
\(609\) 0 0
\(610\) 215.964 114.888i 0.354039 0.188341i
\(611\) −273.218 + 473.228i −0.447166 + 0.774514i
\(612\) 0 0
\(613\) −160.912 43.1162i −0.262499 0.0703364i 0.125169 0.992135i \(-0.460053\pi\)
−0.387668 + 0.921799i \(0.626719\pi\)
\(614\) 241.882 42.6503i 0.393944 0.0694630i
\(615\) 0 0
\(616\) 580.357 211.233i 0.942138 0.342910i
\(617\) 964.973 675.682i 1.56398 1.09511i 0.611183 0.791490i \(-0.290694\pi\)
0.952794 0.303619i \(-0.0981948\pi\)
\(618\) 0 0
\(619\) 537.579 + 640.661i 0.868463 + 1.03499i 0.999051 + 0.0435574i \(0.0138691\pi\)
−0.130588 + 0.991437i \(0.541686\pi\)
\(620\) −165.206 + 8.69269i −0.266462 + 0.0140205i
\(621\) 0 0
\(622\) 137.616 + 137.616i 0.221248 + 0.221248i
\(623\) −35.8413 + 409.668i −0.0575302 + 0.657574i
\(624\) 0 0
\(625\) −22.3337 624.601i −0.0357340 0.999361i
\(626\) 124.850 45.4416i 0.199440 0.0725904i
\(627\) 0 0
\(628\) 155.116 + 108.613i 0.247000 + 0.172951i
\(629\) 132.288 76.3767i 0.210315 0.121426i
\(630\) 0 0
\(631\) −179.602 + 311.080i −0.284631 + 0.492996i −0.972520 0.232821i \(-0.925205\pi\)
0.687888 + 0.725816i \(0.258538\pi\)
\(632\) 287.725 + 617.029i 0.455262 + 0.976312i
\(633\) 0 0
\(634\) 262.763 313.149i 0.414453 0.493926i
\(635\) −1099.02 + 154.692i −1.73075 + 0.243609i
\(636\) 0 0
\(637\) 75.1140 + 161.083i 0.117918 + 0.252877i
\(638\) 185.509 + 692.330i 0.290767 + 1.08516i
\(639\) 0 0
\(640\) −159.893 + 753.011i −0.249833 + 1.17658i
\(641\) −26.1194 148.130i −0.0407479 0.231093i 0.957632 0.287995i \(-0.0929887\pi\)
−0.998380 + 0.0569025i \(0.981878\pi\)
\(642\) 0 0
\(643\) −458.197 + 982.606i −0.712592 + 1.52816i 0.131122 + 0.991366i \(0.458142\pi\)
−0.843714 + 0.536793i \(0.819636\pi\)
\(644\) −20.5596 3.62521i −0.0319248 0.00562920i
\(645\) 0 0
\(646\) −106.087 + 89.0172i −0.164221 + 0.137798i
\(647\) 479.015 + 479.015i 0.740364 + 0.740364i 0.972648 0.232284i \(-0.0746199\pi\)
−0.232284 + 0.972648i \(0.574620\pi\)
\(648\) 0 0
\(649\) 667.506i 1.02851i
\(650\) 345.413 357.984i 0.531404 0.550745i
\(651\) 0 0
\(652\) −81.2062 + 56.8612i −0.124549 + 0.0872105i
\(653\) −471.486 + 1011.10i −0.722031 + 1.54840i 0.110162 + 0.993914i \(0.464863\pi\)
−0.832193 + 0.554486i \(0.812915\pi\)
\(654\) 0 0
\(655\) −1080.71 + 249.739i −1.64994 + 0.381281i
\(656\) −93.5665 162.062i −0.142632 0.247046i
\(657\) 0 0
\(658\) 291.395 + 1087.50i 0.442850 + 1.65274i
\(659\) −33.9839 + 93.3700i −0.0515689 + 0.141684i −0.962803 0.270205i \(-0.912909\pi\)
0.911234 + 0.411889i \(0.135131\pi\)
\(660\) 0 0
\(661\) 243.240 + 204.103i 0.367989 + 0.308779i 0.807965 0.589230i \(-0.200569\pi\)
−0.439977 + 0.898009i \(0.645013\pi\)
\(662\) 30.4357 + 347.882i 0.0459754 + 0.525501i
\(663\) 0 0
\(664\) −254.331 + 698.769i −0.383029 + 1.05236i
\(665\) 1031.95 335.539i 1.55181 0.504571i
\(666\) 0 0
\(667\) −20.3909 + 76.1000i −0.0305711 + 0.114093i
\(668\) 23.1123 + 16.1834i 0.0345992 + 0.0242266i
\(669\) 0 0
\(670\) −748.781 + 318.023i −1.11758 + 0.474661i
\(671\) 41.8343 237.254i 0.0623462 0.353583i
\(672\) 0 0
\(673\) 7.30411 83.4864i 0.0108531 0.124051i −0.988835 0.149012i \(-0.952391\pi\)
0.999688 + 0.0249611i \(0.00794619\pi\)
\(674\) 880.301i 1.30608i
\(675\) 0 0
\(676\) −83.6010 −0.123670
\(677\) −482.612 42.2231i −0.712868 0.0623679i −0.275048 0.961430i \(-0.588694\pi\)
−0.437820 + 0.899063i \(0.644249\pi\)
\(678\) 0 0
\(679\) 664.287 + 117.132i 0.978331 + 0.172506i
\(680\) −31.6615 74.5465i −0.0465610 0.109627i
\(681\) 0 0
\(682\) −490.785 + 700.914i −0.719626 + 1.02773i
\(683\) −26.3109 7.04997i −0.0385225 0.0103221i 0.239506 0.970895i \(-0.423014\pi\)
−0.278029 + 0.960573i \(0.589681\pi\)
\(684\) 0 0
\(685\) 152.450 + 468.860i 0.222555 + 0.684467i
\(686\) −505.153 183.861i −0.736375 0.268019i
\(687\) 0 0
\(688\) −1187.97 + 103.934i −1.72670 + 0.151067i
\(689\) 277.933 331.228i 0.403386 0.480737i
\(690\) 0 0
\(691\) 348.531 + 126.855i 0.504386 + 0.183581i 0.581666 0.813428i \(-0.302401\pi\)
−0.0772797 + 0.997009i \(0.524623\pi\)
\(692\) 186.949 50.0929i 0.270158 0.0723885i
\(693\) 0 0
\(694\) −648.718 + 374.538i −0.934753 + 0.539680i
\(695\) −99.4257 430.250i −0.143059 0.619065i
\(696\) 0 0
\(697\) 21.4008 + 9.97937i 0.0307042 + 0.0143176i
\(698\) 68.8758 + 98.3648i 0.0986759 + 0.140924i
\(699\) 0 0
\(700\) −3.48753 195.132i −0.00498219 0.278760i
\(701\) 1351.23 1.92758 0.963789 0.266664i \(-0.0859216\pi\)
0.963789 + 0.266664i \(0.0859216\pi\)
\(702\) 0 0
\(703\) −1185.93 + 1185.93i −1.68696 + 1.68696i
\(704\) 300.418 + 358.024i 0.426730 + 0.508557i
\(705\) 0 0
\(706\) 98.7257 559.901i 0.139838 0.793061i
\(707\) −82.6928 38.5603i −0.116963 0.0545407i
\(708\) 0 0
\(709\) 1062.88 187.415i 1.49913 0.264337i 0.636935 0.770917i \(-0.280202\pi\)
0.862193 + 0.506580i \(0.169091\pi\)
\(710\) −741.588 157.468i −1.04449 0.221785i
\(711\) 0 0
\(712\) −325.517 + 87.2221i −0.457187 + 0.122503i
\(713\) −85.2407 + 39.7484i −0.119552 + 0.0557481i
\(714\) 0 0
\(715\) −68.2846 485.136i −0.0955030 0.678511i
\(716\) 35.4933 + 29.7824i 0.0495717 + 0.0415956i
\(717\) 0 0
\(718\) −239.306 + 111.590i −0.333295 + 0.155418i
\(719\) 133.672 + 77.1756i 0.185914 + 0.107337i 0.590068 0.807353i \(-0.299101\pi\)
−0.404154 + 0.914691i \(0.632434\pi\)
\(720\) 0 0
\(721\) −36.4914 63.2050i −0.0506122 0.0876629i
\(722\) 411.879 588.225i 0.570470 0.814716i
\(723\) 0 0
\(724\) −21.5467 59.1992i −0.0297607 0.0817668i
\(725\) −734.732 51.0692i −1.01342 0.0704403i
\(726\) 0 0
\(727\) 453.346 + 39.6627i 0.623585 + 0.0545566i 0.394569 0.918866i \(-0.370894\pi\)
0.229016 + 0.973423i \(0.426449\pi\)
\(728\) −357.170 + 357.170i −0.490619 + 0.490619i
\(729\) 0 0
\(730\) 16.5772 + 315.054i 0.0227085 + 0.431580i
\(731\) 115.271 96.7240i 0.157690 0.132317i
\(732\) 0 0
\(733\) 29.7166 + 42.4397i 0.0405411 + 0.0578987i 0.838911 0.544269i \(-0.183193\pi\)
−0.798370 + 0.602167i \(0.794304\pi\)
\(734\) −299.608 823.167i −0.408186 1.12148i
\(735\) 0 0
\(736\) −6.85522 38.8779i −0.00931416 0.0528232i
\(737\) −207.363 + 773.889i −0.281361 + 1.05005i
\(738\) 0 0
\(739\) −1051.21 606.914i −1.42247 0.821264i −0.425961 0.904742i \(-0.640064\pi\)
−0.996510 + 0.0834781i \(0.973397\pi\)
\(740\) 141.667 + 266.304i 0.191443 + 0.359870i
\(741\) 0 0
\(742\) −77.6454 887.491i −0.104643 1.19608i
\(743\) 241.327 21.1134i 0.324801 0.0284164i 0.0764106 0.997076i \(-0.475654\pi\)
0.248390 + 0.968660i \(0.420098\pi\)
\(744\) 0 0
\(745\) 921.482 + 281.515i 1.23689 + 0.377873i
\(746\) 62.1715 107.684i 0.0833398 0.144349i
\(747\) 0 0
\(748\) 23.6937 + 6.34872i 0.0316761 + 0.00848759i
\(749\) −1305.75 + 230.239i −1.74332 + 0.307395i
\(750\) 0 0
\(751\) 932.424 339.375i 1.24158 0.451897i 0.364029 0.931387i \(-0.381401\pi\)
0.877547 + 0.479491i \(0.159179\pi\)
\(752\) −943.941 + 660.955i −1.25524 + 0.878929i
\(753\) 0 0
\(754\) −376.806 449.060i −0.499743 0.595570i
\(755\) 74.5593 + 1417.02i 0.0987541 + 1.87684i
\(756\) 0 0
\(757\) 159.288 + 159.288i 0.210420 + 0.210420i 0.804446 0.594026i \(-0.202462\pi\)
−0.594026 + 0.804446i \(0.702462\pi\)
\(758\) 16.0556 183.516i 0.0211815 0.242106i
\(759\) 0 0
\(760\) 547.624 + 700.625i 0.720558 + 0.921875i
\(761\) −1023.53 + 372.536i −1.34499 + 0.489535i −0.911380 0.411567i \(-0.864982\pi\)
−0.433607 + 0.901102i \(0.642759\pi\)
\(762\) 0 0
\(763\) −115.315 80.7447i −0.151134 0.105825i
\(764\) −295.632 + 170.683i −0.386953 + 0.223407i
\(765\) 0 0
\(766\) −344.244 + 596.248i −0.449405 + 0.778392i
\(767\) 230.720 + 494.780i 0.300808 + 0.645084i
\(768\) 0 0
\(769\) 698.674 832.648i 0.908549 1.08277i −0.0876922 0.996148i \(-0.527949\pi\)
0.996241 0.0866193i \(-0.0276064\pi\)
\(770\) −806.282 607.313i −1.04712 0.788718i
\(771\) 0 0
\(772\) −0.769818 1.65088i −0.000997174 0.00213845i
\(773\) −160.753 599.939i −0.207960 0.776118i −0.988527 0.151045i \(-0.951736\pi\)
0.780567 0.625072i \(-0.214931\pi\)
\(774\) 0 0
\(775\) −517.099 711.102i −0.667225 0.917550i
\(776\) 95.9879 + 544.375i 0.123696 + 0.701514i
\(777\) 0 0
\(778\) −267.116 + 572.833i −0.343337 + 0.736289i
\(779\) −255.323 45.0204i −0.327758 0.0577926i
\(780\) 0 0
\(781\) −571.954 + 479.926i −0.732335 + 0.614502i
\(782\) 10.0127 + 10.0127i 0.0128039 + 0.0128039i
\(783\) 0 0
\(784\) 374.812i 0.478076i
\(785\) −34.9129 + 1005.79i −0.0444750 + 1.28127i
\(786\) 0 0
\(787\) −514.207 + 360.051i −0.653376 + 0.457499i −0.852676 0.522440i \(-0.825022\pi\)
0.199301 + 0.979938i \(0.436133\pi\)
\(788\) −56.4936 + 121.151i −0.0716923 + 0.153745i
\(789\) 0 0
\(790\) 589.461 943.773i 0.746153 1.19465i
\(791\) 573.468 + 993.276i 0.724991 + 1.25572i
\(792\) 0 0
\(793\) 50.9964 + 190.321i 0.0643082 + 0.240002i
\(794\) 493.936 1357.08i 0.622086 1.70917i
\(795\) 0 0
\(796\) 125.691 + 105.467i 0.157904 + 0.132497i
\(797\) −110.300 1260.73i −0.138394 1.58185i −0.674874 0.737933i \(-0.735802\pi\)
0.536480 0.843913i \(-0.319754\pi\)
\(798\) 0 0
\(799\) 49.7321 136.638i 0.0622429 0.171011i
\(800\) 344.483 132.400i 0.430604 0.165500i
\(801\) 0 0
\(802\) 161.787 603.799i 0.201730 0.752866i
\(803\) 254.517 + 178.215i 0.316958 + 0.221936i
\(804\) 0 0
\(805\) −43.3743 102.124i −0.0538811 0.126862i
\(806\) 121.521 689.180i 0.150770 0.855061i
\(807\) 0 0
\(808\) 6.51673 74.4866i 0.00806526 0.0921863i
\(809\) 817.617i 1.01065i −0.862929 0.505326i \(-0.831372\pi\)
0.862929 0.505326i \(-0.168628\pi\)
\(810\) 0 0
\(811\) −3.09205 −0.00381264 −0.00190632 0.999998i \(-0.500607\pi\)
−0.00190632 + 0.999998i \(0.500607\pi\)
\(812\) −229.106 20.0442i −0.282150 0.0246850i
\(813\) 0 0
\(814\) 1536.44 + 270.915i 1.88751 + 0.332820i
\(815\) −488.546 197.267i −0.599443 0.242045i
\(816\) 0 0
\(817\) −947.638 + 1353.37i −1.15990 + 1.65651i
\(818\) −1517.63 406.647i −1.85529 0.497124i
\(819\) 0 0
\(820\) −21.1604 + 41.5510i −0.0258053 + 0.0506719i
\(821\) −447.576 162.904i −0.545159 0.198422i 0.0547353 0.998501i \(-0.482569\pi\)
−0.599894 + 0.800079i \(0.704791\pi\)
\(822\) 0 0
\(823\) 461.104 40.3413i 0.560272 0.0490174i 0.196497 0.980504i \(-0.437043\pi\)
0.363775 + 0.931487i \(0.381488\pi\)
\(824\) 38.4441 45.8159i 0.0466555 0.0556019i
\(825\) 0 0
\(826\) 1056.98 + 384.711i 1.27964 + 0.465752i
\(827\) −307.391 + 82.3651i −0.371694 + 0.0995950i −0.439830 0.898081i \(-0.644961\pi\)
0.0681365 + 0.997676i \(0.478295\pi\)
\(828\) 0 0
\(829\) 120.093 69.3356i 0.144865 0.0836377i −0.425816 0.904810i \(-0.640013\pi\)
0.570680 + 0.821172i \(0.306680\pi\)
\(830\) 1184.16 273.646i 1.42670 0.329694i
\(831\) 0 0
\(832\) −346.429 161.543i −0.416381 0.194162i
\(833\) −27.1275 38.7420i −0.0325660 0.0465090i
\(834\) 0 0
\(835\) −5.20202 + 149.863i −0.00622996 + 0.179477i
\(836\) −269.323 −0.322157
\(837\) 0 0
\(838\) −340.973 + 340.973i −0.406890 + 0.406890i
\(839\) 813.216 + 969.153i 0.969268 + 1.15513i 0.987867 + 0.155302i \(0.0496349\pi\)
−0.0185992 + 0.999827i \(0.505921\pi\)
\(840\) 0 0
\(841\) −4.67146 + 26.4932i −0.00555465 + 0.0315020i
\(842\) 1170.91 + 546.005i 1.39063 + 0.648462i
\(843\) 0 0
\(844\) −232.660 + 41.0243i −0.275664 + 0.0486070i
\(845\) −242.069 372.583i −0.286472 0.440926i
\(846\) 0 0
\(847\) 9.58422 2.56808i 0.0113155 0.00303198i
\(848\) 826.398 385.356i 0.974526 0.454429i
\(849\) 0 0
\(850\) −73.9763 + 109.773i −0.0870310 + 0.129145i
\(851\) 131.368 + 110.230i 0.154368 + 0.129531i
\(852\) 0 0
\(853\) −1432.03 + 667.765i −1.67881 + 0.782843i −0.680046 + 0.733169i \(0.738040\pi\)
−0.998765 + 0.0496738i \(0.984182\pi\)
\(854\) 351.577 + 202.983i 0.411683 + 0.237685i
\(855\) 0 0
\(856\) −543.275 940.980i −0.634667 1.09928i
\(857\) 106.121 151.557i 0.123829 0.176846i −0.752451 0.658648i \(-0.771129\pi\)
0.876280 + 0.481802i \(0.160018\pi\)
\(858\) 0 0
\(859\) 224.945 + 618.032i 0.261869 + 0.719478i 0.999041 + 0.0437739i \(0.0139381\pi\)
−0.737173 + 0.675704i \(0.763840\pi\)
\(860\) 182.989 + 234.114i 0.212778 + 0.272226i
\(861\) 0 0
\(862\) 436.892 + 38.2231i 0.506835 + 0.0443423i
\(863\) 1010.20 1010.20i 1.17057 1.17057i 0.188492 0.982075i \(-0.439640\pi\)
0.982075 0.188492i \(-0.0603600\pi\)
\(864\) 0 0
\(865\) 764.563 + 688.127i 0.883888 + 0.795522i
\(866\) −112.861 + 94.7020i −0.130325 + 0.109356i
\(867\) 0 0
\(868\) −157.476 224.899i −0.181424 0.259100i
\(869\) −374.809 1029.78i −0.431311 1.18502i
\(870\) 0 0
\(871\) −113.785 645.309i −0.130638 0.740883i
\(872\) 29.8580 111.432i 0.0342408 0.127789i
\(873\) 0 0
\(874\) −134.642 77.7356i −0.154053 0.0889423i
\(875\) 859.541 580.551i 0.982332 0.663487i
\(876\) 0 0
\(877\) −138.564 1583.79i −0.157997 1.80592i −0.499795 0.866144i \(-0.666591\pi\)
0.341797 0.939774i \(-0.388964\pi\)
\(878\) 801.927 70.1595i 0.913356 0.0799083i
\(879\) 0 0
\(880\) 301.858 988.070i 0.343020 1.12281i
\(881\) 30.9598 53.6239i 0.0351416 0.0608671i −0.847920 0.530125i \(-0.822145\pi\)
0.883061 + 0.469258i \(0.155478\pi\)
\(882\) 0 0
\(883\) 1221.46 + 327.290i 1.38331 + 0.370657i 0.872322 0.488931i \(-0.162613\pi\)
0.510988 + 0.859588i \(0.329280\pi\)
\(884\) −19.7570 + 3.48370i −0.0223496 + 0.00394084i
\(885\) 0 0
\(886\) 1145.75 417.018i 1.29317 0.470675i
\(887\) −250.884 + 175.671i −0.282846 + 0.198051i −0.706387 0.707826i \(-0.749676\pi\)
0.423541 + 0.905877i \(0.360787\pi\)
\(888\) 0 0
\(889\) −1183.94 1410.97i −1.33177 1.58714i
\(890\) 409.398 + 368.469i 0.459998 + 0.414010i
\(891\) 0 0
\(892\) 211.482 + 211.482i 0.237088 + 0.237088i
\(893\) −139.144 + 1590.43i −0.155817 + 1.78099i
\(894\) 0 0
\(895\) −29.9590 + 244.418i −0.0334737 + 0.273093i
\(896\) −1200.49 + 436.943i −1.33983 + 0.487660i
\(897\) 0 0
\(898\) 463.403 + 324.478i 0.516039 + 0.361334i
\(899\) −897.288 + 518.049i −0.998095 + 0.576251i
\(900\) 0 0
\(901\) −57.5291 + 99.6434i −0.0638503 + 0.110592i
\(902\) 101.924 + 218.576i 0.112997 + 0.242324i
\(903\) 0 0
\(904\) −604.156 + 720.005i −0.668314 + 0.796465i
\(905\) 201.442 267.439i 0.222588 0.295513i
\(906\) 0 0
\(907\) −439.998 943.579i −0.485114 1.04033i −0.984731 0.174083i \(-0.944304\pi\)
0.499617 0.866246i \(-0.333474\pi\)
\(908\) −108.865 406.289i −0.119895 0.447455i
\(909\) 0 0
\(910\) 807.559 + 171.476i 0.887428 + 0.188435i
\(911\) −65.8449 373.425i −0.0722776 0.409907i −0.999384 0.0351074i \(-0.988823\pi\)
0.927106 0.374799i \(-0.122288\pi\)
\(912\) 0 0
\(913\) 505.853 1084.81i 0.554056 1.18818i
\(914\) 154.409 + 27.2264i 0.168937 + 0.0297882i
\(915\) 0 0
\(916\) 30.0859 25.2451i 0.0328448 0.0275601i
\(917\) −1301.63 1301.63i −1.41944 1.41944i
\(918\) 0 0
\(919\) 1242.02i 1.35149i 0.737135 + 0.675745i \(0.236178\pi\)
−0.737135 + 0.675745i \(0.763822\pi\)
\(920\) 66.4854 62.0245i 0.0722667 0.0674180i
\(921\) 0 0
\(922\) 1118.84 783.421i 1.21349 0.849697i
\(923\) 258.069 553.431i 0.279598 0.599600i
\(924\) 0 0
\(925\) −776.628 + 1402.45i −0.839598 + 1.51617i
\(926\) 133.229 + 230.760i 0.143876 + 0.249201i
\(927\) 0 0
\(928\) −112.558 420.073i −0.121291 0.452665i
\(929\) 246.952 678.494i 0.265825 0.730349i −0.732922 0.680312i \(-0.761844\pi\)
0.998747 0.0500361i \(-0.0159337\pi\)
\(930\) 0 0
\(931\) 397.792 + 333.787i 0.427274 + 0.358526i
\(932\) −8.08260 92.3846i −0.00867232 0.0991251i
\(933\) 0 0
\(934\) 388.021 1066.08i 0.415440 1.14141i
\(935\) 40.3115 + 123.978i 0.0431139 + 0.132597i
\(936\) 0 0
\(937\) 63.1470 235.668i 0.0673928 0.251513i −0.924008 0.382373i \(-0.875107\pi\)
0.991401 + 0.130859i \(0.0417737\pi\)
\(938\) −1105.93 774.380i −1.17903 0.825565i
\(939\) 0 0
\(940\) 266.248 + 107.507i 0.283243 + 0.114369i
\(941\) −135.021 + 765.742i −0.143487 + 0.813754i 0.825083 + 0.565012i \(0.191128\pi\)
−0.968570 + 0.248742i \(0.919983\pi\)
\(942\) 0 0
\(943\) −2.31044 + 26.4084i −0.00245009 + 0.0280047i
\(944\) 1151.27i 1.21956i
\(945\) 0 0
\(946\) 1536.88 1.62460
\(947\) 765.633 + 66.9842i 0.808482 + 0.0707331i 0.483899 0.875124i \(-0.339220\pi\)
0.324584 + 0.945857i \(0.394776\pi\)
\(948\) 0 0
\(949\) −250.256 44.1269i −0.263705 0.0464984i
\(950\) 472.606 1374.41i 0.497480 1.44675i
\(951\) 0 0
\(952\) 77.0951 110.103i 0.0809823 0.115655i
\(953\) 1207.46 + 323.539i 1.26701 + 0.339496i 0.828886 0.559417i \(-0.188975\pi\)
0.438128 + 0.898913i \(0.355642\pi\)
\(954\) 0 0
\(955\) −1616.69 823.319i −1.69287 0.862114i
\(956\) 88.0954 + 32.0641i 0.0921500 + 0.0335399i
\(957\) 0 0
\(958\) −71.3913 + 6.24593i −0.0745212 + 0.00651976i
\(959\) −525.932 + 626.781i −0.548417 + 0.653578i
\(960\) 0 0
\(961\) −259.253 94.3605i −0.269774 0.0981899i
\(962\) −1232.50 + 330.248i −1.28119 + 0.343293i
\(963\) 0 0
\(964\) −126.304 + 72.9218i −0.131021 + 0.0756450i
\(965\) 5.12841 8.21099i 0.00531442 0.00850880i
\(966\) 0 0
\(967\) 323.258 + 150.738i 0.334290 + 0.155882i 0.582514 0.812821i \(-0.302069\pi\)
−0.248224 + 0.968703i \(0.579847\pi\)
\(968\) 4.66387 + 6.66070i 0.00481805 + 0.00688089i
\(969\) 0 0
\(970\) 660.617 616.293i 0.681048 0.635354i
\(971\) −1720.12 −1.77149 −0.885745 0.464172i \(-0.846352\pi\)
−0.885745 + 0.464172i \(0.846352\pi\)
\(972\) 0 0
\(973\) 518.202 518.202i 0.532581 0.532581i
\(974\) −1028.31 1225.50i −1.05576 1.25821i
\(975\) 0 0
\(976\) −72.1530 + 409.200i −0.0739272 + 0.419262i
\(977\) 1417.23 + 660.867i 1.45060 + 0.676425i 0.978713 0.205235i \(-0.0657958\pi\)
0.471886 + 0.881660i \(0.343574\pi\)
\(978\) 0 0
\(979\) 534.208 94.1952i 0.545667 0.0962157i
\(980\) 78.3159 50.8822i 0.0799142 0.0519206i
\(981\) 0 0
\(982\) 413.639 110.834i 0.421221 0.112866i
\(983\) 736.233 343.311i 0.748966 0.349248i −0.0103711 0.999946i \(-0.503301\pi\)
0.759337 + 0.650698i \(0.225524\pi\)
\(984\) 0 0
\(985\) −703.508 + 99.0214i −0.714222 + 0.100529i
\(986\) 119.495 + 100.268i 0.121192 + 0.101692i
\(987\) 0 0
\(988\) 199.632 93.0901i 0.202057 0.0942207i
\(989\) 146.299 + 84.4656i 0.147926 + 0.0854051i
\(990\) 0 0
\(991\) 216.645 + 375.241i 0.218613 + 0.378649i 0.954384 0.298582i \(-0.0965135\pi\)
−0.735771 + 0.677230i \(0.763180\pi\)
\(992\) 297.785 425.281i 0.300187 0.428711i
\(993\) 0 0
\(994\) −430.315 1182.28i −0.432912 1.18942i
\(995\) −106.093 + 865.548i −0.106626 + 0.869898i
\(996\) 0 0
\(997\) 549.144 + 48.0439i 0.550797 + 0.0481885i 0.359157 0.933277i \(-0.383064\pi\)
0.191639 + 0.981465i \(0.438620\pi\)
\(998\) 335.722 335.722i 0.336395 0.336395i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.37.26 408
3.2 odd 2 135.3.r.a.22.9 408
5.3 odd 4 inner 405.3.s.a.118.26 408
15.8 even 4 135.3.r.a.103.9 yes 408
27.11 odd 18 135.3.r.a.97.9 yes 408
27.16 even 9 inner 405.3.s.a.127.26 408
135.38 even 36 135.3.r.a.43.9 yes 408
135.43 odd 36 inner 405.3.s.a.208.26 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.9 408 3.2 odd 2
135.3.r.a.43.9 yes 408 135.38 even 36
135.3.r.a.97.9 yes 408 27.11 odd 18
135.3.r.a.103.9 yes 408 15.8 even 4
405.3.s.a.37.26 408 1.1 even 1 trivial
405.3.s.a.118.26 408 5.3 odd 4 inner
405.3.s.a.127.26 408 27.16 even 9 inner
405.3.s.a.208.26 408 135.43 odd 36 inner