Properties

Label 405.3.s.a.118.26
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.26
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.193729 - 2.21433i) q^{2} +(-0.926495 - 0.163366i) q^{4} +(-1.46086 - 4.78183i) q^{5} +(6.79720 + 4.75945i) q^{7} +(1.75996 - 6.56828i) q^{8} +(-10.8716 + 2.30845i) q^{10} +(10.2854 + 3.74359i) q^{11} +(-0.780213 - 8.91787i) q^{13} +(11.8558 - 14.1292i) q^{14} +(-17.7396 - 6.45668i) q^{16} +(-0.616536 - 2.30094i) q^{17} +(22.6505 - 13.0773i) q^{19} +(0.572291 + 4.66899i) q^{20} +(10.2821 - 22.0501i) q^{22} +(-2.19063 + 1.53390i) q^{23} +(-20.7318 + 13.9712i) q^{25} -19.8983 q^{26} +(-5.52004 - 5.52004i) q^{28} +(-18.9366 - 22.5678i) q^{29} +(-6.10711 + 34.6352i) q^{31} +(-6.23870 + 13.3789i) q^{32} +(-5.21449 + 0.919455i) q^{34} +(12.8291 - 39.4560i) q^{35} +(-16.5968 - 61.9402i) q^{37} +(-24.5693 - 52.6890i) q^{38} +(-33.9794 + 1.17949i) q^{40} +(7.59358 + 6.37177i) q^{41} +(26.6964 + 57.2506i) q^{43} +(-8.91781 - 5.14870i) q^{44} +(2.97217 + 5.14795i) q^{46} +(-50.0020 - 35.0118i) q^{47} +(6.79059 + 18.6570i) q^{49} +(26.9204 + 48.6136i) q^{50} +(-0.734014 + 8.38982i) q^{52} +(-34.1539 - 34.1539i) q^{53} +(2.87563 - 54.6520i) q^{55} +(43.2242 - 36.2694i) q^{56} +(-53.6411 + 37.5599i) q^{58} +(20.8579 + 57.3066i) q^{59} +(-3.82205 - 21.6759i) q^{61} +(75.5106 + 20.2330i) q^{62} +(-36.9788 - 21.3497i) q^{64} +(-41.5040 + 16.7586i) q^{65} +(72.9194 - 6.37962i) q^{67} +(0.195321 + 2.23253i) q^{68} +(-84.8831 - 36.0517i) q^{70} +(-34.1068 + 59.0747i) q^{71} +(-7.34705 + 27.4196i) q^{73} +(-140.371 + 24.7513i) q^{74} +(-23.1219 + 8.41569i) q^{76} +(52.0946 + 74.3989i) q^{77} +(64.3561 + 76.6966i) q^{79} +(-4.95969 + 94.2600i) q^{80} +(15.5803 - 15.5803i) q^{82} +(108.939 + 9.53095i) q^{83} +(-10.1020 + 6.30952i) q^{85} +(131.944 - 48.0236i) q^{86} +(42.6909 - 60.9689i) q^{88} +(-42.9194 + 24.7795i) q^{89} +(37.1409 - 64.3300i) q^{91} +(2.28020 - 1.06327i) q^{92} +(-87.2144 + 103.938i) q^{94} +(-95.6224 - 89.2066i) q^{95} +(-73.6740 + 34.3548i) q^{97} +(42.6283 - 11.4222i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.193729 2.21433i 0.0968644 1.10716i −0.779789 0.626042i \(-0.784674\pi\)
0.876653 0.481122i \(-0.159771\pi\)
\(3\) 0 0
\(4\) −0.926495 0.163366i −0.231624 0.0408415i
\(5\) −1.46086 4.78183i −0.292172 0.956366i
\(6\) 0 0
\(7\) 6.79720 + 4.75945i 0.971029 + 0.679922i 0.947485 0.319801i \(-0.103616\pi\)
0.0235443 + 0.999723i \(0.492505\pi\)
\(8\) 1.75996 6.56828i 0.219996 0.821035i
\(9\) 0 0
\(10\) −10.8716 + 2.30845i −1.08716 + 0.230845i
\(11\) 10.2854 + 3.74359i 0.935038 + 0.340326i 0.764205 0.644974i \(-0.223132\pi\)
0.170833 + 0.985300i \(0.445354\pi\)
\(12\) 0 0
\(13\) −0.780213 8.91787i −0.0600164 0.685990i −0.965293 0.261168i \(-0.915892\pi\)
0.905277 0.424822i \(-0.139663\pi\)
\(14\) 11.8558 14.1292i 0.846844 1.00923i
\(15\) 0 0
\(16\) −17.7396 6.45668i −1.10872 0.403542i
\(17\) −0.616536 2.30094i −0.0362668 0.135350i 0.945419 0.325858i \(-0.105653\pi\)
−0.981686 + 0.190508i \(0.938986\pi\)
\(18\) 0 0
\(19\) 22.6505 13.0773i 1.19213 0.688276i 0.233341 0.972395i \(-0.425034\pi\)
0.958789 + 0.284119i \(0.0917009\pi\)
\(20\) 0.572291 + 4.66899i 0.0286146 + 0.233450i
\(21\) 0 0
\(22\) 10.2821 22.0501i 0.467369 1.00228i
\(23\) −2.19063 + 1.53390i −0.0952450 + 0.0666912i −0.620229 0.784421i \(-0.712960\pi\)
0.524984 + 0.851112i \(0.324071\pi\)
\(24\) 0 0
\(25\) −20.7318 + 13.9712i −0.829271 + 0.558847i
\(26\) −19.8983 −0.765318
\(27\) 0 0
\(28\) −5.52004 5.52004i −0.197144 0.197144i
\(29\) −18.9366 22.5678i −0.652987 0.778200i 0.333374 0.942795i \(-0.391813\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(30\) 0 0
\(31\) −6.10711 + 34.6352i −0.197004 + 1.11726i 0.712533 + 0.701639i \(0.247548\pi\)
−0.909536 + 0.415624i \(0.863563\pi\)
\(32\) −6.23870 + 13.3789i −0.194959 + 0.418092i
\(33\) 0 0
\(34\) −5.21449 + 0.919455i −0.153367 + 0.0270428i
\(35\) 12.8291 39.4560i 0.366546 1.12731i
\(36\) 0 0
\(37\) −16.5968 61.9402i −0.448563 1.67406i −0.706354 0.707859i \(-0.749661\pi\)
0.257791 0.966201i \(-0.417006\pi\)
\(38\) −24.5693 52.6890i −0.646561 1.38655i
\(39\) 0 0
\(40\) −33.9794 + 1.17949i −0.849486 + 0.0294872i
\(41\) 7.59358 + 6.37177i 0.185209 + 0.155409i 0.730678 0.682722i \(-0.239204\pi\)
−0.545469 + 0.838131i \(0.683648\pi\)
\(42\) 0 0
\(43\) 26.6964 + 57.2506i 0.620847 + 1.33141i 0.925428 + 0.378924i \(0.123706\pi\)
−0.304581 + 0.952486i \(0.598516\pi\)
\(44\) −8.91781 5.14870i −0.202678 0.117016i
\(45\) 0 0
\(46\) 2.97217 + 5.14795i 0.0646124 + 0.111912i
\(47\) −50.0020 35.0118i −1.06387 0.744931i −0.0957488 0.995406i \(-0.530525\pi\)
−0.968123 + 0.250474i \(0.919413\pi\)
\(48\) 0 0
\(49\) 6.79059 + 18.6570i 0.138583 + 0.380755i
\(50\) 26.9204 + 48.6136i 0.538409 + 0.972272i
\(51\) 0 0
\(52\) −0.734014 + 8.38982i −0.0141157 + 0.161343i
\(53\) −34.1539 34.1539i −0.644414 0.644414i 0.307223 0.951637i \(-0.400600\pi\)
−0.951637 + 0.307223i \(0.900600\pi\)
\(54\) 0 0
\(55\) 2.87563 54.6520i 0.0522841 0.993672i
\(56\) 43.2242 36.2694i 0.771862 0.647669i
\(57\) 0 0
\(58\) −53.6411 + 37.5599i −0.924847 + 0.647585i
\(59\) 20.8579 + 57.3066i 0.353524 + 0.971299i 0.981229 + 0.192847i \(0.0617723\pi\)
−0.627705 + 0.778451i \(0.716006\pi\)
\(60\) 0 0
\(61\) −3.82205 21.6759i −0.0626566 0.355343i −0.999976 0.00687287i \(-0.997812\pi\)
0.937320 0.348470i \(-0.113299\pi\)
\(62\) 75.5106 + 20.2330i 1.21791 + 0.326339i
\(63\) 0 0
\(64\) −36.9788 21.3497i −0.577794 0.333589i
\(65\) −41.5040 + 16.7586i −0.638522 + 0.257825i
\(66\) 0 0
\(67\) 72.9194 6.37962i 1.08835 0.0952183i 0.471172 0.882042i \(-0.343831\pi\)
0.617178 + 0.786823i \(0.288276\pi\)
\(68\) 0.195321 + 2.23253i 0.00287237 + 0.0328314i
\(69\) 0 0
\(70\) −84.8831 36.0517i −1.21262 0.515024i
\(71\) −34.1068 + 59.0747i −0.480377 + 0.832038i −0.999747 0.0225119i \(-0.992834\pi\)
0.519369 + 0.854550i \(0.326167\pi\)
\(72\) 0 0
\(73\) −7.34705 + 27.4196i −0.100644 + 0.375610i −0.997815 0.0660747i \(-0.978952\pi\)
0.897170 + 0.441685i \(0.145619\pi\)
\(74\) −140.371 + 24.7513i −1.89691 + 0.334476i
\(75\) 0 0
\(76\) −23.1219 + 8.41569i −0.304236 + 0.110733i
\(77\) 52.0946 + 74.3989i 0.676554 + 0.966219i
\(78\) 0 0
\(79\) 64.3561 + 76.6966i 0.814634 + 0.970843i 0.999930 0.0118396i \(-0.00376873\pi\)
−0.185296 + 0.982683i \(0.559324\pi\)
\(80\) −4.95969 + 94.2600i −0.0619961 + 1.17825i
\(81\) 0 0
\(82\) 15.5803 15.5803i 0.190004 0.190004i
\(83\) 108.939 + 9.53095i 1.31252 + 0.114831i 0.721832 0.692068i \(-0.243300\pi\)
0.590689 + 0.806899i \(0.298856\pi\)
\(84\) 0 0
\(85\) −10.1020 + 6.30952i −0.118848 + 0.0742297i
\(86\) 131.944 48.0236i 1.53423 0.558414i
\(87\) 0 0
\(88\) 42.6909 60.9689i 0.485124 0.692828i
\(89\) −42.9194 + 24.7795i −0.482240 + 0.278421i −0.721349 0.692571i \(-0.756478\pi\)
0.239110 + 0.970993i \(0.423144\pi\)
\(90\) 0 0
\(91\) 37.1409 64.3300i 0.408142 0.706923i
\(92\) 2.28020 1.06327i 0.0247848 0.0115573i
\(93\) 0 0
\(94\) −87.2144 + 103.938i −0.927813 + 1.10572i
\(95\) −95.6224 89.2066i −1.00655 0.939017i
\(96\) 0 0
\(97\) −73.6740 + 34.3548i −0.759526 + 0.354173i −0.763490 0.645819i \(-0.776516\pi\)
0.00396432 + 0.999992i \(0.498738\pi\)
\(98\) 42.6283 11.4222i 0.434982 0.116553i
\(99\) 0 0
\(100\) 21.4903 9.55735i 0.214903 0.0955735i
\(101\) 1.90940 + 10.8287i 0.0189049 + 0.107215i 0.992800 0.119783i \(-0.0382199\pi\)
−0.973895 + 0.226998i \(0.927109\pi\)
\(102\) 0 0
\(103\) −7.97133 3.71709i −0.0773915 0.0360883i 0.383537 0.923525i \(-0.374706\pi\)
−0.460929 + 0.887437i \(0.652484\pi\)
\(104\) −59.9482 10.5705i −0.576425 0.101639i
\(105\) 0 0
\(106\) −82.2447 + 69.0115i −0.775893 + 0.651052i
\(107\) 112.987 112.987i 1.05595 1.05595i 0.0576110 0.998339i \(-0.481652\pi\)
0.998339 0.0576110i \(-0.0183483\pi\)
\(108\) 0 0
\(109\) 16.9651i 0.155643i −0.996967 0.0778217i \(-0.975204\pi\)
0.996967 0.0778217i \(-0.0247965\pi\)
\(110\) −120.460 16.9552i −1.09509 0.154139i
\(111\) 0 0
\(112\) −89.8493 128.318i −0.802226 1.14570i
\(113\) 125.271 + 58.4147i 1.10859 + 0.516944i 0.888658 0.458571i \(-0.151639\pi\)
0.219932 + 0.975515i \(0.429416\pi\)
\(114\) 0 0
\(115\) 10.5351 + 8.23443i 0.0916091 + 0.0716037i
\(116\) 13.8579 + 24.0026i 0.119464 + 0.206919i
\(117\) 0 0
\(118\) 130.937 35.0843i 1.10963 0.297325i
\(119\) 6.76051 18.5743i 0.0568110 0.156087i
\(120\) 0 0
\(121\) −0.916012 0.768626i −0.00757035 0.00635228i
\(122\) −48.7381 + 4.26403i −0.399493 + 0.0349511i
\(123\) 0 0
\(124\) 11.3164 31.0916i 0.0912614 0.250739i
\(125\) 97.0940 + 78.7259i 0.776752 + 0.629807i
\(126\) 0 0
\(127\) 214.408 + 57.4505i 1.68825 + 0.452366i 0.969938 0.243353i \(-0.0782474\pi\)
0.718314 + 0.695719i \(0.244914\pi\)
\(128\) −88.3078 + 126.117i −0.689904 + 0.985285i
\(129\) 0 0
\(130\) 29.0686 + 95.1501i 0.223604 + 0.731924i
\(131\) −38.5218 + 218.468i −0.294059 + 1.66769i 0.376942 + 0.926237i \(0.376976\pi\)
−0.671001 + 0.741456i \(0.734135\pi\)
\(132\) 0 0
\(133\) 216.200 + 18.9151i 1.62557 + 0.142219i
\(134\) 162.704i 1.21421i
\(135\) 0 0
\(136\) −16.1983 −0.119105
\(137\) 8.59393 98.2291i 0.0627295 0.717001i −0.898087 0.439817i \(-0.855043\pi\)
0.960817 0.277184i \(-0.0894011\pi\)
\(138\) 0 0
\(139\) 86.9760 + 15.3362i 0.625727 + 0.110332i 0.477516 0.878623i \(-0.341537\pi\)
0.148211 + 0.988956i \(0.452649\pi\)
\(140\) −18.3319 + 34.4599i −0.130942 + 0.246142i
\(141\) 0 0
\(142\) 124.203 + 86.9682i 0.874672 + 0.612452i
\(143\) 25.3600 94.6448i 0.177343 0.661852i
\(144\) 0 0
\(145\) −80.2516 + 123.520i −0.553459 + 0.851863i
\(146\) 59.2926 + 21.5807i 0.406114 + 0.147813i
\(147\) 0 0
\(148\) 5.25795 + 60.0986i 0.0355267 + 0.406072i
\(149\) −123.868 + 147.621i −0.831331 + 0.990742i 0.168656 + 0.985675i \(0.446057\pi\)
−0.999987 + 0.00506714i \(0.998387\pi\)
\(150\) 0 0
\(151\) 266.680 + 97.0637i 1.76610 + 0.642806i 1.00000 7.97203e-5i \(2.53758e-5\pi\)
0.766096 + 0.642727i \(0.222197\pi\)
\(152\) −46.0310 171.790i −0.302836 1.13020i
\(153\) 0 0
\(154\) 174.836 100.942i 1.13530 0.655464i
\(155\) 174.541 21.3940i 1.12607 0.138026i
\(156\) 0 0
\(157\) 85.0646 182.422i 0.541813 1.16192i −0.424707 0.905331i \(-0.639623\pi\)
0.966520 0.256591i \(-0.0825993\pi\)
\(158\) 182.299 127.647i 1.15379 0.807894i
\(159\) 0 0
\(160\) 73.0896 + 10.2876i 0.456810 + 0.0642977i
\(161\) −22.1907 −0.137830
\(162\) 0 0
\(163\) −74.5106 74.5106i −0.457121 0.457121i 0.440589 0.897709i \(-0.354770\pi\)
−0.897709 + 0.440589i \(0.854770\pi\)
\(164\) −5.99448 7.14395i −0.0365517 0.0435606i
\(165\) 0 0
\(166\) 42.2093 239.381i 0.254273 1.44205i
\(167\) 12.6746 27.1808i 0.0758960 0.162759i −0.864699 0.502291i \(-0.832491\pi\)
0.940595 + 0.339531i \(0.110268\pi\)
\(168\) 0 0
\(169\) 87.5128 15.4309i 0.517827 0.0913069i
\(170\) 12.0143 + 23.5916i 0.0706724 + 0.138774i
\(171\) 0 0
\(172\) −15.3813 57.4037i −0.0894260 0.333743i
\(173\) 86.9434 + 186.451i 0.502563 + 1.07775i 0.979984 + 0.199075i \(0.0637937\pi\)
−0.477421 + 0.878674i \(0.658428\pi\)
\(174\) 0 0
\(175\) −207.413 3.70703i −1.18522 0.0211831i
\(176\) −158.288 132.819i −0.899363 0.754655i
\(177\) 0 0
\(178\) 46.5553 + 99.8381i 0.261546 + 0.560888i
\(179\) −42.6513 24.6247i −0.238275 0.137568i 0.376109 0.926576i \(-0.377262\pi\)
−0.614384 + 0.789007i \(0.710595\pi\)
\(180\) 0 0
\(181\) −33.4818 57.9921i −0.184982 0.320398i 0.758588 0.651570i \(-0.225889\pi\)
−0.943570 + 0.331172i \(0.892556\pi\)
\(182\) −135.253 94.7048i −0.743146 0.520356i
\(183\) 0 0
\(184\) 6.21963 + 17.0883i 0.0338024 + 0.0928712i
\(185\) −271.942 + 169.849i −1.46996 + 0.918104i
\(186\) 0 0
\(187\) 2.27245 25.9742i 0.0121521 0.138900i
\(188\) 40.6068 + 40.6068i 0.215994 + 0.215994i
\(189\) 0 0
\(190\) −216.058 + 194.458i −1.13715 + 1.02346i
\(191\) −277.961 + 233.237i −1.45529 + 1.22113i −0.526688 + 0.850058i \(0.676567\pi\)
−0.928603 + 0.371076i \(0.878989\pi\)
\(192\) 0 0
\(193\) 1.58604 1.11055i 0.00821780 0.00575416i −0.569460 0.822019i \(-0.692848\pi\)
0.577678 + 0.816265i \(0.303959\pi\)
\(194\) 61.8000 + 169.794i 0.318557 + 0.875227i
\(195\) 0 0
\(196\) −3.24353 18.3950i −0.0165486 0.0938518i
\(197\) 137.247 + 36.7752i 0.696685 + 0.186676i 0.589745 0.807589i \(-0.299228\pi\)
0.106940 + 0.994265i \(0.465895\pi\)
\(198\) 0 0
\(199\) −151.039 87.2026i −0.758992 0.438204i 0.0699420 0.997551i \(-0.477719\pi\)
−0.828934 + 0.559347i \(0.811052\pi\)
\(200\) 55.2793 + 160.761i 0.276397 + 0.803804i
\(201\) 0 0
\(202\) 24.3483 2.13020i 0.120536 0.0105455i
\(203\) −21.3058 243.526i −0.104954 1.19964i
\(204\) 0 0
\(205\) 19.3756 45.6195i 0.0945149 0.222534i
\(206\) −9.77514 + 16.9310i −0.0474521 + 0.0821895i
\(207\) 0 0
\(208\) −43.7392 + 163.237i −0.210285 + 0.784793i
\(209\) 281.925 49.7110i 1.34892 0.237852i
\(210\) 0 0
\(211\) −235.974 + 85.8877i −1.11836 + 0.407051i −0.834054 0.551682i \(-0.813986\pi\)
−0.284308 + 0.958733i \(0.591764\pi\)
\(212\) 26.0639 + 37.2230i 0.122943 + 0.175580i
\(213\) 0 0
\(214\) −228.301 272.079i −1.06683 1.27139i
\(215\) 234.763 211.293i 1.09192 0.982758i
\(216\) 0 0
\(217\) −206.356 + 206.356i −0.950948 + 0.950948i
\(218\) −37.5664 3.28663i −0.172323 0.0150763i
\(219\) 0 0
\(220\) −11.5925 + 50.1650i −0.0526933 + 0.228023i
\(221\) −20.0385 + 7.29341i −0.0906719 + 0.0330019i
\(222\) 0 0
\(223\) −182.343 + 260.413i −0.817681 + 1.16777i 0.165693 + 0.986177i \(0.447014\pi\)
−0.983374 + 0.181592i \(0.941875\pi\)
\(224\) −106.082 + 61.2465i −0.473581 + 0.273422i
\(225\) 0 0
\(226\) 153.618 266.074i 0.679725 1.17732i
\(227\) −405.205 + 188.950i −1.78505 + 0.832381i −0.819094 + 0.573660i \(0.805523\pi\)
−0.965952 + 0.258721i \(0.916699\pi\)
\(228\) 0 0
\(229\) −26.8340 + 31.9795i −0.117179 + 0.139648i −0.821445 0.570288i \(-0.806832\pi\)
0.704266 + 0.709936i \(0.251276\pi\)
\(230\) 20.2747 21.7328i 0.0881508 0.0944906i
\(231\) 0 0
\(232\) −181.559 + 84.6625i −0.782584 + 0.364925i
\(233\) 95.2155 25.5129i 0.408650 0.109497i −0.0486371 0.998817i \(-0.515488\pi\)
0.457287 + 0.889319i \(0.348821\pi\)
\(234\) 0 0
\(235\) −94.3744 + 290.248i −0.401593 + 1.23510i
\(236\) −9.96279 56.5018i −0.0422152 0.239414i
\(237\) 0 0
\(238\) −39.8200 18.5684i −0.167311 0.0780184i
\(239\) −98.1358 17.3040i −0.410610 0.0724016i −0.0354721 0.999371i \(-0.511293\pi\)
−0.375138 + 0.926969i \(0.622405\pi\)
\(240\) 0 0
\(241\) −118.754 + 99.6468i −0.492757 + 0.413472i −0.855013 0.518606i \(-0.826451\pi\)
0.362256 + 0.932079i \(0.382007\pi\)
\(242\) −1.87945 + 1.87945i −0.00776632 + 0.00776632i
\(243\) 0 0
\(244\) 20.7070i 0.0848649i
\(245\) 79.2945 59.7267i 0.323651 0.243782i
\(246\) 0 0
\(247\) −134.293 191.791i −0.543698 0.776481i
\(248\) 216.745 + 101.070i 0.873972 + 0.407540i
\(249\) 0 0
\(250\) 193.135 199.747i 0.772540 0.798986i
\(251\) 8.98206 + 15.5574i 0.0357851 + 0.0619816i 0.883363 0.468689i \(-0.155273\pi\)
−0.847578 + 0.530671i \(0.821940\pi\)
\(252\) 0 0
\(253\) −28.2739 + 7.57596i −0.111754 + 0.0299445i
\(254\) 168.751 463.640i 0.664375 1.82536i
\(255\) 0 0
\(256\) 131.317 + 110.188i 0.512958 + 0.430423i
\(257\) −10.1033 + 0.883925i −0.0393125 + 0.00343939i −0.106795 0.994281i \(-0.534059\pi\)
0.0674825 + 0.997720i \(0.478503\pi\)
\(258\) 0 0
\(259\) 181.990 500.012i 0.702662 1.93055i
\(260\) 41.1910 8.74643i 0.158427 0.0336401i
\(261\) 0 0
\(262\) 476.297 + 127.623i 1.81793 + 0.487112i
\(263\) 8.96289 12.8003i 0.0340794 0.0486704i −0.801751 0.597658i \(-0.796098\pi\)
0.835830 + 0.548988i \(0.184987\pi\)
\(264\) 0 0
\(265\) −113.424 + 213.212i −0.428016 + 0.804575i
\(266\) 83.7685 475.075i 0.314919 1.78599i
\(267\) 0 0
\(268\) −68.6017 6.00187i −0.255976 0.0223950i
\(269\) 302.818i 1.12572i 0.826553 + 0.562859i \(0.190298\pi\)
−0.826553 + 0.562859i \(0.809702\pi\)
\(270\) 0 0
\(271\) −467.978 −1.72686 −0.863428 0.504471i \(-0.831687\pi\)
−0.863428 + 0.504471i \(0.831687\pi\)
\(272\) −3.91936 + 44.7985i −0.0144094 + 0.164701i
\(273\) 0 0
\(274\) −215.847 38.0596i −0.787762 0.138904i
\(275\) −265.537 + 66.0881i −0.965590 + 0.240320i
\(276\) 0 0
\(277\) −153.631 107.574i −0.554626 0.388353i 0.262396 0.964960i \(-0.415487\pi\)
−0.817022 + 0.576607i \(0.804376\pi\)
\(278\) 50.8092 189.622i 0.182767 0.682095i
\(279\) 0 0
\(280\) −236.579 153.706i −0.844925 0.548951i
\(281\) 202.070 + 73.5475i 0.719110 + 0.261735i 0.675548 0.737316i \(-0.263907\pi\)
0.0435623 + 0.999051i \(0.486129\pi\)
\(282\) 0 0
\(283\) −10.6053 121.219i −0.0374745 0.428335i −0.991638 0.129050i \(-0.958807\pi\)
0.954164 0.299285i \(-0.0967483\pi\)
\(284\) 41.2506 49.1605i 0.145248 0.173100i
\(285\) 0 0
\(286\) −204.662 74.4908i −0.715601 0.260457i
\(287\) 21.2890 + 79.4515i 0.0741776 + 0.276835i
\(288\) 0 0
\(289\) 245.367 141.663i 0.849021 0.490183i
\(290\) 257.967 + 201.633i 0.889543 + 0.695286i
\(291\) 0 0
\(292\) 11.2864 24.2038i 0.0386521 0.0828898i
\(293\) −144.952 + 101.496i −0.494716 + 0.346404i −0.794159 0.607710i \(-0.792088\pi\)
0.299443 + 0.954114i \(0.403199\pi\)
\(294\) 0 0
\(295\) 243.560 183.456i 0.825627 0.621885i
\(296\) −436.050 −1.47314
\(297\) 0 0
\(298\) 302.884 + 302.884i 1.01639 + 1.01639i
\(299\) 15.3883 + 18.3390i 0.0514658 + 0.0613345i
\(300\) 0 0
\(301\) −91.0208 + 516.205i −0.302395 + 1.71497i
\(302\) 266.595 571.714i 0.882764 1.89309i
\(303\) 0 0
\(304\) −486.245 + 85.7382i −1.59949 + 0.282034i
\(305\) −98.0672 + 49.9419i −0.321532 + 0.163744i
\(306\) 0 0
\(307\) −28.5989 106.733i −0.0931562 0.347664i 0.903577 0.428425i \(-0.140931\pi\)
−0.996733 + 0.0807616i \(0.974265\pi\)
\(308\) −36.1112 77.4407i −0.117244 0.251431i
\(309\) 0 0
\(310\) −13.5597 390.636i −0.0437409 1.26012i
\(311\) 67.0720 + 56.2801i 0.215665 + 0.180965i 0.744220 0.667934i \(-0.232821\pi\)
−0.528555 + 0.848899i \(0.677266\pi\)
\(312\) 0 0
\(313\) 25.2611 + 54.1726i 0.0807063 + 0.173075i 0.942520 0.334150i \(-0.108449\pi\)
−0.861814 + 0.507225i \(0.830671\pi\)
\(314\) −387.462 223.701i −1.23396 0.712425i
\(315\) 0 0
\(316\) −47.0960 81.5726i −0.149038 0.258141i
\(317\) −150.648 105.485i −0.475231 0.332760i 0.311300 0.950312i \(-0.399236\pi\)
−0.786530 + 0.617552i \(0.788125\pi\)
\(318\) 0 0
\(319\) −110.287 303.010i −0.345726 0.949875i
\(320\) −48.0698 + 208.015i −0.150218 + 0.650047i
\(321\) 0 0
\(322\) −4.29898 + 49.1375i −0.0133509 + 0.152601i
\(323\) −44.0548 44.0548i −0.136393 0.136393i
\(324\) 0 0
\(325\) 140.768 + 173.983i 0.433133 + 0.535332i
\(326\) −179.426 + 150.556i −0.550387 + 0.461829i
\(327\) 0 0
\(328\) 55.2160 38.6627i 0.168341 0.117874i
\(329\) −173.237 475.964i −0.526556 1.44670i
\(330\) 0 0
\(331\) 27.2809 + 154.718i 0.0824198 + 0.467426i 0.997884 + 0.0650254i \(0.0207129\pi\)
−0.915464 + 0.402400i \(0.868176\pi\)
\(332\) −99.3746 26.6273i −0.299321 0.0802029i
\(333\) 0 0
\(334\) −57.7319 33.3315i −0.172850 0.0997949i
\(335\) −137.031 339.369i −0.409049 1.01304i
\(336\) 0 0
\(337\) 394.528 34.5167i 1.17070 0.102423i 0.514829 0.857293i \(-0.327855\pi\)
0.655875 + 0.754869i \(0.272300\pi\)
\(338\) −17.2153 196.772i −0.0509328 0.582165i
\(339\) 0 0
\(340\) 10.3903 4.19541i 0.0305596 0.0123394i
\(341\) −192.474 + 333.375i −0.564440 + 0.977638i
\(342\) 0 0
\(343\) 62.5944 233.606i 0.182491 0.681066i
\(344\) 423.023 74.5904i 1.22972 0.216832i
\(345\) 0 0
\(346\) 429.707 156.400i 1.24193 0.452024i
\(347\) 193.294 + 276.053i 0.557044 + 0.795541i 0.994615 0.103643i \(-0.0330499\pi\)
−0.437571 + 0.899184i \(0.644161\pi\)
\(348\) 0 0
\(349\) −34.7252 41.3839i −0.0994991 0.118578i 0.713997 0.700149i \(-0.246883\pi\)
−0.813496 + 0.581570i \(0.802439\pi\)
\(350\) −48.3905 + 458.563i −0.138259 + 1.31018i
\(351\) 0 0
\(352\) −114.253 + 114.253i −0.324582 + 0.324582i
\(353\) 254.804 + 22.2925i 0.721824 + 0.0631514i 0.442147 0.896943i \(-0.354217\pi\)
0.279677 + 0.960094i \(0.409773\pi\)
\(354\) 0 0
\(355\) 332.310 + 76.7930i 0.936086 + 0.216318i
\(356\) 43.8127 15.9465i 0.123069 0.0447936i
\(357\) 0 0
\(358\) −62.7900 + 89.6734i −0.175391 + 0.250484i
\(359\) 102.875 59.3949i 0.286560 0.165445i −0.349830 0.936813i \(-0.613760\pi\)
0.636389 + 0.771368i \(0.280427\pi\)
\(360\) 0 0
\(361\) 161.529 279.777i 0.447449 0.775004i
\(362\) −134.900 + 62.9049i −0.372652 + 0.173771i
\(363\) 0 0
\(364\) −44.9202 + 53.5338i −0.123407 + 0.147071i
\(365\) 141.849 4.92382i 0.388626 0.0134899i
\(366\) 0 0
\(367\) −357.174 + 166.553i −0.973226 + 0.453823i −0.843148 0.537681i \(-0.819300\pi\)
−0.130077 + 0.991504i \(0.541523\pi\)
\(368\) 48.7648 13.0665i 0.132513 0.0355068i
\(369\) 0 0
\(370\) 323.419 + 635.074i 0.874106 + 1.71642i
\(371\) −69.5972 394.705i −0.187594 1.06390i
\(372\) 0 0
\(373\) 50.6990 + 23.6413i 0.135922 + 0.0633816i 0.489389 0.872065i \(-0.337220\pi\)
−0.353467 + 0.935447i \(0.614997\pi\)
\(374\) −57.0752 10.0639i −0.152608 0.0269088i
\(375\) 0 0
\(376\) −317.969 + 266.807i −0.845662 + 0.709594i
\(377\) −186.482 + 186.482i −0.494648 + 0.494648i
\(378\) 0 0
\(379\) 82.8766i 0.218672i 0.994005 + 0.109336i \(0.0348724\pi\)
−0.994005 + 0.109336i \(0.965128\pi\)
\(380\) 74.0203 + 98.2709i 0.194790 + 0.258608i
\(381\) 0 0
\(382\) 462.614 + 660.681i 1.21103 + 1.72953i
\(383\) −280.720 130.902i −0.732952 0.341781i 0.0200506 0.999799i \(-0.493617\pi\)
−0.753002 + 0.658018i \(0.771395\pi\)
\(384\) 0 0
\(385\) 279.660 357.794i 0.726389 0.929335i
\(386\) −2.15187 3.72715i −0.00557480 0.00965583i
\(387\) 0 0
\(388\) 73.8710 19.7937i 0.190389 0.0510146i
\(389\) 97.2536 267.202i 0.250009 0.686895i −0.749676 0.661805i \(-0.769791\pi\)
0.999685 0.0250898i \(-0.00798716\pi\)
\(390\) 0 0
\(391\) 4.88002 + 4.09482i 0.0124809 + 0.0104727i
\(392\) 134.496 11.7668i 0.343101 0.0300174i
\(393\) 0 0
\(394\) 108.021 296.786i 0.274165 0.753263i
\(395\) 272.735 419.783i 0.690468 1.06274i
\(396\) 0 0
\(397\) −627.574 168.158i −1.58079 0.423572i −0.641621 0.767022i \(-0.721738\pi\)
−0.939171 + 0.343450i \(0.888404\pi\)
\(398\) −222.356 + 317.557i −0.558683 + 0.797882i
\(399\) 0 0
\(400\) 457.980 113.984i 1.14495 0.284961i
\(401\) 48.8338 276.950i 0.121780 0.690649i −0.861388 0.507947i \(-0.830405\pi\)
0.983168 0.182702i \(-0.0584844\pi\)
\(402\) 0 0
\(403\) 313.637 + 27.4397i 0.778255 + 0.0680885i
\(404\) 10.3447i 0.0256057i
\(405\) 0 0
\(406\) −543.374 −1.33836
\(407\) 61.1732 699.213i 0.150303 1.71797i
\(408\) 0 0
\(409\) 696.105 + 122.742i 1.70197 + 0.300103i 0.938381 0.345602i \(-0.112325\pi\)
0.763587 + 0.645705i \(0.223436\pi\)
\(410\) −97.2629 51.7417i −0.237227 0.126199i
\(411\) 0 0
\(412\) 6.77815 + 4.74611i 0.0164518 + 0.0115197i
\(413\) −130.973 + 488.797i −0.317125 + 1.18353i
\(414\) 0 0
\(415\) −113.570 534.852i −0.273662 1.28880i
\(416\) 124.179 + 45.1975i 0.298508 + 0.108648i
\(417\) 0 0
\(418\) −55.4596 633.906i −0.132678 1.51652i
\(419\) 139.446 166.185i 0.332806 0.396623i −0.573527 0.819186i \(-0.694425\pi\)
0.906333 + 0.422564i \(0.138870\pi\)
\(420\) 0 0
\(421\) 546.181 + 198.794i 1.29734 + 0.472194i 0.896130 0.443792i \(-0.146367\pi\)
0.401211 + 0.915985i \(0.368589\pi\)
\(422\) 144.469 + 539.164i 0.342343 + 1.27764i
\(423\) 0 0
\(424\) −284.442 + 164.223i −0.670855 + 0.387318i
\(425\) 44.9287 + 39.0889i 0.105715 + 0.0919739i
\(426\) 0 0
\(427\) 77.1864 165.527i 0.180764 0.387650i
\(428\) −123.140 + 86.2234i −0.287710 + 0.201456i
\(429\) 0 0
\(430\) −422.392 560.776i −0.982306 1.30413i
\(431\) 197.302 0.457777 0.228889 0.973453i \(-0.426491\pi\)
0.228889 + 0.973453i \(0.426491\pi\)
\(432\) 0 0
\(433\) −46.8682 46.8682i −0.108241 0.108241i 0.650912 0.759153i \(-0.274387\pi\)
−0.759153 + 0.650912i \(0.774387\pi\)
\(434\) 416.963 + 496.917i 0.960743 + 1.14497i
\(435\) 0 0
\(436\) −2.77152 + 15.7181i −0.00635671 + 0.0360507i
\(437\) −29.5597 + 63.3910i −0.0676423 + 0.145059i
\(438\) 0 0
\(439\) −356.651 + 62.8872i −0.812417 + 0.143251i −0.564397 0.825504i \(-0.690891\pi\)
−0.248021 + 0.968755i \(0.579780\pi\)
\(440\) −353.908 115.073i −0.804337 0.261531i
\(441\) 0 0
\(442\) 12.2680 + 45.7848i 0.0277556 + 0.103585i
\(443\) 231.821 + 497.142i 0.523299 + 1.12222i 0.973373 + 0.229226i \(0.0736196\pi\)
−0.450075 + 0.892991i \(0.648603\pi\)
\(444\) 0 0
\(445\) 181.191 + 169.034i 0.407170 + 0.379851i
\(446\) 541.314 + 454.217i 1.21371 + 1.01842i
\(447\) 0 0
\(448\) −149.739 321.117i −0.334240 0.716779i
\(449\) −220.408 127.252i −0.490885 0.283413i 0.234056 0.972223i \(-0.424800\pi\)
−0.724942 + 0.688810i \(0.758133\pi\)
\(450\) 0 0
\(451\) 54.2499 + 93.9635i 0.120288 + 0.208345i
\(452\) −106.520 74.5858i −0.235663 0.165013i
\(453\) 0 0
\(454\) 339.899 + 933.864i 0.748675 + 2.05697i
\(455\) −361.873 83.6244i −0.795324 0.183790i
\(456\) 0 0
\(457\) 6.14777 70.2693i 0.0134525 0.153762i −0.986497 0.163777i \(-0.947632\pi\)
0.999950 + 0.0100147i \(0.00318783\pi\)
\(458\) 65.6146 + 65.6146i 0.143263 + 0.143263i
\(459\) 0 0
\(460\) −8.41544 9.35022i −0.0182944 0.0203266i
\(461\) 470.717 394.978i 1.02108 0.856786i 0.0313151 0.999510i \(-0.490030\pi\)
0.989763 + 0.142724i \(0.0455860\pi\)
\(462\) 0 0
\(463\) −98.1967 + 68.7580i −0.212088 + 0.148506i −0.674794 0.738006i \(-0.735767\pi\)
0.462706 + 0.886512i \(0.346879\pi\)
\(464\) 190.215 + 522.611i 0.409946 + 1.12632i
\(465\) 0 0
\(466\) −38.0480 215.781i −0.0816481 0.463050i
\(467\) −493.003 132.100i −1.05568 0.282869i −0.311083 0.950383i \(-0.600692\pi\)
−0.744597 + 0.667514i \(0.767358\pi\)
\(468\) 0 0
\(469\) 526.012 + 303.693i 1.12156 + 0.647533i
\(470\) 624.422 + 265.205i 1.32856 + 0.564267i
\(471\) 0 0
\(472\) 413.115 36.1429i 0.875244 0.0765739i
\(473\) 60.2611 + 688.787i 0.127402 + 1.45621i
\(474\) 0 0
\(475\) −286.880 + 587.568i −0.603958 + 1.23699i
\(476\) −9.29799 + 16.1046i −0.0195336 + 0.0338332i
\(477\) 0 0
\(478\) −57.3284 + 213.953i −0.119934 + 0.447600i
\(479\) 31.7508 5.59852i 0.0662856 0.0116879i −0.140407 0.990094i \(-0.544841\pi\)
0.206693 + 0.978406i \(0.433730\pi\)
\(480\) 0 0
\(481\) −539.426 + 196.335i −1.12147 + 0.408181i
\(482\) 197.645 + 282.266i 0.410051 + 0.585614i
\(483\) 0 0
\(484\) 0.723113 + 0.861773i 0.00149404 + 0.00178052i
\(485\) 271.906 + 302.109i 0.560631 + 0.622905i
\(486\) 0 0
\(487\) −508.915 + 508.915i −1.04500 + 1.04500i −0.0460613 + 0.998939i \(0.514667\pi\)
−0.998939 + 0.0460613i \(0.985333\pi\)
\(488\) −149.100 13.0446i −0.305533 0.0267307i
\(489\) 0 0
\(490\) −116.893 187.155i −0.238557 0.381949i
\(491\) 181.036 65.8918i 0.368709 0.134199i −0.151019 0.988531i \(-0.548255\pi\)
0.519728 + 0.854332i \(0.326033\pi\)
\(492\) 0 0
\(493\) −40.2521 + 57.4860i −0.0816473 + 0.116604i
\(494\) −450.705 + 260.215i −0.912358 + 0.526750i
\(495\) 0 0
\(496\) 331.966 574.982i 0.669286 1.15924i
\(497\) −512.994 + 239.213i −1.03218 + 0.481314i
\(498\) 0 0
\(499\) −137.298 + 163.626i −0.275147 + 0.327907i −0.885867 0.463939i \(-0.846436\pi\)
0.610720 + 0.791846i \(0.290880\pi\)
\(500\) −77.0959 88.8010i −0.154192 0.177602i
\(501\) 0 0
\(502\) 36.1892 16.8753i 0.0720901 0.0336162i
\(503\) 354.569 95.0065i 0.704909 0.188880i 0.111480 0.993767i \(-0.464441\pi\)
0.593428 + 0.804887i \(0.297774\pi\)
\(504\) 0 0
\(505\) 48.9918 24.9497i 0.0970134 0.0494053i
\(506\) 11.2982 + 64.0753i 0.0223285 + 0.126631i
\(507\) 0 0
\(508\) −189.262 88.2545i −0.372564 0.173729i
\(509\) 167.773 + 29.5829i 0.329613 + 0.0581196i 0.336006 0.941860i \(-0.390924\pi\)
−0.00639300 + 0.999980i \(0.502035\pi\)
\(510\) 0 0
\(511\) −180.441 + 151.408i −0.353114 + 0.296298i
\(512\) −166.031 + 166.031i −0.324280 + 0.324280i
\(513\) 0 0
\(514\) 22.5433i 0.0438585i
\(515\) −6.12950 + 43.5477i −0.0119019 + 0.0845586i
\(516\) 0 0
\(517\) −383.222 547.297i −0.741241 1.05860i
\(518\) −1071.93 499.851i −2.06937 0.964964i
\(519\) 0 0
\(520\) 37.0297 + 302.104i 0.0712110 + 0.580969i
\(521\) −71.1832 123.293i −0.136628 0.236647i 0.789590 0.613634i \(-0.210293\pi\)
−0.926218 + 0.376988i \(0.876960\pi\)
\(522\) 0 0
\(523\) 139.876 37.4797i 0.267450 0.0716629i −0.122602 0.992456i \(-0.539124\pi\)
0.390052 + 0.920793i \(0.372457\pi\)
\(524\) 71.3804 196.116i 0.136222 0.374267i
\(525\) 0 0
\(526\) −26.6078 22.3266i −0.0505851 0.0424460i
\(527\) 83.4588 7.30170i 0.158366 0.0138552i
\(528\) 0 0
\(529\) −178.483 + 490.377i −0.337396 + 0.926989i
\(530\) 450.149 + 292.464i 0.849338 + 0.551819i
\(531\) 0 0
\(532\) −197.218 52.8445i −0.370711 0.0993318i
\(533\) 50.8980 72.6899i 0.0954935 0.136379i
\(534\) 0 0
\(535\) −705.341 375.225i −1.31839 0.701355i
\(536\) 86.4325 490.183i 0.161255 0.914521i
\(537\) 0 0
\(538\) 670.539 + 58.6645i 1.24635 + 0.109042i
\(539\) 217.316i 0.403184i
\(540\) 0 0
\(541\) 697.034 1.28842 0.644208 0.764850i \(-0.277187\pi\)
0.644208 + 0.764850i \(0.277187\pi\)
\(542\) −90.6608 + 1036.26i −0.167271 + 1.91192i
\(543\) 0 0
\(544\) 34.6305 + 6.10630i 0.0636591 + 0.0112248i
\(545\) −81.1243 + 24.7837i −0.148852 + 0.0454746i
\(546\) 0 0
\(547\) −108.624 76.0594i −0.198582 0.139048i 0.470057 0.882636i \(-0.344234\pi\)
−0.668638 + 0.743588i \(0.733122\pi\)
\(548\) −24.0095 + 89.6048i −0.0438130 + 0.163512i
\(549\) 0 0
\(550\) 94.8987 + 600.790i 0.172543 + 1.09235i
\(551\) −724.048 263.532i −1.31406 0.478280i
\(552\) 0 0
\(553\) 72.4076 + 827.622i 0.130936 + 1.49660i
\(554\) −267.967 + 319.350i −0.483694 + 0.576445i
\(555\) 0 0
\(556\) −78.0774 28.4178i −0.140427 0.0511112i
\(557\) −9.77073 36.4649i −0.0175417 0.0654665i 0.956600 0.291404i \(-0.0941223\pi\)
−0.974142 + 0.225937i \(0.927456\pi\)
\(558\) 0 0
\(559\) 489.725 282.743i 0.876073 0.505801i
\(560\) −482.338 + 617.099i −0.861317 + 1.10196i
\(561\) 0 0
\(562\) 202.005 433.201i 0.359440 0.770821i
\(563\) 783.549 548.647i 1.39174 0.974506i 0.393257 0.919429i \(-0.371348\pi\)
0.998482 0.0550777i \(-0.0175407\pi\)
\(564\) 0 0
\(565\) 96.3260 684.358i 0.170488 1.21125i
\(566\) −270.473 −0.477868
\(567\) 0 0
\(568\) 327.992 + 327.992i 0.577451 + 0.577451i
\(569\) −79.1792 94.3621i −0.139155 0.165838i 0.691966 0.721930i \(-0.256745\pi\)
−0.831121 + 0.556092i \(0.812300\pi\)
\(570\) 0 0
\(571\) 22.5624 127.958i 0.0395139 0.224095i −0.958656 0.284568i \(-0.908150\pi\)
0.998170 + 0.0604733i \(0.0192610\pi\)
\(572\) −38.9577 + 83.5450i −0.0681078 + 0.146058i
\(573\) 0 0
\(574\) 180.056 31.7488i 0.313687 0.0553114i
\(575\) 23.9854 62.4062i 0.0417137 0.108532i
\(576\) 0 0
\(577\) −259.718 969.281i −0.450118 1.67986i −0.702058 0.712120i \(-0.747735\pi\)
0.251940 0.967743i \(-0.418932\pi\)
\(578\) −266.153 570.768i −0.460473 0.987488i
\(579\) 0 0
\(580\) 94.5317 101.330i 0.162986 0.174708i
\(581\) 695.120 + 583.275i 1.19642 + 1.00392i
\(582\) 0 0
\(583\) −223.429 479.146i −0.383241 0.821862i
\(584\) 167.169 + 96.5149i 0.286248 + 0.165265i
\(585\) 0 0
\(586\) 196.665 + 340.634i 0.335606 + 0.581287i
\(587\) 501.977 + 351.488i 0.855156 + 0.598787i 0.916816 0.399310i \(-0.130750\pi\)
−0.0616594 + 0.998097i \(0.519639\pi\)
\(588\) 0 0
\(589\) 314.604 + 864.367i 0.534132 + 1.46752i
\(590\) −359.047 574.863i −0.608555 0.974344i
\(591\) 0 0
\(592\) −105.507 + 1205.95i −0.178222 + 2.03708i
\(593\) −387.205 387.205i −0.652959 0.652959i 0.300746 0.953704i \(-0.402764\pi\)
−0.953704 + 0.300746i \(0.902764\pi\)
\(594\) 0 0
\(595\) −98.6955 5.19307i −0.165875 0.00872785i
\(596\) 138.880 116.534i 0.233019 0.195527i
\(597\) 0 0
\(598\) 43.5898 30.5219i 0.0728927 0.0510400i
\(599\) 296.186 + 813.763i 0.494467 + 1.35854i 0.896554 + 0.442935i \(0.146063\pi\)
−0.402087 + 0.915601i \(0.631715\pi\)
\(600\) 0 0
\(601\) −82.6600 468.788i −0.137537 0.780014i −0.973059 0.230556i \(-0.925945\pi\)
0.835522 0.549458i \(-0.185166\pi\)
\(602\) 1125.41 + 301.554i 1.86946 + 0.500920i
\(603\) 0 0
\(604\) −231.221 133.496i −0.382816 0.221019i
\(605\) −2.33727 + 5.50307i −0.00386326 + 0.00909598i
\(606\) 0 0
\(607\) 232.067 20.3033i 0.382318 0.0334485i 0.105623 0.994406i \(-0.466316\pi\)
0.276695 + 0.960958i \(0.410761\pi\)
\(608\) 33.6503 + 384.624i 0.0553458 + 0.632606i
\(609\) 0 0
\(610\) 91.5895 + 226.828i 0.150147 + 0.371850i
\(611\) −273.218 + 473.228i −0.447166 + 0.774514i
\(612\) 0 0
\(613\) 43.1162 160.912i 0.0703364 0.262499i −0.921799 0.387668i \(-0.873281\pi\)
0.992135 + 0.125169i \(0.0399474\pi\)
\(614\) −241.882 + 42.6503i −0.393944 + 0.0694630i
\(615\) 0 0
\(616\) 580.357 211.233i 0.942138 0.342910i
\(617\) −675.682 964.973i −1.09511 1.56398i −0.791490 0.611183i \(-0.790694\pi\)
−0.303619 0.952794i \(-0.598195\pi\)
\(618\) 0 0
\(619\) −537.579 640.661i −0.868463 1.03499i −0.999051 0.0435574i \(-0.986131\pi\)
0.130588 0.991437i \(-0.458314\pi\)
\(620\) −165.206 8.69269i −0.266462 0.0140205i
\(621\) 0 0
\(622\) 137.616 137.616i 0.221248 0.221248i
\(623\) −409.668 35.8413i −0.657574 0.0575302i
\(624\) 0 0
\(625\) 234.613 579.294i 0.375381 0.926871i
\(626\) 124.850 45.4416i 0.199440 0.0725904i
\(627\) 0 0
\(628\) −108.613 + 155.116i −0.172951 + 0.247000i
\(629\) −132.288 + 76.3767i −0.210315 + 0.121426i
\(630\) 0 0
\(631\) −179.602 + 311.080i −0.284631 + 0.492996i −0.972520 0.232821i \(-0.925205\pi\)
0.687888 + 0.725816i \(0.258538\pi\)
\(632\) 617.029 287.725i 0.976312 0.455262i
\(633\) 0 0
\(634\) −262.763 + 313.149i −0.414453 + 0.493926i
\(635\) −38.5019 1109.19i −0.0606329 1.74676i
\(636\) 0 0
\(637\) 161.083 75.1140i 0.252877 0.117918i
\(638\) −692.330 + 185.509i −1.08516 + 0.290767i
\(639\) 0 0
\(640\) 732.073 + 238.034i 1.14386 + 0.371928i
\(641\) −26.1194 148.130i −0.0407479 0.231093i 0.957632 0.287995i \(-0.0929887\pi\)
−0.998380 + 0.0569025i \(0.981878\pi\)
\(642\) 0 0
\(643\) −982.606 458.197i −1.52816 0.712592i −0.536793 0.843714i \(-0.680364\pi\)
−0.991366 + 0.131122i \(0.958142\pi\)
\(644\) 20.5596 + 3.62521i 0.0319248 + 0.00562920i
\(645\) 0 0
\(646\) −106.087 + 89.0172i −0.164221 + 0.137798i
\(647\) 479.015 479.015i 0.740364 0.740364i −0.232284 0.972648i \(-0.574620\pi\)
0.972648 + 0.232284i \(0.0746199\pi\)
\(648\) 0 0
\(649\) 667.506i 1.02851i
\(650\) 412.526 278.002i 0.634656 0.427695i
\(651\) 0 0
\(652\) 56.8612 + 81.2062i 0.0872105 + 0.124549i
\(653\) −1011.10 471.486i −1.54840 0.722031i −0.554486 0.832193i \(-0.687085\pi\)
−0.993914 + 0.110162i \(0.964863\pi\)
\(654\) 0 0
\(655\) 1100.95 134.946i 1.68084 0.206025i
\(656\) −93.5665 162.062i −0.142632 0.247046i
\(657\) 0 0
\(658\) −1087.50 + 291.395i −1.65274 + 0.442850i
\(659\) 33.9839 93.3700i 0.0515689 0.141684i −0.911234 0.411889i \(-0.864869\pi\)
0.962803 + 0.270205i \(0.0870914\pi\)
\(660\) 0 0
\(661\) 243.240 + 204.103i 0.367989 + 0.308779i 0.807965 0.589230i \(-0.200569\pi\)
−0.439977 + 0.898009i \(0.645013\pi\)
\(662\) 347.882 30.4357i 0.525501 0.0459754i
\(663\) 0 0
\(664\) 254.331 698.769i 0.383029 1.05236i
\(665\) −225.390 1061.47i −0.338932 1.59619i
\(666\) 0 0
\(667\) 76.1000 + 20.3909i 0.114093 + 0.0305711i
\(668\) −16.1834 + 23.1123i −0.0242266 + 0.0345992i
\(669\) 0 0
\(670\) −778.021 + 237.687i −1.16123 + 0.354757i
\(671\) 41.8343 237.254i 0.0623462 0.353583i
\(672\) 0 0
\(673\) 83.4864 + 7.30411i 0.124051 + 0.0108531i 0.149012 0.988835i \(-0.452391\pi\)
−0.0249611 + 0.999688i \(0.507946\pi\)
\(674\) 880.301i 1.30608i
\(675\) 0 0
\(676\) −83.6010 −0.123670
\(677\) −42.2231 + 482.612i −0.0623679 + 0.712868i 0.899063 + 0.437820i \(0.144249\pi\)
−0.961430 + 0.275048i \(0.911306\pi\)
\(678\) 0 0
\(679\) −664.287 117.132i −0.978331 0.172506i
\(680\) 23.6635 + 77.4576i 0.0347992 + 0.113908i
\(681\) 0 0
\(682\) 700.914 + 490.785i 1.02773 + 0.719626i
\(683\) 7.04997 26.3109i 0.0103221 0.0385225i −0.960573 0.278029i \(-0.910319\pi\)
0.970895 + 0.239506i \(0.0769856\pi\)
\(684\) 0 0
\(685\) −482.269 + 102.404i −0.704043 + 0.149495i
\(686\) −505.153 183.861i −0.736375 0.268019i
\(687\) 0 0
\(688\) −103.934 1187.97i −0.151067 1.72670i
\(689\) −277.933 + 331.228i −0.403386 + 0.480737i
\(690\) 0 0
\(691\) 348.531 + 126.855i 0.504386 + 0.183581i 0.581666 0.813428i \(-0.302401\pi\)
−0.0772797 + 0.997009i \(0.524623\pi\)
\(692\) −50.0929 186.949i −0.0723885 0.270158i
\(693\) 0 0
\(694\) 648.718 374.538i 0.934753 0.539680i
\(695\) −53.7246 438.308i −0.0773016 0.630660i
\(696\) 0 0
\(697\) 9.97937 21.4008i 0.0143176 0.0307042i
\(698\) −98.3648 + 68.8758i −0.140924 + 0.0986759i
\(699\) 0 0
\(700\) 191.562 + 37.3188i 0.273659 + 0.0533126i
\(701\) 1351.23 1.92758 0.963789 0.266664i \(-0.0859216\pi\)
0.963789 + 0.266664i \(0.0859216\pi\)
\(702\) 0 0
\(703\) −1185.93 1185.93i −1.68696 1.68696i
\(704\) −300.418 358.024i −0.426730 0.508557i
\(705\) 0 0
\(706\) 98.7257 559.901i 0.139838 0.793061i
\(707\) −38.5603 + 82.6928i −0.0545407 + 0.116963i
\(708\) 0 0
\(709\) −1062.88 + 187.415i −1.49913 + 0.264337i −0.862193 0.506580i \(-0.830909\pi\)
−0.636935 + 0.770917i \(0.719798\pi\)
\(710\) 234.423 720.968i 0.330173 1.01545i
\(711\) 0 0
\(712\) 87.2221 + 325.517i 0.122503 + 0.457187i
\(713\) −39.7484 85.2407i −0.0557481 0.119552i
\(714\) 0 0
\(715\) −489.623 + 16.9957i −0.684787 + 0.0237702i
\(716\) 35.4933 + 29.7824i 0.0495717 + 0.0415956i
\(717\) 0 0
\(718\) −111.590 239.306i −0.155418 0.333295i
\(719\) −133.672 77.1756i −0.185914 0.107337i 0.404154 0.914691i \(-0.367566\pi\)
−0.590068 + 0.807353i \(0.700899\pi\)
\(720\) 0 0
\(721\) −36.4914 63.2050i −0.0506122 0.0876629i
\(722\) −588.225 411.879i −0.814716 0.570470i
\(723\) 0 0
\(724\) 21.5467 + 59.1992i 0.0297607 + 0.0817668i
\(725\) 707.889 + 203.304i 0.976398 + 0.280419i
\(726\) 0 0
\(727\) 39.6627 453.346i 0.0545566 0.623585i −0.918866 0.394569i \(-0.870894\pi\)
0.973423 0.229016i \(-0.0735507\pi\)
\(728\) −357.170 357.170i −0.490619 0.490619i
\(729\) 0 0
\(730\) 16.5772 315.054i 0.0227085 0.431580i
\(731\) 115.271 96.7240i 0.157690 0.132317i
\(732\) 0 0
\(733\) −42.4397 + 29.7166i −0.0578987 + 0.0405411i −0.602167 0.798370i \(-0.705696\pi\)
0.544269 + 0.838911i \(0.316807\pi\)
\(734\) 299.608 + 823.167i 0.408186 + 1.12148i
\(735\) 0 0
\(736\) −6.85522 38.8779i −0.00931416 0.0528232i
\(737\) 773.889 + 207.363i 1.05005 + 0.281361i
\(738\) 0 0
\(739\) 1051.21 + 606.914i 1.42247 + 0.821264i 0.996510 0.0834781i \(-0.0266029\pi\)
0.425961 + 0.904742i \(0.359936\pi\)
\(740\) 279.700 112.938i 0.377973 0.152619i
\(741\) 0 0
\(742\) −887.491 + 77.6454i −1.19608 + 0.104643i
\(743\) 21.1134 + 241.327i 0.0284164 + 0.324801i 0.997076 + 0.0764106i \(0.0243460\pi\)
−0.968660 + 0.248390i \(0.920098\pi\)
\(744\) 0 0
\(745\) 886.851 + 376.664i 1.19040 + 0.505590i
\(746\) 62.1715 107.684i 0.0833398 0.144349i
\(747\) 0 0
\(748\) −6.34872 + 23.6937i −0.00848759 + 0.0316761i
\(749\) 1305.75 230.239i 1.74332 0.307395i
\(750\) 0 0
\(751\) 932.424 339.375i 1.24158 0.451897i 0.364029 0.931387i \(-0.381401\pi\)
0.877547 + 0.479491i \(0.159179\pi\)
\(752\) 660.955 + 943.941i 0.878929 + 1.25524i
\(753\) 0 0
\(754\) 376.806 + 449.060i 0.499743 + 0.595570i
\(755\) 74.5593 1417.02i 0.0987541 1.87684i
\(756\) 0 0
\(757\) 159.288 159.288i 0.210420 0.210420i −0.594026 0.804446i \(-0.702462\pi\)
0.804446 + 0.594026i \(0.202462\pi\)
\(758\) 183.516 + 16.0556i 0.242106 + 0.0211815i
\(759\) 0 0
\(760\) −754.226 + 471.074i −0.992402 + 0.619834i
\(761\) −1023.53 + 372.536i −1.34499 + 0.489535i −0.911380 0.411567i \(-0.864982\pi\)
−0.433607 + 0.901102i \(0.642759\pi\)
\(762\) 0 0
\(763\) 80.7447 115.315i 0.105825 0.151134i
\(764\) 295.632 170.683i 0.386953 0.223407i
\(765\) 0 0
\(766\) −344.244 + 596.248i −0.449405 + 0.778392i
\(767\) 494.780 230.720i 0.645084 0.300808i
\(768\) 0 0
\(769\) −698.674 + 832.648i −0.908549 + 1.08277i 0.0876922 + 0.996148i \(0.472051\pi\)
−0.996241 + 0.0866193i \(0.972394\pi\)
\(770\) −738.096 688.574i −0.958566 0.894252i
\(771\) 0 0
\(772\) −1.65088 + 0.769818i −0.00213845 + 0.000997174i
\(773\) 599.939 160.753i 0.776118 0.207960i 0.151045 0.988527i \(-0.451736\pi\)
0.625072 + 0.780567i \(0.285069\pi\)
\(774\) 0 0
\(775\) −357.282 803.372i −0.461010 1.03661i
\(776\) 95.9879 + 544.375i 0.123696 + 0.701514i
\(777\) 0 0
\(778\) −572.833 267.116i −0.736289 0.343337i
\(779\) 255.323 + 45.0204i 0.327758 + 0.0577926i
\(780\) 0 0
\(781\) −571.954 + 479.926i −0.732335 + 0.614502i
\(782\) 10.0127 10.0127i 0.0128039 0.0128039i
\(783\) 0 0
\(784\) 374.812i 0.478076i
\(785\) −996.577 140.272i −1.26952 0.178690i
\(786\) 0 0
\(787\) 360.051 + 514.207i 0.457499 + 0.653376i 0.979938 0.199301i \(-0.0638670\pi\)
−0.522440 + 0.852676i \(0.674978\pi\)
\(788\) −121.151 56.4936i −0.153745 0.0716923i
\(789\) 0 0
\(790\) −876.701 685.249i −1.10975 0.867404i
\(791\) 573.468 + 993.276i 0.724991 + 1.25572i
\(792\) 0 0
\(793\) −190.321 + 50.9964i −0.240002 + 0.0643082i
\(794\) −493.936 + 1357.08i −0.622086 + 1.70917i
\(795\) 0 0
\(796\) 125.691 + 105.467i 0.157904 + 0.132497i
\(797\) −1260.73 + 110.300i −1.58185 + 0.138394i −0.843913 0.536480i \(-0.819754\pi\)
−0.737933 + 0.674874i \(0.764198\pi\)
\(798\) 0 0
\(799\) −49.7321 + 136.638i −0.0622429 + 0.171011i
\(800\) −57.5800 364.531i −0.0719750 0.455664i
\(801\) 0 0
\(802\) −603.799 161.787i −0.752866 0.201730i
\(803\) −178.215 + 254.517i −0.221936 + 0.316958i
\(804\) 0 0
\(805\) 32.4175 + 106.112i 0.0402702 + 0.131816i
\(806\) 121.521 689.180i 0.150770 0.855061i
\(807\) 0 0
\(808\) 74.4866 + 6.51673i 0.0921863 + 0.00806526i
\(809\) 817.617i 1.01065i 0.862929 + 0.505326i \(0.168628\pi\)
−0.862929 + 0.505326i \(0.831372\pi\)
\(810\) 0 0
\(811\) −3.09205 −0.00381264 −0.00190632 0.999998i \(-0.500607\pi\)
−0.00190632 + 0.999998i \(0.500607\pi\)
\(812\) −20.0442 + 229.106i −0.0246850 + 0.282150i
\(813\) 0 0
\(814\) −1536.44 270.915i −1.88751 0.332820i
\(815\) −247.448 + 465.147i −0.303617 + 0.570732i
\(816\) 0 0
\(817\) 1353.37 + 947.638i 1.65651 + 1.15990i
\(818\) 406.647 1517.63i 0.497124 1.85529i
\(819\) 0 0
\(820\) −25.4040 + 39.1009i −0.0309805 + 0.0476840i
\(821\) −447.576 162.904i −0.545159 0.198422i 0.0547353 0.998501i \(-0.482569\pi\)
−0.599894 + 0.800079i \(0.704791\pi\)
\(822\) 0 0
\(823\) 40.3413 + 461.104i 0.0490174 + 0.560272i 0.980504 + 0.196497i \(0.0629566\pi\)
−0.931487 + 0.363775i \(0.881488\pi\)
\(824\) −38.4441 + 45.8159i −0.0466555 + 0.0556019i
\(825\) 0 0
\(826\) 1056.98 + 384.711i 1.27964 + 0.465752i
\(827\) 82.3651 + 307.391i 0.0995950 + 0.371694i 0.997676 0.0681365i \(-0.0217053\pi\)
−0.898081 + 0.439830i \(0.855039\pi\)
\(828\) 0 0
\(829\) −120.093 + 69.3356i −0.144865 + 0.0836377i −0.570680 0.821172i \(-0.693320\pi\)
0.425816 + 0.904810i \(0.359987\pi\)
\(830\) −1206.34 + 147.864i −1.45342 + 0.178150i
\(831\) 0 0
\(832\) −161.543 + 346.429i −0.194162 + 0.416381i
\(833\) 38.7420 27.1275i 0.0465090 0.0325660i
\(834\) 0 0
\(835\) −148.490 20.9005i −0.177832 0.0250305i
\(836\) −269.323 −0.322157
\(837\) 0 0
\(838\) −340.973 340.973i −0.406890 0.406890i
\(839\) −813.216 969.153i −0.969268 1.15513i −0.987867 0.155302i \(-0.950365\pi\)
0.0185992 0.999827i \(-0.494079\pi\)
\(840\) 0 0
\(841\) −4.67146 + 26.4932i −0.00555465 + 0.0315020i
\(842\) 546.005 1170.91i 0.648462 1.39063i
\(843\) 0 0
\(844\) 232.660 41.0243i 0.275664 0.0486070i
\(845\) −201.632 395.929i −0.238617 0.468555i
\(846\) 0 0
\(847\) −2.56808 9.58422i −0.00303198 0.0113155i
\(848\) 385.356 + 826.398i 0.454429 + 0.974526i
\(849\) 0 0
\(850\) 95.2597 91.9144i 0.112070 0.108135i
\(851\) 131.368 + 110.230i 0.154368 + 0.129531i
\(852\) 0 0
\(853\) −667.765 1432.03i −0.782843 1.67881i −0.733169 0.680046i \(-0.761960\pi\)
−0.0496738 0.998765i \(-0.515818\pi\)
\(854\) −351.577 202.983i −0.411683 0.237685i
\(855\) 0 0
\(856\) −543.275 940.980i −0.634667 1.09928i
\(857\) −151.557 106.121i −0.176846 0.123829i 0.481802 0.876280i \(-0.339982\pi\)
−0.658648 + 0.752451i \(0.728871\pi\)
\(858\) 0 0
\(859\) −224.945 618.032i −0.261869 0.719478i −0.999041 0.0437739i \(-0.986062\pi\)
0.737173 0.675704i \(-0.236160\pi\)
\(860\) −252.025 + 157.409i −0.293052 + 0.183034i
\(861\) 0 0
\(862\) 38.2231 436.892i 0.0443423 0.506835i
\(863\) 1010.20 + 1010.20i 1.17057 + 1.17057i 0.982075 + 0.188492i \(0.0603600\pi\)
0.188492 + 0.982075i \(0.439640\pi\)
\(864\) 0 0
\(865\) 764.563 688.127i 0.883888 0.795522i
\(866\) −112.861 + 94.7020i −0.130325 + 0.109356i
\(867\) 0 0
\(868\) 224.899 157.476i 0.259100 0.181424i
\(869\) 374.809 + 1029.78i 0.431311 + 1.18502i
\(870\) 0 0
\(871\) −113.785 645.309i −0.130638 0.740883i
\(872\) −111.432 29.8580i −0.127789 0.0342408i
\(873\) 0 0
\(874\) 134.642 + 77.7356i 0.154053 + 0.0889423i
\(875\) 285.275 + 997.230i 0.326029 + 1.13969i
\(876\) 0 0
\(877\) −1583.79 + 138.564i −1.80592 + 0.157997i −0.939774 0.341797i \(-0.888964\pi\)
−0.866144 + 0.499795i \(0.833409\pi\)
\(878\) 70.1595 + 801.927i 0.0799083 + 0.913356i
\(879\) 0 0
\(880\) −403.883 + 950.936i −0.458958 + 1.08061i
\(881\) 30.9598 53.6239i 0.0351416 0.0608671i −0.847920 0.530125i \(-0.822145\pi\)
0.883061 + 0.469258i \(0.155478\pi\)
\(882\) 0 0
\(883\) −327.290 + 1221.46i −0.370657 + 1.38331i 0.488931 + 0.872322i \(0.337387\pi\)
−0.859588 + 0.510988i \(0.829280\pi\)
\(884\) 19.7570 3.48370i 0.0223496 0.00394084i
\(885\) 0 0
\(886\) 1145.75 417.018i 1.29317 0.470675i
\(887\) 175.671 + 250.884i 0.198051 + 0.282846i 0.905877 0.423541i \(-0.139213\pi\)
−0.707826 + 0.706387i \(0.750324\pi\)
\(888\) 0 0
\(889\) 1183.94 + 1410.97i 1.33177 + 1.58714i
\(890\) 409.398 368.469i 0.459998 0.414010i
\(891\) 0 0
\(892\) 211.482 211.482i 0.237088 0.237088i
\(893\) −1590.43 139.144i −1.78099 0.155817i
\(894\) 0 0
\(895\) −55.4436 + 239.924i −0.0619482 + 0.268072i
\(896\) −1200.49 + 436.943i −1.33983 + 0.487660i
\(897\) 0 0
\(898\) −324.478 + 463.403i −0.361334 + 0.516039i
\(899\) 897.288 518.049i 0.998095 0.576251i
\(900\) 0 0
\(901\) −57.5291 + 99.6434i −0.0638503 + 0.110592i
\(902\) 218.576 101.924i 0.242324 0.112997i
\(903\) 0 0
\(904\) 604.156 720.005i 0.668314 0.796465i
\(905\) −228.396 + 244.822i −0.252371 + 0.270522i
\(906\) 0 0
\(907\) −943.579 + 439.998i −1.04033 + 0.485114i −0.866246 0.499617i \(-0.833474\pi\)
−0.174083 + 0.984731i \(0.555696\pi\)
\(908\) 406.289 108.865i 0.447455 0.119895i
\(909\) 0 0
\(910\) −255.277 + 785.105i −0.280524 + 0.862753i
\(911\) −65.8449 373.425i −0.0722776 0.409907i −0.999384 0.0351074i \(-0.988823\pi\)
0.927106 0.374799i \(-0.122288\pi\)
\(912\) 0 0
\(913\) 1084.81 + 505.853i 1.18818 + 0.554056i
\(914\) −154.409 27.2264i −0.168937 0.0297882i
\(915\) 0 0
\(916\) 30.0859 25.2451i 0.0328448 0.0275601i
\(917\) −1301.63 + 1301.63i −1.41944 + 1.41944i
\(918\) 0 0
\(919\) 1242.02i 1.35149i −0.737135 0.675745i \(-0.763822\pi\)
0.737135 0.675745i \(-0.236178\pi\)
\(920\) 72.6273 54.7048i 0.0789427 0.0594618i
\(921\) 0 0
\(922\) −783.421 1118.84i −0.849697 1.21349i
\(923\) 553.431 + 258.069i 0.599600 + 0.279598i
\(924\) 0 0
\(925\) 1209.46 + 1052.25i 1.30752 + 1.13757i
\(926\) 133.229 + 230.760i 0.143876 + 0.249201i
\(927\) 0 0
\(928\) 420.073 112.558i 0.452665 0.121291i
\(929\) −246.952 + 678.494i −0.265825 + 0.730349i 0.732922 + 0.680312i \(0.238156\pi\)
−0.998747 + 0.0500361i \(0.984066\pi\)
\(930\) 0 0
\(931\) 397.792 + 333.787i 0.427274 + 0.358526i
\(932\) −92.3846 + 8.08260i −0.0991251 + 0.00867232i
\(933\) 0 0
\(934\) −388.021 + 1066.08i −0.415440 + 1.14141i
\(935\) −127.524 + 27.0782i −0.136389 + 0.0289607i
\(936\) 0 0
\(937\) −235.668 63.1470i −0.251513 0.0673928i 0.130859 0.991401i \(-0.458226\pi\)
−0.382373 + 0.924008i \(0.624893\pi\)
\(938\) 774.380 1105.93i 0.825565 1.17903i
\(939\) 0 0
\(940\) 134.854 253.496i 0.143462 0.269677i
\(941\) −135.021 + 765.742i −0.143487 + 0.813754i 0.825083 + 0.565012i \(0.191128\pi\)
−0.968570 + 0.248742i \(0.919983\pi\)
\(942\) 0 0
\(943\) −26.4084 2.31044i −0.0280047 0.00245009i
\(944\) 1151.27i 1.21956i
\(945\) 0 0
\(946\) 1536.88 1.62460
\(947\) 66.9842 765.633i 0.0707331 0.808482i −0.875124 0.483899i \(-0.839220\pi\)
0.945857 0.324584i \(-0.105224\pi\)
\(948\) 0 0
\(949\) 250.256 + 44.1269i 0.263705 + 0.0464984i
\(950\) 1245.49 + 749.075i 1.31105 + 0.788500i
\(951\) 0 0
\(952\) −110.103 77.0951i −0.115655 0.0809823i
\(953\) −323.539 + 1207.46i −0.339496 + 1.26701i 0.559417 + 0.828886i \(0.311025\pi\)
−0.898913 + 0.438128i \(0.855642\pi\)
\(954\) 0 0
\(955\) 1521.36 + 988.434i 1.59305 + 1.03501i
\(956\) 88.0954 + 32.0641i 0.0921500 + 0.0335399i
\(957\) 0 0
\(958\) −6.24593 71.3913i −0.00651976 0.0745212i
\(959\) 525.932 626.781i 0.548417 0.653578i
\(960\) 0 0
\(961\) −259.253 94.3605i −0.269774 0.0981899i
\(962\) 330.248 + 1232.50i 0.343293 + 1.28119i
\(963\) 0 0
\(964\) 126.304 72.9218i 0.131021 0.0756450i
\(965\) −7.62745 5.96178i −0.00790410 0.00617802i
\(966\) 0 0
\(967\) 150.738 323.258i 0.155882 0.334290i −0.812821 0.582514i \(-0.802069\pi\)
0.968703 + 0.248224i \(0.0798469\pi\)
\(968\) −6.66070 + 4.66387i −0.00688089 + 0.00481805i
\(969\) 0 0
\(970\) 721.645 543.562i 0.743964 0.560374i
\(971\) −1720.12 −1.77149 −0.885745 0.464172i \(-0.846352\pi\)
−0.885745 + 0.464172i \(0.846352\pi\)
\(972\) 0 0
\(973\) 518.202 + 518.202i 0.532581 + 0.532581i
\(974\) 1028.31 + 1225.50i 1.05576 + 1.25821i
\(975\) 0 0
\(976\) −72.1530 + 409.200i −0.0739272 + 0.419262i
\(977\) 660.867 1417.23i 0.676425 1.45060i −0.205235 0.978713i \(-0.565796\pi\)
0.881660 0.471886i \(-0.156426\pi\)
\(978\) 0 0
\(979\) −534.208 + 94.1952i −0.545667 + 0.0962157i
\(980\) −83.2232 + 42.3825i −0.0849216 + 0.0432474i
\(981\) 0 0
\(982\) −110.834 413.639i −0.112866 0.421221i
\(983\) 343.311 + 736.233i 0.349248 + 0.748966i 0.999946 0.0103711i \(-0.00330128\pi\)
−0.650698 + 0.759337i \(0.725524\pi\)
\(984\) 0 0
\(985\) −24.6459 710.015i −0.0250212 0.720828i
\(986\) 119.495 + 100.268i 0.121192 + 0.101692i
\(987\) 0 0
\(988\) 93.0901 + 199.632i 0.0942207 + 0.202057i
\(989\) −146.299 84.4656i −0.147926 0.0854051i
\(990\) 0 0
\(991\) 216.645 + 375.241i 0.218613 + 0.378649i 0.954384 0.298582i \(-0.0965135\pi\)
−0.735771 + 0.677230i \(0.763180\pi\)
\(992\) −425.281 297.785i −0.428711 0.300187i
\(993\) 0 0
\(994\) 430.315 + 1182.28i 0.432912 + 1.18942i
\(995\) −196.341 + 849.635i −0.197327 + 0.853904i
\(996\) 0 0
\(997\) 48.0439 549.144i 0.0481885 0.550797i −0.933277 0.359157i \(-0.883064\pi\)
0.981465 0.191639i \(-0.0613803\pi\)
\(998\) 335.722 + 335.722i 0.336395 + 0.336395i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.26 408
3.2 odd 2 135.3.r.a.103.9 yes 408
5.2 odd 4 inner 405.3.s.a.37.26 408
15.2 even 4 135.3.r.a.22.9 408
27.11 odd 18 135.3.r.a.43.9 yes 408
27.16 even 9 inner 405.3.s.a.208.26 408
135.92 even 36 135.3.r.a.97.9 yes 408
135.97 odd 36 inner 405.3.s.a.127.26 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.9 408 15.2 even 4
135.3.r.a.43.9 yes 408 27.11 odd 18
135.3.r.a.97.9 yes 408 135.92 even 36
135.3.r.a.103.9 yes 408 3.2 odd 2
405.3.s.a.37.26 408 5.2 odd 4 inner
405.3.s.a.118.26 408 1.1 even 1 trivial
405.3.s.a.127.26 408 135.97 odd 36 inner
405.3.s.a.208.26 408 27.16 even 9 inner