Properties

Label 405.3.l.f.298.2
Level $405$
Weight $3$
Character 405.298
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(28,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 298.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 405.298
Dual form 405.3.l.f.352.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.814313 + 3.03906i) q^{2} +(-5.10867 + 2.94949i) q^{4} +(4.99585 + 0.203583i) q^{5} +(-0.530550 - 1.98004i) q^{7} +(-4.22474 - 4.22474i) q^{8} +(3.44949 + 15.3485i) q^{10} +(-1.67423 + 2.89986i) q^{11} +(-3.82478 + 14.2743i) q^{13} +(5.58542 - 3.22474i) q^{14} +(-2.39898 + 4.15515i) q^{16} +(2.65153 - 2.65153i) q^{17} +20.6969i q^{19} +(-26.1226 + 13.6952i) q^{20} +(-10.1762 - 2.72670i) q^{22} +(-6.02093 + 22.4704i) q^{23} +(24.9171 + 2.03414i) q^{25} -46.4949 q^{26} +(8.55051 + 8.55051i) q^{28} +(-0.739215 - 0.426786i) q^{29} +(9.34847 + 16.1920i) q^{31} +(-37.6657 - 10.0925i) q^{32} +(10.2173 + 5.89898i) q^{34} +(-2.24745 - 10.0000i) q^{35} +(38.0454 - 38.0454i) q^{37} +(-62.8992 + 16.8538i) q^{38} +(-20.2461 - 21.9663i) q^{40} +(-14.3485 - 24.8523i) q^{41} +(-30.7286 + 8.23370i) q^{43} -19.7526i q^{44} -73.1918 q^{46} +(-7.22994 - 26.9825i) q^{47} +(38.7962 - 22.3990i) q^{49} +(14.1085 + 77.3810i) q^{50} +(-22.5623 - 84.2036i) q^{52} +(-28.6969 - 28.6969i) q^{53} +(-8.95459 + 14.1464i) q^{55} +(-6.12372 + 10.6066i) q^{56} +(0.695075 - 2.59405i) q^{58} +(96.9378 - 55.9671i) q^{59} +(-47.0454 + 81.4850i) q^{61} +(-41.5959 + 41.5959i) q^{62} -103.495i q^{64} +(-22.0140 + 70.5335i) q^{65} +(74.9934 + 20.0944i) q^{67} +(-5.72512 + 21.3664i) q^{68} +(28.5605 - 14.9733i) q^{70} +68.0000 q^{71} +(-39.7878 - 39.7878i) q^{73} +(146.603 + 84.6413i) q^{74} +(-61.0454 - 105.734i) q^{76} +(6.63010 + 1.77653i) q^{77} +(21.2132 + 12.2474i) q^{79} +(-12.8309 + 20.2702i) q^{80} +(63.8434 - 63.8434i) q^{82} +(-28.8866 + 7.74013i) q^{83} +(13.7865 - 12.7069i) q^{85} +(-50.0454 - 86.6812i) q^{86} +(19.3244 - 5.17795i) q^{88} -94.1816i q^{89} +30.2929 q^{91} +(-35.5173 - 132.553i) q^{92} +(76.1139 - 43.9444i) q^{94} +(-4.21354 + 103.399i) q^{95} +(5.34248 + 19.9384i) q^{97} +(99.6640 + 99.6640i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{5} - 4 q^{7} - 24 q^{8} + 8 q^{10} + 16 q^{11} + 32 q^{13} + 20 q^{16} + 80 q^{17} - 36 q^{20} - 20 q^{22} + 56 q^{23} - 16 q^{25} - 176 q^{26} + 88 q^{28} + 16 q^{31} - 76 q^{32} + 80 q^{35}+ \cdots + 376 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.814313 + 3.03906i 0.407157 + 1.51953i 0.800043 + 0.599942i \(0.204810\pi\)
−0.392887 + 0.919587i \(0.628524\pi\)
\(3\) 0 0
\(4\) −5.10867 + 2.94949i −1.27717 + 0.737372i
\(5\) 4.99585 + 0.203583i 0.999171 + 0.0407165i
\(6\) 0 0
\(7\) −0.530550 1.98004i −0.0757929 0.282863i 0.917619 0.397461i \(-0.130109\pi\)
−0.993412 + 0.114598i \(0.963442\pi\)
\(8\) −4.22474 4.22474i −0.528093 0.528093i
\(9\) 0 0
\(10\) 3.44949 + 15.3485i 0.344949 + 1.53485i
\(11\) −1.67423 + 2.89986i −0.152203 + 0.263624i −0.932037 0.362363i \(-0.881970\pi\)
0.779834 + 0.625986i \(0.215303\pi\)
\(12\) 0 0
\(13\) −3.82478 + 14.2743i −0.294214 + 1.09802i 0.647626 + 0.761958i \(0.275762\pi\)
−0.941840 + 0.336062i \(0.890905\pi\)
\(14\) 5.58542 3.22474i 0.398959 0.230339i
\(15\) 0 0
\(16\) −2.39898 + 4.15515i −0.149936 + 0.259697i
\(17\) 2.65153 2.65153i 0.155972 0.155972i −0.624807 0.780779i \(-0.714822\pi\)
0.780779 + 0.624807i \(0.214822\pi\)
\(18\) 0 0
\(19\) 20.6969i 1.08931i 0.838659 + 0.544656i \(0.183340\pi\)
−0.838659 + 0.544656i \(0.816660\pi\)
\(20\) −26.1226 + 13.6952i −1.30613 + 0.684759i
\(21\) 0 0
\(22\) −10.1762 2.72670i −0.462554 0.123941i
\(23\) −6.02093 + 22.4704i −0.261780 + 0.976975i 0.702413 + 0.711770i \(0.252106\pi\)
−0.964192 + 0.265205i \(0.914560\pi\)
\(24\) 0 0
\(25\) 24.9171 + 2.03414i 0.996684 + 0.0813655i
\(26\) −46.4949 −1.78827
\(27\) 0 0
\(28\) 8.55051 + 8.55051i 0.305375 + 0.305375i
\(29\) −0.739215 0.426786i −0.0254902 0.0147168i 0.487201 0.873290i \(-0.338018\pi\)
−0.512691 + 0.858573i \(0.671351\pi\)
\(30\) 0 0
\(31\) 9.34847 + 16.1920i 0.301564 + 0.522323i 0.976490 0.215561i \(-0.0691581\pi\)
−0.674927 + 0.737885i \(0.735825\pi\)
\(32\) −37.6657 10.0925i −1.17705 0.315391i
\(33\) 0 0
\(34\) 10.2173 + 5.89898i 0.300510 + 0.173499i
\(35\) −2.24745 10.0000i −0.0642128 0.285714i
\(36\) 0 0
\(37\) 38.0454 38.0454i 1.02825 1.02825i 0.0286652 0.999589i \(-0.490874\pi\)
0.999589 0.0286652i \(-0.00912566\pi\)
\(38\) −62.8992 + 16.8538i −1.65524 + 0.443521i
\(39\) 0 0
\(40\) −20.2461 21.9663i −0.506153 0.549157i
\(41\) −14.3485 24.8523i −0.349963 0.606153i 0.636280 0.771458i \(-0.280472\pi\)
−0.986242 + 0.165305i \(0.947139\pi\)
\(42\) 0 0
\(43\) −30.7286 + 8.23370i −0.714619 + 0.191481i −0.597769 0.801668i \(-0.703946\pi\)
−0.116849 + 0.993150i \(0.537279\pi\)
\(44\) 19.7526i 0.448922i
\(45\) 0 0
\(46\) −73.1918 −1.59113
\(47\) −7.22994 26.9825i −0.153828 0.574095i −0.999203 0.0399212i \(-0.987289\pi\)
0.845374 0.534174i \(-0.179377\pi\)
\(48\) 0 0
\(49\) 38.7962 22.3990i 0.791759 0.457122i
\(50\) 14.1085 + 77.3810i 0.282169 + 1.54762i
\(51\) 0 0
\(52\) −22.5623 84.2036i −0.433890 1.61930i
\(53\) −28.6969 28.6969i −0.541452 0.541452i 0.382503 0.923954i \(-0.375062\pi\)
−0.923954 + 0.382503i \(0.875062\pi\)
\(54\) 0 0
\(55\) −8.95459 + 14.1464i −0.162811 + 0.257208i
\(56\) −6.12372 + 10.6066i −0.109352 + 0.189404i
\(57\) 0 0
\(58\) 0.695075 2.59405i 0.0119840 0.0447251i
\(59\) 96.9378 55.9671i 1.64301 0.948595i 0.663261 0.748389i \(-0.269172\pi\)
0.979754 0.200206i \(-0.0641612\pi\)
\(60\) 0 0
\(61\) −47.0454 + 81.4850i −0.771236 + 1.33582i 0.165650 + 0.986185i \(0.447028\pi\)
−0.936886 + 0.349636i \(0.886305\pi\)
\(62\) −41.5959 + 41.5959i −0.670902 + 0.670902i
\(63\) 0 0
\(64\) 103.495i 1.61711i
\(65\) −22.0140 + 70.5335i −0.338677 + 1.08513i
\(66\) 0 0
\(67\) 74.9934 + 20.0944i 1.11930 + 0.299917i 0.770602 0.637317i \(-0.219956\pi\)
0.348703 + 0.937233i \(0.386622\pi\)
\(68\) −5.72512 + 21.3664i −0.0841930 + 0.314212i
\(69\) 0 0
\(70\) 28.5605 14.9733i 0.408006 0.213904i
\(71\) 68.0000 0.957746 0.478873 0.877884i \(-0.341045\pi\)
0.478873 + 0.877884i \(0.341045\pi\)
\(72\) 0 0
\(73\) −39.7878 39.7878i −0.545038 0.545038i 0.379964 0.925001i \(-0.375936\pi\)
−0.925001 + 0.379964i \(0.875936\pi\)
\(74\) 146.603 + 84.6413i 1.98112 + 1.14380i
\(75\) 0 0
\(76\) −61.0454 105.734i −0.803229 1.39123i
\(77\) 6.63010 + 1.77653i 0.0861052 + 0.0230718i
\(78\) 0 0
\(79\) 21.2132 + 12.2474i 0.268522 + 0.155031i 0.628216 0.778039i \(-0.283786\pi\)
−0.359694 + 0.933070i \(0.617119\pi\)
\(80\) −12.8309 + 20.2702i −0.160386 + 0.253377i
\(81\) 0 0
\(82\) 63.8434 63.8434i 0.778578 0.778578i
\(83\) −28.8866 + 7.74013i −0.348031 + 0.0932546i −0.428600 0.903494i \(-0.640993\pi\)
0.0805689 + 0.996749i \(0.474326\pi\)
\(84\) 0 0
\(85\) 13.7865 12.7069i 0.162194 0.149492i
\(86\) −50.0454 86.6812i −0.581923 1.00792i
\(87\) 0 0
\(88\) 19.3244 5.17795i 0.219595 0.0588404i
\(89\) 94.1816i 1.05822i −0.848553 0.529110i \(-0.822526\pi\)
0.848553 0.529110i \(-0.177474\pi\)
\(90\) 0 0
\(91\) 30.2929 0.332889
\(92\) −35.5173 132.553i −0.386058 1.44079i
\(93\) 0 0
\(94\) 76.1139 43.9444i 0.809722 0.467493i
\(95\) −4.21354 + 103.399i −0.0443530 + 1.08841i
\(96\) 0 0
\(97\) 5.34248 + 19.9384i 0.0550771 + 0.205550i 0.987981 0.154575i \(-0.0494007\pi\)
−0.932904 + 0.360125i \(0.882734\pi\)
\(98\) 99.6640 + 99.6640i 1.01698 + 1.01698i
\(99\) 0 0
\(100\) −133.293 + 63.1010i −1.33293 + 0.631010i
\(101\) 86.8105 150.360i 0.859509 1.48871i −0.0128880 0.999917i \(-0.504102\pi\)
0.872397 0.488797i \(-0.162564\pi\)
\(102\) 0 0
\(103\) −23.7011 + 88.4536i −0.230108 + 0.858773i 0.750186 + 0.661227i \(0.229964\pi\)
−0.980294 + 0.197546i \(0.936703\pi\)
\(104\) 76.4639 44.1464i 0.735229 0.424485i
\(105\) 0 0
\(106\) 63.8434 110.580i 0.602296 1.04321i
\(107\) 4.74235 4.74235i 0.0443210 0.0443210i −0.684599 0.728920i \(-0.740023\pi\)
0.728920 + 0.684599i \(0.240023\pi\)
\(108\) 0 0
\(109\) 39.3031i 0.360579i −0.983614 0.180289i \(-0.942297\pi\)
0.983614 0.180289i \(-0.0577034\pi\)
\(110\) −50.2837 15.6939i −0.457124 0.142672i
\(111\) 0 0
\(112\) 9.50015 + 2.54556i 0.0848228 + 0.0227282i
\(113\) −5.25564 + 19.6143i −0.0465101 + 0.173578i −0.985274 0.170983i \(-0.945306\pi\)
0.938764 + 0.344561i \(0.111972\pi\)
\(114\) 0 0
\(115\) −34.6543 + 111.033i −0.301342 + 0.965506i
\(116\) 5.03520 0.0434069
\(117\) 0 0
\(118\) 249.025 + 249.025i 2.11038 + 2.11038i
\(119\) −6.65691 3.84337i −0.0559404 0.0322972i
\(120\) 0 0
\(121\) 54.8939 + 95.0790i 0.453668 + 0.785777i
\(122\) −285.947 76.6194i −2.34383 0.628028i
\(123\) 0 0
\(124\) −95.5164 55.1464i −0.770294 0.444729i
\(125\) 124.068 + 15.2350i 0.992545 + 0.121880i
\(126\) 0 0
\(127\) −114.621 + 114.621i −0.902527 + 0.902527i −0.995654 0.0931273i \(-0.970314\pi\)
0.0931273 + 0.995654i \(0.470314\pi\)
\(128\) 163.864 43.9073i 1.28019 0.343026i
\(129\) 0 0
\(130\) −232.282 9.46556i −1.78678 0.0728120i
\(131\) −13.0681 22.6346i −0.0997566 0.172783i 0.811827 0.583898i \(-0.198473\pi\)
−0.911584 + 0.411114i \(0.865140\pi\)
\(132\) 0 0
\(133\) 40.9808 10.9808i 0.308126 0.0825621i
\(134\) 244.272i 1.82293i
\(135\) 0 0
\(136\) −22.4041 −0.164736
\(137\) −5.35536 19.9865i −0.0390902 0.145887i 0.943623 0.331023i \(-0.107394\pi\)
−0.982713 + 0.185137i \(0.940727\pi\)
\(138\) 0 0
\(139\) −72.0286 + 41.5857i −0.518191 + 0.299178i −0.736194 0.676770i \(-0.763379\pi\)
0.218003 + 0.975948i \(0.430046\pi\)
\(140\) 40.9764 + 44.4578i 0.292688 + 0.317556i
\(141\) 0 0
\(142\) 55.3733 + 206.656i 0.389953 + 1.45532i
\(143\) −34.9898 34.9898i −0.244684 0.244684i
\(144\) 0 0
\(145\) −3.60612 2.28265i −0.0248698 0.0157424i
\(146\) 88.5176 153.317i 0.606285 1.05012i
\(147\) 0 0
\(148\) −82.1467 + 306.576i −0.555046 + 2.07146i
\(149\) 103.184 59.5732i 0.692509 0.399820i −0.112042 0.993703i \(-0.535739\pi\)
0.804551 + 0.593883i \(0.202406\pi\)
\(150\) 0 0
\(151\) 72.4847 125.547i 0.480031 0.831438i −0.519707 0.854345i \(-0.673959\pi\)
0.999738 + 0.0229066i \(0.00729205\pi\)
\(152\) 87.4393 87.4393i 0.575258 0.575258i
\(153\) 0 0
\(154\) 21.5959i 0.140233i
\(155\) 43.4072 + 82.7962i 0.280046 + 0.534169i
\(156\) 0 0
\(157\) −69.8673 18.7209i −0.445015 0.119241i 0.0293510 0.999569i \(-0.490656\pi\)
−0.474366 + 0.880328i \(0.657323\pi\)
\(158\) −19.9465 + 74.4414i −0.126244 + 0.471148i
\(159\) 0 0
\(160\) −186.118 58.0887i −1.16324 0.363055i
\(161\) 47.6867 0.296191
\(162\) 0 0
\(163\) 189.394 + 189.394i 1.16193 + 1.16193i 0.984054 + 0.177872i \(0.0569213\pi\)
0.177872 + 0.984054i \(0.443079\pi\)
\(164\) 146.603 + 84.6413i 0.893921 + 0.516106i
\(165\) 0 0
\(166\) −47.0454 81.4850i −0.283406 0.490874i
\(167\) 132.553 + 35.5173i 0.793728 + 0.212679i 0.632828 0.774292i \(-0.281894\pi\)
0.160899 + 0.986971i \(0.448561\pi\)
\(168\) 0 0
\(169\) −42.7675 24.6918i −0.253062 0.146106i
\(170\) 49.8434 + 31.5505i 0.293196 + 0.185591i
\(171\) 0 0
\(172\) 132.697 132.697i 0.771494 0.771494i
\(173\) −47.3070 + 12.6759i −0.273451 + 0.0732709i −0.392938 0.919565i \(-0.628541\pi\)
0.119488 + 0.992836i \(0.461875\pi\)
\(174\) 0 0
\(175\) −9.19210 50.4161i −0.0525263 0.288092i
\(176\) −8.03291 13.9134i −0.0456415 0.0790534i
\(177\) 0 0
\(178\) 286.223 76.6933i 1.60800 0.430861i
\(179\) 183.712i 1.02632i −0.858292 0.513161i \(-0.828474\pi\)
0.858292 0.513161i \(-0.171526\pi\)
\(180\) 0 0
\(181\) −21.7276 −0.120042 −0.0600209 0.998197i \(-0.519117\pi\)
−0.0600209 + 0.998197i \(0.519117\pi\)
\(182\) 24.6679 + 92.0617i 0.135538 + 0.505834i
\(183\) 0 0
\(184\) 120.369 69.4949i 0.654178 0.377690i
\(185\) 197.815 182.324i 1.06927 0.985535i
\(186\) 0 0
\(187\) 3.24978 + 12.1284i 0.0173785 + 0.0648575i
\(188\) 116.520 + 116.520i 0.619787 + 0.619787i
\(189\) 0 0
\(190\) −317.666 + 71.3939i −1.67193 + 0.375757i
\(191\) −20.0454 + 34.7197i −0.104950 + 0.181778i −0.913718 0.406350i \(-0.866802\pi\)
0.808768 + 0.588128i \(0.200135\pi\)
\(192\) 0 0
\(193\) 28.3909 105.956i 0.147103 0.548996i −0.852550 0.522646i \(-0.824945\pi\)
0.999653 0.0263498i \(-0.00838836\pi\)
\(194\) −56.2435 + 32.4722i −0.289915 + 0.167382i
\(195\) 0 0
\(196\) −132.131 + 228.858i −0.674138 + 1.16764i
\(197\) 67.3031 67.3031i 0.341640 0.341640i −0.515344 0.856984i \(-0.672336\pi\)
0.856984 + 0.515344i \(0.172336\pi\)
\(198\) 0 0
\(199\) 251.394i 1.26329i −0.775259 0.631643i \(-0.782381\pi\)
0.775259 0.631643i \(-0.217619\pi\)
\(200\) −96.6747 113.862i −0.483374 0.569311i
\(201\) 0 0
\(202\) 527.644 + 141.382i 2.61210 + 0.699910i
\(203\) −0.452863 + 1.69011i −0.00223085 + 0.00832565i
\(204\) 0 0
\(205\) −66.6234 127.079i −0.324992 0.619900i
\(206\) −288.116 −1.39862
\(207\) 0 0
\(208\) −50.1362 50.1362i −0.241040 0.241040i
\(209\) −60.0182 34.6515i −0.287168 0.165797i
\(210\) 0 0
\(211\) −132.394 229.313i −0.627459 1.08679i −0.988060 0.154071i \(-0.950762\pi\)
0.360601 0.932720i \(-0.382572\pi\)
\(212\) 231.244 + 61.9618i 1.09078 + 0.292272i
\(213\) 0 0
\(214\) 18.2740 + 10.5505i 0.0853926 + 0.0493014i
\(215\) −155.192 + 34.8786i −0.721822 + 0.162226i
\(216\) 0 0
\(217\) 27.1010 27.1010i 0.124889 0.124889i
\(218\) 119.444 32.0050i 0.547910 0.146812i
\(219\) 0 0
\(220\) 4.02128 98.6809i 0.0182785 0.448549i
\(221\) 27.7071 + 47.9902i 0.125372 + 0.217150i
\(222\) 0 0
\(223\) 45.6650 12.2359i 0.204776 0.0548695i −0.154973 0.987919i \(-0.549529\pi\)
0.359749 + 0.933049i \(0.382862\pi\)
\(224\) 79.9342i 0.356849i
\(225\) 0 0
\(226\) −63.8888 −0.282694
\(227\) 7.74928 + 28.9207i 0.0341378 + 0.127404i 0.980892 0.194554i \(-0.0623258\pi\)
−0.946754 + 0.321958i \(0.895659\pi\)
\(228\) 0 0
\(229\) 211.135 121.899i 0.921988 0.532310i 0.0377192 0.999288i \(-0.487991\pi\)
0.884269 + 0.466978i \(0.154657\pi\)
\(230\) −365.656 14.9006i −1.58981 0.0647852i
\(231\) 0 0
\(232\) 1.31993 + 4.92606i 0.00568936 + 0.0212330i
\(233\) −161.712 161.712i −0.694042 0.694042i 0.269077 0.963119i \(-0.413281\pi\)
−0.963119 + 0.269077i \(0.913281\pi\)
\(234\) 0 0
\(235\) −30.6265 136.272i −0.130326 0.579883i
\(236\) −330.149 + 571.834i −1.39894 + 2.42303i
\(237\) 0 0
\(238\) 6.25941 23.3604i 0.0263000 0.0981531i
\(239\) −282.499 + 163.101i −1.18201 + 0.682431i −0.956478 0.291806i \(-0.905744\pi\)
−0.225528 + 0.974237i \(0.572411\pi\)
\(240\) 0 0
\(241\) 66.7878 115.680i 0.277128 0.479999i −0.693542 0.720416i \(-0.743951\pi\)
0.970670 + 0.240417i \(0.0772842\pi\)
\(242\) −244.250 + 244.250i −1.00930 + 1.00930i
\(243\) 0 0
\(244\) 555.040i 2.27475i
\(245\) 198.380 104.004i 0.809714 0.424505i
\(246\) 0 0
\(247\) −295.434 79.1612i −1.19609 0.320491i
\(248\) 28.9123 107.902i 0.116582 0.435089i
\(249\) 0 0
\(250\) 54.7304 + 389.456i 0.218922 + 1.55782i
\(251\) 404.742 1.61252 0.806260 0.591562i \(-0.201488\pi\)
0.806260 + 0.591562i \(0.201488\pi\)
\(252\) 0 0
\(253\) −55.0806 55.0806i −0.217710 0.217710i
\(254\) −441.677 255.002i −1.73889 1.00395i
\(255\) 0 0
\(256\) 59.8837 + 103.722i 0.233921 + 0.405162i
\(257\) −121.900 32.6631i −0.474320 0.127094i 0.0137364 0.999906i \(-0.495627\pi\)
−0.488057 + 0.872812i \(0.662294\pi\)
\(258\) 0 0
\(259\) −95.5164 55.1464i −0.368789 0.212921i
\(260\) −95.5755 425.262i −0.367598 1.63562i
\(261\) 0 0
\(262\) 58.1464 58.1464i 0.221933 0.221933i
\(263\) −466.967 + 125.123i −1.77554 + 0.475754i −0.989759 0.142751i \(-0.954405\pi\)
−0.785780 + 0.618506i \(0.787738\pi\)
\(264\) 0 0
\(265\) −137.524 149.208i −0.518957 0.563049i
\(266\) 66.7423 + 115.601i 0.250911 + 0.434591i
\(267\) 0 0
\(268\) −442.385 + 118.537i −1.65069 + 0.442301i
\(269\) 3.50052i 0.0130131i −0.999979 0.00650653i \(-0.997929\pi\)
0.999979 0.00650653i \(-0.00207111\pi\)
\(270\) 0 0
\(271\) −103.576 −0.382197 −0.191099 0.981571i \(-0.561205\pi\)
−0.191099 + 0.981571i \(0.561205\pi\)
\(272\) 4.65655 + 17.3785i 0.0171197 + 0.0638915i
\(273\) 0 0
\(274\) 56.3791 32.5505i 0.205763 0.118797i
\(275\) −47.6158 + 68.8505i −0.173148 + 0.250365i
\(276\) 0 0
\(277\) −104.504 390.013i −0.377270 1.40799i −0.850000 0.526783i \(-0.823398\pi\)
0.472730 0.881208i \(-0.343269\pi\)
\(278\) −185.035 185.035i −0.665594 0.665594i
\(279\) 0 0
\(280\) −32.7526 + 51.7423i −0.116973 + 0.184794i
\(281\) 186.348 322.765i 0.663162 1.14863i −0.316618 0.948553i \(-0.602547\pi\)
0.979780 0.200077i \(-0.0641192\pi\)
\(282\) 0 0
\(283\) −28.2542 + 105.446i −0.0998381 + 0.372601i −0.997709 0.0676591i \(-0.978447\pi\)
0.897870 + 0.440260i \(0.145114\pi\)
\(284\) −347.389 + 200.565i −1.22320 + 0.706216i
\(285\) 0 0
\(286\) 77.8434 134.829i 0.272180 0.471429i
\(287\) −41.5959 + 41.5959i −0.144934 + 0.144934i
\(288\) 0 0
\(289\) 274.939i 0.951345i
\(290\) 4.00060 12.8180i 0.0137952 0.0442000i
\(291\) 0 0
\(292\) 320.616 + 85.9088i 1.09800 + 0.294208i
\(293\) 86.5889 323.154i 0.295525 1.10292i −0.645274 0.763951i \(-0.723257\pi\)
0.940799 0.338964i \(-0.110077\pi\)
\(294\) 0 0
\(295\) 495.681 259.869i 1.68028 0.880910i
\(296\) −321.464 −1.08603
\(297\) 0 0
\(298\) 265.070 + 265.070i 0.889498 + 0.889498i
\(299\) −297.720 171.889i −0.995719 0.574879i
\(300\) 0 0
\(301\) 32.6061 + 56.4755i 0.108326 + 0.187626i
\(302\) 440.570 + 118.050i 1.45884 + 0.390896i
\(303\) 0 0
\(304\) −85.9990 49.6515i −0.282891 0.163327i
\(305\) −251.621 + 397.510i −0.824987 + 1.30331i
\(306\) 0 0
\(307\) 168.969 168.969i 0.550389 0.550389i −0.376164 0.926553i \(-0.622757\pi\)
0.926553 + 0.376164i \(0.122757\pi\)
\(308\) −39.1108 + 10.4797i −0.126983 + 0.0340251i
\(309\) 0 0
\(310\) −216.275 + 199.339i −0.697662 + 0.643029i
\(311\) 177.151 + 306.835i 0.569617 + 0.986606i 0.996604 + 0.0823482i \(0.0262420\pi\)
−0.426986 + 0.904258i \(0.640425\pi\)
\(312\) 0 0
\(313\) −208.146 + 55.7726i −0.665003 + 0.178187i −0.575503 0.817800i \(-0.695194\pi\)
−0.0895003 + 0.995987i \(0.528527\pi\)
\(314\) 227.576i 0.724763i
\(315\) 0 0
\(316\) −144.495 −0.457262
\(317\) 156.372 + 583.589i 0.493288 + 1.84097i 0.539416 + 0.842039i \(0.318645\pi\)
−0.0461283 + 0.998936i \(0.514688\pi\)
\(318\) 0 0
\(319\) 2.47524 1.42908i 0.00775937 0.00447987i
\(320\) 21.0698 517.045i 0.0658430 1.61577i
\(321\) 0 0
\(322\) 38.8319 + 144.923i 0.120596 + 0.450071i
\(323\) 54.8786 + 54.8786i 0.169903 + 0.169903i
\(324\) 0 0
\(325\) −124.338 + 347.893i −0.382579 + 1.07044i
\(326\) −421.353 + 729.805i −1.29249 + 2.23867i
\(327\) 0 0
\(328\) −44.3759 + 165.613i −0.135292 + 0.504918i
\(329\) −49.5906 + 28.6311i −0.150731 + 0.0870247i
\(330\) 0 0
\(331\) −244.712 + 423.853i −0.739310 + 1.28052i 0.213496 + 0.976944i \(0.431515\pi\)
−0.952806 + 0.303579i \(0.901818\pi\)
\(332\) 124.742 124.742i 0.375730 0.375730i
\(333\) 0 0
\(334\) 431.757i 1.29269i
\(335\) 370.565 + 115.656i 1.10616 + 0.345242i
\(336\) 0 0
\(337\) −399.141 106.950i −1.18440 0.317358i −0.387727 0.921774i \(-0.626740\pi\)
−0.796669 + 0.604416i \(0.793406\pi\)
\(338\) 40.2138 150.080i 0.118976 0.444023i
\(339\) 0 0
\(340\) −32.9517 + 105.578i −0.0969168 + 0.310524i
\(341\) −62.6061 −0.183596
\(342\) 0 0
\(343\) −135.959 135.959i −0.396382 0.396382i
\(344\) 164.606 + 95.0352i 0.478505 + 0.276265i
\(345\) 0 0
\(346\) −77.0454 133.447i −0.222675 0.385684i
\(347\) 437.196 + 117.146i 1.25993 + 0.337598i 0.826166 0.563428i \(-0.190518\pi\)
0.433767 + 0.901025i \(0.357184\pi\)
\(348\) 0 0
\(349\) 497.107 + 287.005i 1.42437 + 0.822363i 0.996669 0.0815556i \(-0.0259888\pi\)
0.427705 + 0.903918i \(0.359322\pi\)
\(350\) 145.732 68.9898i 0.416378 0.197114i
\(351\) 0 0
\(352\) 92.3281 92.3281i 0.262296 0.262296i
\(353\) 364.073 97.5531i 1.03137 0.276354i 0.296836 0.954928i \(-0.404068\pi\)
0.734532 + 0.678574i \(0.237402\pi\)
\(354\) 0 0
\(355\) 339.718 + 13.8436i 0.956952 + 0.0389961i
\(356\) 277.788 + 481.143i 0.780303 + 1.35152i
\(357\) 0 0
\(358\) 558.311 149.599i 1.55953 0.417874i
\(359\) 216.272i 0.602430i −0.953556 0.301215i \(-0.902608\pi\)
0.953556 0.301215i \(-0.0973922\pi\)
\(360\) 0 0
\(361\) −67.3633 −0.186602
\(362\) −17.6930 66.0313i −0.0488758 0.182407i
\(363\) 0 0
\(364\) −154.756 + 89.3485i −0.425154 + 0.245463i
\(365\) −190.674 206.874i −0.522394 0.566778i
\(366\) 0 0
\(367\) −88.0327 328.542i −0.239871 0.895211i −0.975892 0.218252i \(-0.929964\pi\)
0.736021 0.676958i \(-0.236702\pi\)
\(368\) −78.9240 78.9240i −0.214467 0.214467i
\(369\) 0 0
\(370\) 715.176 + 452.702i 1.93291 + 1.22352i
\(371\) −41.5959 + 72.0462i −0.112118 + 0.194195i
\(372\) 0 0
\(373\) −120.864 + 451.071i −0.324032 + 1.20930i 0.591249 + 0.806489i \(0.298635\pi\)
−0.915281 + 0.402816i \(0.868032\pi\)
\(374\) −34.2124 + 19.7526i −0.0914771 + 0.0528143i
\(375\) 0 0
\(376\) −83.4495 + 144.539i −0.221940 + 0.384412i
\(377\) 8.91939 8.91939i 0.0236589 0.0236589i
\(378\) 0 0
\(379\) 210.000i 0.554090i 0.960857 + 0.277045i \(0.0893551\pi\)
−0.960857 + 0.277045i \(0.910645\pi\)
\(380\) −283.448 540.658i −0.745917 1.42278i
\(381\) 0 0
\(382\) −121.838 32.6465i −0.318948 0.0854620i
\(383\) −62.4553 + 233.086i −0.163069 + 0.608581i 0.835210 + 0.549931i \(0.185346\pi\)
−0.998279 + 0.0586495i \(0.981321\pi\)
\(384\) 0 0
\(385\) 32.7614 + 10.2251i 0.0850944 + 0.0265586i
\(386\) 345.126 0.894109
\(387\) 0 0
\(388\) −86.1010 86.1010i −0.221910 0.221910i
\(389\) −474.008 273.669i −1.21853 0.703518i −0.253926 0.967224i \(-0.581722\pi\)
−0.964603 + 0.263705i \(0.915055\pi\)
\(390\) 0 0
\(391\) 43.6163 + 75.5457i 0.111551 + 0.193212i
\(392\) −258.534 69.2739i −0.659525 0.176719i
\(393\) 0 0
\(394\) 259.344 + 149.732i 0.658233 + 0.380031i
\(395\) 103.485 + 65.5051i 0.261987 + 0.165836i
\(396\) 0 0
\(397\) 45.2577 45.2577i 0.113999 0.113999i −0.647806 0.761805i \(-0.724313\pi\)
0.761805 + 0.647806i \(0.224313\pi\)
\(398\) 764.001 204.713i 1.91960 0.514355i
\(399\) 0 0
\(400\) −68.2278 + 98.6546i −0.170569 + 0.246636i
\(401\) −260.151 450.595i −0.648756 1.12368i −0.983420 0.181340i \(-0.941956\pi\)
0.334665 0.942337i \(-0.391377\pi\)
\(402\) 0 0
\(403\) −266.885 + 71.5117i −0.662246 + 0.177448i
\(404\) 1024.19i 2.53511i
\(405\) 0 0
\(406\) −5.50510 −0.0135594
\(407\) 46.6294 + 174.023i 0.114569 + 0.427576i
\(408\) 0 0
\(409\) −300.606 + 173.555i −0.734979 + 0.424340i −0.820241 0.572018i \(-0.806161\pi\)
0.0852621 + 0.996359i \(0.472827\pi\)
\(410\) 331.950 305.955i 0.809633 0.746231i
\(411\) 0 0
\(412\) −139.812 521.786i −0.339350 1.26647i
\(413\) −162.247 162.247i −0.392851 0.392851i
\(414\) 0 0
\(415\) −145.889 + 32.7878i −0.351539 + 0.0790066i
\(416\) 288.126 499.049i 0.692611 1.19964i
\(417\) 0 0
\(418\) 56.4344 210.616i 0.135011 0.503866i
\(419\) −505.238 + 291.699i −1.20582 + 0.696180i −0.961843 0.273602i \(-0.911785\pi\)
−0.243975 + 0.969781i \(0.578452\pi\)
\(420\) 0 0
\(421\) −106.576 + 184.594i −0.253148 + 0.438466i −0.964391 0.264481i \(-0.914799\pi\)
0.711243 + 0.702947i \(0.248133\pi\)
\(422\) 589.085 589.085i 1.39594 1.39594i
\(423\) 0 0
\(424\) 242.474i 0.571874i
\(425\) 71.4621 60.6749i 0.168146 0.142764i
\(426\) 0 0
\(427\) 186.304 + 49.9199i 0.436308 + 0.116908i
\(428\) −10.2396 + 38.2146i −0.0239242 + 0.0892864i
\(429\) 0 0
\(430\) −232.373 443.235i −0.540402 1.03078i
\(431\) −187.364 −0.434720 −0.217360 0.976092i \(-0.569745\pi\)
−0.217360 + 0.976092i \(0.569745\pi\)
\(432\) 0 0
\(433\) 154.848 + 154.848i 0.357617 + 0.357617i 0.862934 0.505317i \(-0.168624\pi\)
−0.505317 + 0.862934i \(0.668624\pi\)
\(434\) 104.430 + 60.2929i 0.240623 + 0.138924i
\(435\) 0 0
\(436\) 115.924 + 200.786i 0.265881 + 0.460519i
\(437\) −465.069 124.615i −1.06423 0.285160i
\(438\) 0 0
\(439\) −219.043 126.464i −0.498958 0.288074i 0.229325 0.973350i \(-0.426348\pi\)
−0.728283 + 0.685276i \(0.759681\pi\)
\(440\) 97.5959 21.9342i 0.221809 0.0498504i
\(441\) 0 0
\(442\) −123.283 + 123.283i −0.278920 + 0.278920i
\(443\) −575.275 + 154.144i −1.29859 + 0.347956i −0.840917 0.541165i \(-0.817984\pi\)
−0.457673 + 0.889121i \(0.651317\pi\)
\(444\) 0 0
\(445\) 19.1737 470.518i 0.0430871 1.05734i
\(446\) 74.3712 + 128.815i 0.166752 + 0.288822i
\(447\) 0 0
\(448\) −204.924 + 54.9092i −0.457420 + 0.122565i
\(449\) 297.909i 0.663495i 0.943368 + 0.331747i \(0.107638\pi\)
−0.943368 + 0.331747i \(0.892362\pi\)
\(450\) 0 0
\(451\) 96.0908 0.213062
\(452\) −31.0029 115.704i −0.0685905 0.255983i
\(453\) 0 0
\(454\) −81.5814 + 47.1010i −0.179695 + 0.103747i
\(455\) 151.339 + 6.16710i 0.332612 + 0.0135541i
\(456\) 0 0
\(457\) 104.591 + 390.338i 0.228864 + 0.854130i 0.980820 + 0.194917i \(0.0624438\pi\)
−0.751956 + 0.659213i \(0.770890\pi\)
\(458\) 542.388 + 542.388i 1.18425 + 1.18425i
\(459\) 0 0
\(460\) −150.454 669.444i −0.327074 1.45531i
\(461\) 263.310 456.066i 0.571171 0.989298i −0.425275 0.905064i \(-0.639823\pi\)
0.996446 0.0842333i \(-0.0268441\pi\)
\(462\) 0 0
\(463\) 122.875 458.577i 0.265389 0.990447i −0.696622 0.717438i \(-0.745315\pi\)
0.962012 0.273009i \(-0.0880187\pi\)
\(464\) 3.54672 2.04770i 0.00764380 0.00441315i
\(465\) 0 0
\(466\) 359.767 623.135i 0.772033 1.33720i
\(467\) −488.742 + 488.742i −1.04656 + 1.04656i −0.0476956 + 0.998862i \(0.515188\pi\)
−0.998862 + 0.0476956i \(0.984812\pi\)
\(468\) 0 0
\(469\) 159.151i 0.339341i
\(470\) 389.200 204.044i 0.828086 0.434137i
\(471\) 0 0
\(472\) −645.984 173.091i −1.36861 0.366718i
\(473\) 27.5703 102.894i 0.0582882 0.217534i
\(474\) 0 0
\(475\) −42.1004 + 515.708i −0.0886325 + 1.08570i
\(476\) 45.3439 0.0952603
\(477\) 0 0
\(478\) −725.716 725.716i −1.51823 1.51823i
\(479\) 160.171 + 92.4745i 0.334385 + 0.193057i 0.657786 0.753205i \(-0.271493\pi\)
−0.323401 + 0.946262i \(0.604826\pi\)
\(480\) 0 0
\(481\) 397.555 + 688.586i 0.826518 + 1.43157i
\(482\) 405.944 + 108.772i 0.842207 + 0.225669i
\(483\) 0 0
\(484\) −560.869 323.818i −1.15882 0.669045i
\(485\) 22.6311 + 100.697i 0.0466621 + 0.207623i
\(486\) 0 0
\(487\) −120.682 + 120.682i −0.247807 + 0.247807i −0.820070 0.572263i \(-0.806066\pi\)
0.572263 + 0.820070i \(0.306066\pi\)
\(488\) 543.008 145.499i 1.11272 0.298153i
\(489\) 0 0
\(490\) 477.617 + 518.197i 0.974729 + 1.05754i
\(491\) −52.8411 91.5234i −0.107619 0.186402i 0.807186 0.590297i \(-0.200989\pi\)
−0.914805 + 0.403895i \(0.867656\pi\)
\(492\) 0 0
\(493\) −3.09169 + 0.828415i −0.00627117 + 0.00168035i
\(494\) 962.302i 1.94798i
\(495\) 0 0
\(496\) −89.7071 −0.180861
\(497\) −36.0774 134.643i −0.0725904 0.270911i
\(498\) 0 0
\(499\) 640.499 369.792i 1.28357 0.741067i 0.306067 0.952010i \(-0.400987\pi\)
0.977498 + 0.210943i \(0.0676535\pi\)
\(500\) −678.758 + 288.107i −1.35752 + 0.576215i
\(501\) 0 0
\(502\) 329.587 + 1230.04i 0.656548 + 2.45027i
\(503\) 406.409 + 406.409i 0.807970 + 0.807970i 0.984326 0.176357i \(-0.0564312\pi\)
−0.176357 + 0.984326i \(0.556431\pi\)
\(504\) 0 0
\(505\) 464.303 733.504i 0.919412 1.45248i
\(506\) 122.540 212.246i 0.242175 0.419459i
\(507\) 0 0
\(508\) 247.487 923.633i 0.487179 1.81818i
\(509\) 168.451 97.2554i 0.330945 0.191071i −0.325315 0.945606i \(-0.605470\pi\)
0.656261 + 0.754534i \(0.272137\pi\)
\(510\) 0 0
\(511\) −57.6719 + 99.8907i −0.112861 + 0.195481i
\(512\) 213.376 213.376i 0.416750 0.416750i
\(513\) 0 0
\(514\) 397.060i 0.772491i
\(515\) −136.415 + 437.076i −0.264883 + 0.848692i
\(516\) 0 0
\(517\) 90.3500 + 24.2092i 0.174758 + 0.0468263i
\(518\) 89.8129 335.186i 0.173384 0.647078i
\(519\) 0 0
\(520\) 390.990 204.982i 0.751903 0.394197i
\(521\) 589.605 1.13168 0.565840 0.824515i \(-0.308552\pi\)
0.565840 + 0.824515i \(0.308552\pi\)
\(522\) 0 0
\(523\) −141.546 141.546i −0.270642 0.270642i 0.558716 0.829359i \(-0.311294\pi\)
−0.829359 + 0.558716i \(0.811294\pi\)
\(524\) 133.521 + 77.0885i 0.254812 + 0.147115i
\(525\) 0 0
\(526\) −760.514 1317.25i −1.44584 2.50428i
\(527\) 67.7214 + 18.1459i 0.128504 + 0.0344324i
\(528\) 0 0
\(529\) −10.5408 6.08571i −0.0199258 0.0115042i
\(530\) 341.464 539.444i 0.644272 1.01782i
\(531\) 0 0
\(532\) −176.969 + 176.969i −0.332649 + 0.332649i
\(533\) 409.628 109.759i 0.768532 0.205928i
\(534\) 0 0
\(535\) 24.6575 22.7266i 0.0460888 0.0424796i
\(536\) −231.934 401.722i −0.432713 0.749481i
\(537\) 0 0
\(538\) 10.6383 2.85052i 0.0197737 0.00529836i
\(539\) 150.005i 0.278302i
\(540\) 0 0
\(541\) 431.303 0.797233 0.398617 0.917118i \(-0.369490\pi\)
0.398617 + 0.917118i \(0.369490\pi\)
\(542\) −84.3429 314.772i −0.155614 0.580760i
\(543\) 0 0
\(544\) −126.632 + 73.1112i −0.232780 + 0.134396i
\(545\) 8.00142 196.352i 0.0146815 0.360280i
\(546\) 0 0
\(547\) −163.329 609.551i −0.298590 1.11435i −0.938324 0.345757i \(-0.887622\pi\)
0.639734 0.768596i \(-0.279044\pi\)
\(548\) 86.3087 + 86.3087i 0.157498 + 0.157498i
\(549\) 0 0
\(550\) −248.015 88.6413i −0.450936 0.161166i
\(551\) 8.83316 15.2995i 0.0160311 0.0277668i
\(552\) 0 0
\(553\) 12.9958 48.5009i 0.0235005 0.0877050i
\(554\) 1100.17 635.186i 1.98588 1.14655i
\(555\) 0 0
\(556\) 245.313 424.895i 0.441211 0.764200i
\(557\) −214.091 + 214.091i −0.384364 + 0.384364i −0.872672 0.488308i \(-0.837614\pi\)
0.488308 + 0.872672i \(0.337614\pi\)
\(558\) 0 0
\(559\) 470.120i 0.841003i
\(560\) 46.9431 + 14.6513i 0.0838270 + 0.0261630i
\(561\) 0 0
\(562\) 1132.65 + 303.492i 2.01539 + 0.540021i
\(563\) −245.972 + 917.982i −0.436896 + 1.63052i 0.299592 + 0.954067i \(0.403149\pi\)
−0.736488 + 0.676451i \(0.763517\pi\)
\(564\) 0 0
\(565\) −30.2495 + 96.9203i −0.0535390 + 0.171540i
\(566\) −343.464 −0.606827
\(567\) 0 0
\(568\) −287.283 287.283i −0.505779 0.505779i
\(569\) 841.916 + 486.081i 1.47964 + 0.854272i 0.999734 0.0230473i \(-0.00733683\pi\)
0.479908 + 0.877319i \(0.340670\pi\)
\(570\) 0 0
\(571\) 462.015 + 800.233i 0.809133 + 1.40146i 0.913465 + 0.406917i \(0.133396\pi\)
−0.104333 + 0.994542i \(0.533271\pi\)
\(572\) 281.953 + 75.5491i 0.492925 + 0.132079i
\(573\) 0 0
\(574\) −160.285 92.5403i −0.279241 0.161220i
\(575\) −195.732 + 547.650i −0.340404 + 0.952436i
\(576\) 0 0
\(577\) −497.879 + 497.879i −0.862874 + 0.862874i −0.991671 0.128797i \(-0.958889\pi\)
0.128797 + 0.991671i \(0.458889\pi\)
\(578\) −835.555 + 223.886i −1.44560 + 0.387346i
\(579\) 0 0
\(580\) 25.1551 + 1.02508i 0.0433709 + 0.00176738i
\(581\) 30.6515 + 53.0900i 0.0527565 + 0.0913770i
\(582\) 0 0
\(583\) 131.262 35.1717i 0.225150 0.0603288i
\(584\) 336.186i 0.575661i
\(585\) 0 0
\(586\) 1052.59 1.79624
\(587\) −107.166 399.949i −0.182566 0.681345i −0.995139 0.0984849i \(-0.968600\pi\)
0.812573 0.582860i \(-0.198066\pi\)
\(588\) 0 0
\(589\) −335.125 + 193.485i −0.568973 + 0.328497i
\(590\) 1193.40 + 1294.79i 2.02270 + 2.19456i
\(591\) 0 0
\(592\) 66.8144 + 249.355i 0.112862 + 0.421207i
\(593\) −451.258 451.258i −0.760974 0.760974i 0.215524 0.976498i \(-0.430854\pi\)
−0.976498 + 0.215524i \(0.930854\pi\)
\(594\) 0 0
\(595\) −32.4745 20.5561i −0.0545790 0.0345481i
\(596\) −351.421 + 608.679i −0.589633 + 1.02127i
\(597\) 0 0
\(598\) 279.943 1044.76i 0.468131 1.74709i
\(599\) 28.4560 16.4291i 0.0475058 0.0274275i −0.476059 0.879413i \(-0.657935\pi\)
0.523565 + 0.851986i \(0.324602\pi\)
\(600\) 0 0
\(601\) 92.2418 159.768i 0.153481 0.265836i −0.779024 0.626994i \(-0.784285\pi\)
0.932505 + 0.361158i \(0.117618\pi\)
\(602\) −145.081 + 145.081i −0.240998 + 0.240998i
\(603\) 0 0
\(604\) 855.171i 1.41585i
\(605\) 254.885 + 486.176i 0.421298 + 0.803597i
\(606\) 0 0
\(607\) −186.311 49.9219i −0.306938 0.0822437i 0.102062 0.994778i \(-0.467456\pi\)
−0.409000 + 0.912534i \(0.634122\pi\)
\(608\) 208.884 779.565i 0.343559 1.28218i
\(609\) 0 0
\(610\) −1412.95 440.993i −2.31632 0.722940i
\(611\) 412.808 0.675627
\(612\) 0 0
\(613\) −12.7128 12.7128i −0.0207386 0.0207386i 0.696661 0.717400i \(-0.254668\pi\)
−0.717400 + 0.696661i \(0.754668\pi\)
\(614\) 651.102 + 375.914i 1.06043 + 0.612237i
\(615\) 0 0
\(616\) −20.5051 35.5159i −0.0332875 0.0576556i
\(617\) −544.705 145.953i −0.882828 0.236553i −0.211201 0.977443i \(-0.567737\pi\)
−0.671627 + 0.740890i \(0.734404\pi\)
\(618\) 0 0
\(619\) 709.388 + 409.565i 1.14602 + 0.661656i 0.947915 0.318524i \(-0.103187\pi\)
0.198108 + 0.980180i \(0.436520\pi\)
\(620\) −465.959 294.949i −0.751547 0.475724i
\(621\) 0 0
\(622\) −788.232 + 788.232i −1.26725 + 1.26725i
\(623\) −186.483 + 49.9681i −0.299331 + 0.0802056i
\(624\) 0 0
\(625\) 616.725 + 101.370i 0.986759 + 0.162192i
\(626\) −338.992 587.152i −0.541521 0.937942i
\(627\) 0 0
\(628\) 412.146 110.434i 0.656283 0.175851i
\(629\) 201.757i 0.320759i
\(630\) 0 0
\(631\) 105.485 0.167171 0.0835853 0.996501i \(-0.473363\pi\)
0.0835853 + 0.996501i \(0.473363\pi\)
\(632\) −37.8780 141.363i −0.0599336 0.223675i
\(633\) 0 0
\(634\) −1646.23 + 950.448i −2.59657 + 1.49913i
\(635\) −595.964 + 549.294i −0.938526 + 0.865031i
\(636\) 0 0
\(637\) 171.342 + 639.458i 0.268983 + 1.00386i
\(638\) 6.35867 + 6.35867i 0.00996657 + 0.00996657i
\(639\) 0 0
\(640\) 827.580 185.994i 1.29309 0.290616i
\(641\) 82.3939 142.710i 0.128540 0.222637i −0.794571 0.607171i \(-0.792304\pi\)
0.923111 + 0.384534i \(0.125638\pi\)
\(642\) 0 0
\(643\) −279.780 + 1044.15i −0.435116 + 1.62388i 0.305672 + 0.952137i \(0.401119\pi\)
−0.740788 + 0.671739i \(0.765548\pi\)
\(644\) −243.616 + 140.652i −0.378285 + 0.218403i
\(645\) 0 0
\(646\) −122.091 + 211.467i −0.188995 + 0.327349i
\(647\) −321.287 + 321.287i −0.496580 + 0.496580i −0.910372 0.413792i \(-0.864204\pi\)
0.413792 + 0.910372i \(0.364204\pi\)
\(648\) 0 0
\(649\) 374.808i 0.577516i
\(650\) −1158.52 94.5771i −1.78234 0.145503i
\(651\) 0 0
\(652\) −1526.17 408.935i −2.34074 0.627201i
\(653\) 62.1595 231.982i 0.0951907 0.355256i −0.901858 0.432033i \(-0.857796\pi\)
0.997048 + 0.0767769i \(0.0244629\pi\)
\(654\) 0 0
\(655\) −60.6784 115.740i −0.0926387 0.176702i
\(656\) 137.687 0.209888
\(657\) 0 0
\(658\) −127.394 127.394i −0.193608 0.193608i
\(659\) −830.313 479.381i −1.25996 0.727438i −0.286893 0.957963i \(-0.592622\pi\)
−0.973066 + 0.230525i \(0.925956\pi\)
\(660\) 0 0
\(661\) −198.196 343.286i −0.299843 0.519344i 0.676257 0.736666i \(-0.263601\pi\)
−0.976100 + 0.217322i \(0.930268\pi\)
\(662\) −1487.39 398.544i −2.24681 0.602030i
\(663\) 0 0
\(664\) 154.738 + 89.3383i 0.233040 + 0.134546i
\(665\) 206.969 46.5153i 0.311232 0.0699478i
\(666\) 0 0
\(667\) 14.0408 14.0408i 0.0210507 0.0210507i
\(668\) −781.925 + 209.516i −1.17055 + 0.313647i
\(669\) 0 0
\(670\) −49.7296 + 1220.35i −0.0742233 + 1.82142i
\(671\) −157.530 272.850i −0.234769 0.406632i
\(672\) 0 0
\(673\) −224.994 + 60.2870i −0.334315 + 0.0895795i −0.422072 0.906562i \(-0.638697\pi\)
0.0877564 + 0.996142i \(0.472030\pi\)
\(674\) 1300.10i 1.92894i
\(675\) 0 0
\(676\) 291.313 0.430937
\(677\) −199.260 743.648i −0.294328 1.09845i −0.941750 0.336315i \(-0.890819\pi\)
0.647422 0.762132i \(-0.275847\pi\)
\(678\) 0 0
\(679\) 36.6444 21.1566i 0.0539681 0.0311585i
\(680\) −111.928 4.56108i −0.164599 0.00670747i
\(681\) 0 0
\(682\) −50.9810 190.264i −0.0747522 0.278979i
\(683\) −786.590 786.590i −1.15167 1.15167i −0.986218 0.165452i \(-0.947092\pi\)
−0.165452 0.986218i \(-0.552908\pi\)
\(684\) 0 0
\(685\) −22.6857 100.940i −0.0331178 0.147357i
\(686\) 302.474 523.901i 0.440925 0.763704i
\(687\) 0 0
\(688\) 39.5050 147.435i 0.0574200 0.214294i
\(689\) 519.387 299.868i 0.753828 0.435223i
\(690\) 0 0
\(691\) −178.439 + 309.066i −0.258233 + 0.447273i −0.965769 0.259405i \(-0.916474\pi\)
0.707535 + 0.706678i \(0.249807\pi\)
\(692\) 204.288 204.288i 0.295214 0.295214i
\(693\) 0 0
\(694\) 1424.06i 2.05196i
\(695\) −368.310 + 193.092i −0.529943 + 0.277831i
\(696\) 0 0
\(697\) −103.942 27.8512i −0.149128 0.0399586i
\(698\) −467.423 + 1744.45i −0.669661 + 2.49921i
\(699\) 0 0
\(700\) 195.661 + 230.447i 0.279516 + 0.329210i
\(701\) −885.680 −1.26345 −0.631726 0.775192i \(-0.717653\pi\)
−0.631726 + 0.775192i \(0.717653\pi\)
\(702\) 0 0
\(703\) 787.423 + 787.423i 1.12009 + 1.12009i
\(704\) 300.121 + 173.275i 0.426308 + 0.246129i
\(705\) 0 0
\(706\) 592.939 + 1027.00i 0.839857 + 1.45467i
\(707\) −343.776 92.1146i −0.486247 0.130289i
\(708\) 0 0
\(709\) −633.107 365.524i −0.892958 0.515549i −0.0180489 0.999837i \(-0.505745\pi\)
−0.874909 + 0.484288i \(0.839079\pi\)
\(710\) 234.565 + 1043.70i 0.330374 + 1.46999i
\(711\) 0 0
\(712\) −397.893 + 397.893i −0.558839 + 0.558839i
\(713\) −420.128 + 112.573i −0.589240 + 0.157886i
\(714\) 0 0
\(715\) −167.681 181.927i −0.234518 0.254444i
\(716\) 541.856 + 938.522i 0.756782 + 1.31078i
\(717\) 0 0
\(718\) 657.265 176.113i 0.915410 0.245283i
\(719\) 629.271i 0.875204i 0.899169 + 0.437602i \(0.144172\pi\)
−0.899169 + 0.437602i \(0.855828\pi\)
\(720\) 0 0
\(721\) 187.716 0.260356
\(722\) −54.8548 204.721i −0.0759762 0.283547i
\(723\) 0 0
\(724\) 110.999 64.0852i 0.153313 0.0885155i
\(725\) −17.5510 12.1379i −0.0242082 0.0167420i
\(726\) 0 0
\(727\) −5.81028 21.6843i −0.00799213 0.0298270i 0.961815 0.273702i \(-0.0882481\pi\)
−0.969807 + 0.243875i \(0.921581\pi\)
\(728\) −127.980 127.980i −0.175796 0.175796i
\(729\) 0 0
\(730\) 473.434 747.929i 0.648539 1.02456i
\(731\) −59.6459 + 103.310i −0.0815950 + 0.141327i
\(732\) 0 0
\(733\) −143.935 + 537.172i −0.196364 + 0.732840i 0.795546 + 0.605894i \(0.207184\pi\)
−0.991910 + 0.126947i \(0.959482\pi\)
\(734\) 926.773 535.073i 1.26263 0.728982i
\(735\) 0 0
\(736\) 453.565 785.598i 0.616257 1.06739i
\(737\) −183.828 + 183.828i −0.249427 + 0.249427i
\(738\) 0 0
\(739\) 192.334i 0.260262i 0.991497 + 0.130131i \(0.0415398\pi\)
−0.991497 + 0.130131i \(0.958460\pi\)
\(740\) −472.807 + 1514.88i −0.638928 + 2.04714i
\(741\) 0 0
\(742\) −252.825 67.7442i −0.340734 0.0912995i
\(743\) 16.3619 61.0634i 0.0220214 0.0821850i −0.954041 0.299677i \(-0.903121\pi\)
0.976062 + 0.217492i \(0.0697877\pi\)
\(744\) 0 0
\(745\) 527.619 276.613i 0.708214 0.371292i
\(746\) −1469.25 −1.96951
\(747\) 0 0
\(748\) −52.3745 52.3745i −0.0700194 0.0700194i
\(749\) −11.9061 6.87398i −0.0158960 0.00917755i
\(750\) 0 0
\(751\) −113.893 197.269i −0.151656 0.262675i 0.780181 0.625554i \(-0.215127\pi\)
−0.931836 + 0.362879i \(0.881794\pi\)
\(752\) 129.461 + 34.6889i 0.172155 + 0.0461289i
\(753\) 0 0
\(754\) 34.3697 + 19.8434i 0.0455832 + 0.0263175i
\(755\) 387.682 612.459i 0.513486 0.811204i
\(756\) 0 0
\(757\) −235.925 + 235.925i −0.311658 + 0.311658i −0.845552 0.533894i \(-0.820728\pi\)
0.533894 + 0.845552i \(0.320728\pi\)
\(758\) −638.202 + 171.006i −0.841955 + 0.225601i
\(759\) 0 0
\(760\) 454.635 419.033i 0.598204 0.551359i
\(761\) −440.621 763.178i −0.579003 1.00286i −0.995594 0.0937680i \(-0.970109\pi\)
0.416592 0.909094i \(-0.363225\pi\)
\(762\) 0 0
\(763\) −77.8216 + 20.8522i −0.101994 + 0.0273293i
\(764\) 236.495i 0.309548i
\(765\) 0 0
\(766\) −759.221 −0.991151
\(767\) 428.123 + 1597.78i 0.558179 + 2.08315i
\(768\) 0 0
\(769\) 1046.51 604.201i 1.36087 0.785697i 0.371128 0.928582i \(-0.378971\pi\)
0.989739 + 0.142885i \(0.0456378\pi\)
\(770\) −4.39655 + 107.890i −0.00570981 + 0.140117i
\(771\) 0 0
\(772\) 167.477 + 625.033i 0.216939 + 0.809629i
\(773\) 815.226 + 815.226i 1.05463 + 1.05463i 0.998419 + 0.0562070i \(0.0179007\pi\)
0.0562070 + 0.998419i \(0.482099\pi\)
\(774\) 0 0
\(775\) 200.000 + 422.474i 0.258065 + 0.545128i
\(776\) 61.6640 106.805i 0.0794640 0.137636i
\(777\) 0 0
\(778\) 445.704 1663.39i 0.572884 2.13803i
\(779\) 514.366 296.969i 0.660290 0.381219i
\(780\) 0 0
\(781\) −113.848 + 197.190i −0.145772 + 0.252485i
\(782\) −194.070 + 194.070i −0.248172 + 0.248172i
\(783\) 0 0
\(784\) 214.939i 0.274157i
\(785\) −345.236 107.751i −0.439791 0.137262i
\(786\) 0 0
\(787\) −1110.59 297.582i −1.41117 0.378122i −0.528829 0.848728i \(-0.677369\pi\)
−0.882343 + 0.470606i \(0.844035\pi\)
\(788\) −145.319 + 542.339i −0.184415 + 0.688247i
\(789\) 0 0
\(790\) −114.805 + 367.838i −0.145323 + 0.465617i
\(791\) 41.6255 0.0526239
\(792\) 0 0
\(793\) −983.201 983.201i −1.23985 1.23985i
\(794\) 174.395 + 100.687i 0.219640 + 0.126809i
\(795\) 0 0
\(796\) 741.484 + 1284.29i 0.931512 + 1.61343i
\(797\) 425.130 + 113.913i 0.533413 + 0.142928i 0.515464 0.856911i \(-0.327620\pi\)
0.0179491 + 0.999839i \(0.494286\pi\)
\(798\) 0 0
\(799\) −90.7153 52.3745i −0.113536 0.0655501i
\(800\) −917.991 328.093i −1.14749 0.410116i
\(801\) 0 0
\(802\) 1157.54 1157.54i 1.44332 1.44332i
\(803\) 181.993 48.7649i 0.226641 0.0607283i
\(804\) 0 0
\(805\) 238.236 + 9.70819i 0.295945 + 0.0120599i
\(806\) −434.656 752.846i −0.539276 0.934053i
\(807\) 0 0
\(808\) −1001.99 + 268.481i −1.24008 + 0.332279i
\(809\) 150.000i 0.185414i −0.995693 0.0927070i \(-0.970448\pi\)
0.995693 0.0927070i \(-0.0295520\pi\)
\(810\) 0 0
\(811\) −132.847 −0.163806 −0.0819032 0.996640i \(-0.526100\pi\)
−0.0819032 + 0.996640i \(0.526100\pi\)
\(812\) −2.67143 9.96990i −0.00328993 0.0122782i
\(813\) 0 0
\(814\) −490.896 + 283.419i −0.603066 + 0.348180i
\(815\) 907.627 + 984.741i 1.11365 + 1.20827i
\(816\) 0 0
\(817\) −170.412 635.988i −0.208583 0.778443i
\(818\) −772.232 772.232i −0.944048 0.944048i
\(819\) 0 0
\(820\) 715.176 + 452.702i 0.872166 + 0.552075i
\(821\) 254.947 441.581i 0.310532 0.537857i −0.667946 0.744210i \(-0.732826\pi\)
0.978478 + 0.206353i \(0.0661595\pi\)
\(822\) 0 0
\(823\) 109.943 410.312i 0.133588 0.498556i −0.866412 0.499330i \(-0.833580\pi\)
1.00000 0.000773801i \(0.000246309\pi\)
\(824\) 473.825 273.563i 0.575030 0.331994i
\(825\) 0 0
\(826\) 360.959 625.200i 0.436997 0.756900i
\(827\) 1030.76 1030.76i 1.24638 1.24638i 0.289073 0.957307i \(-0.406653\pi\)
0.957307 0.289073i \(-0.0933469\pi\)
\(828\) 0 0
\(829\) 37.4235i 0.0451429i −0.999745 0.0225714i \(-0.992815\pi\)
0.999745 0.0225714i \(-0.00718533\pi\)
\(830\) −218.443 416.665i −0.263184 0.502006i
\(831\) 0 0
\(832\) 1477.31 + 395.845i 1.77562 + 0.475775i
\(833\) 43.4777 162.261i 0.0521941 0.194791i
\(834\) 0 0
\(835\) 654.982 + 204.425i 0.784410 + 0.244820i
\(836\) 408.817 0.489016
\(837\) 0 0
\(838\) −1297.91 1297.91i −1.54882 1.54882i
\(839\) 997.984 + 576.186i 1.18949 + 0.686754i 0.958191 0.286129i \(-0.0923685\pi\)
0.231301 + 0.972882i \(0.425702\pi\)
\(840\) 0 0
\(841\) −420.136 727.696i −0.499567 0.865275i
\(842\) −647.778 173.572i −0.769333 0.206142i
\(843\) 0 0
\(844\) 1352.71 + 780.989i 1.60274 + 0.925342i
\(845\) −208.633 132.064i −0.246903 0.156288i
\(846\) 0 0
\(847\) 159.136 159.136i 0.187882 0.187882i
\(848\) 188.084 50.3968i 0.221797 0.0594302i
\(849\) 0 0
\(850\) 242.587 + 167.769i 0.285397 + 0.197375i
\(851\) 625.828 + 1083.97i 0.735403 + 1.27375i
\(852\) 0 0
\(853\) −948.800 + 254.230i −1.11231 + 0.298042i −0.767768 0.640728i \(-0.778632\pi\)
−0.344542 + 0.938771i \(0.611966\pi\)
\(854\) 606.838i 0.710583i
\(855\) 0 0
\(856\) −40.0704 −0.0468112
\(857\) −152.697 569.873i −0.178176 0.664963i −0.995989 0.0894780i \(-0.971480\pi\)
0.817813 0.575485i \(-0.195187\pi\)
\(858\) 0 0
\(859\) −421.639 + 243.434i −0.490849 + 0.283392i −0.724927 0.688826i \(-0.758126\pi\)
0.234077 + 0.972218i \(0.424793\pi\)
\(860\) 689.949 635.920i 0.802267 0.739442i
\(861\) 0 0
\(862\) −152.573 569.411i −0.176999 0.660570i
\(863\) 411.319 + 411.319i 0.476615 + 0.476615i 0.904047 0.427432i \(-0.140582\pi\)
−0.427432 + 0.904047i \(0.640582\pi\)
\(864\) 0 0
\(865\) −238.919 + 53.6959i −0.276207 + 0.0620762i
\(866\) −344.497 + 596.687i −0.397803 + 0.689015i
\(867\) 0 0
\(868\) −58.5159 + 218.384i −0.0674146 + 0.251595i
\(869\) −71.0318 + 41.0102i −0.0817397 + 0.0471924i
\(870\) 0 0
\(871\) −573.666 + 993.619i −0.658630 + 1.14078i
\(872\) −166.045 + 166.045i −0.190419 + 0.190419i
\(873\) 0 0
\(874\) 1514.85i 1.73323i
\(875\) −35.6585 253.743i −0.0407526 0.289992i
\(876\) 0 0
\(877\) −454.259 121.718i −0.517969 0.138789i −0.00964182 0.999954i \(-0.503069\pi\)
−0.508327 + 0.861164i \(0.669736\pi\)
\(878\) 205.963 768.665i 0.234582 0.875472i
\(879\) 0 0
\(880\) −37.2987 71.1447i −0.0423849 0.0808463i
\(881\) −533.151 −0.605166 −0.302583 0.953123i \(-0.597849\pi\)
−0.302583 + 0.953123i \(0.597849\pi\)
\(882\) 0 0
\(883\) −745.939 745.939i −0.844778 0.844778i 0.144698 0.989476i \(-0.453779\pi\)
−0.989476 + 0.144698i \(0.953779\pi\)
\(884\) −283.093 163.444i −0.320241 0.184891i
\(885\) 0 0
\(886\) −936.908 1622.77i −1.05746 1.83157i
\(887\) −527.568 141.361i −0.594778 0.159370i −0.0511420 0.998691i \(-0.516286\pi\)
−0.543636 + 0.839321i \(0.682953\pi\)
\(888\) 0 0
\(889\) 287.766 + 166.142i 0.323696 + 0.186886i
\(890\) 1445.54 324.879i 1.62421 0.365032i
\(891\) 0 0
\(892\) −197.197 + 197.197i −0.221073 + 0.221073i
\(893\) 558.455 149.638i 0.625369 0.167567i
\(894\) 0 0
\(895\) 37.4005 917.797i 0.0417883 1.02547i
\(896\) −173.876 301.163i −0.194058 0.336119i
\(897\) 0 0
\(898\) −905.363 + 242.591i −1.00820 + 0.270146i
\(899\) 15.9592i 0.0177521i
\(900\) 0 0
\(901\) −152.182 −0.168903
\(902\) 78.2480 + 292.026i 0.0867495 + 0.323753i
\(903\) 0 0
\(904\) 105.069 60.6617i 0.116227 0.0671037i
\(905\) −108.548 4.42335i −0.119942 0.00488768i
\(906\) 0 0
\(907\) −346.751 1294.09i −0.382306 1.42678i −0.842371 0.538899i \(-0.818841\pi\)
0.460065 0.887885i \(-0.347826\pi\)
\(908\) −124.890 124.890i −0.137544 0.137544i
\(909\) 0 0
\(910\) 104.495 + 464.949i 0.114830 + 0.510933i
\(911\) −574.681 + 995.377i −0.630824 + 1.09262i 0.356559 + 0.934273i \(0.383950\pi\)
−0.987383 + 0.158347i \(0.949383\pi\)
\(912\) 0 0
\(913\) 25.9176 96.7258i 0.0283873 0.105943i
\(914\) −1101.09 + 635.714i −1.20469 + 0.695530i
\(915\) 0 0
\(916\) −719.080 + 1245.48i −0.785021 + 1.35970i
\(917\) −37.8842 + 37.8842i −0.0413132 + 0.0413132i
\(918\) 0 0
\(919\) 412.577i 0.448941i −0.974481 0.224470i \(-0.927935\pi\)
0.974481 0.224470i \(-0.0720652\pi\)
\(920\) 615.492 322.681i 0.669013 0.350741i
\(921\) 0 0
\(922\) 1600.43 + 428.833i 1.73582 + 0.465112i
\(923\) −260.085 + 970.650i −0.281782 + 1.05163i
\(924\) 0 0
\(925\) 1025.37 870.592i 1.10851 0.941180i
\(926\) 1493.70 1.61307
\(927\) 0 0
\(928\) 23.5357 + 23.5357i 0.0253618 + 0.0253618i
\(929\) 131.382 + 75.8536i 0.141423 + 0.0816508i 0.569042 0.822308i \(-0.307314\pi\)
−0.427619 + 0.903959i \(0.640647\pi\)
\(930\) 0 0
\(931\) 463.590 + 802.962i 0.497949 + 0.862473i
\(932\) 1303.10 + 349.164i 1.39817 + 0.374640i
\(933\) 0 0
\(934\) −1883.31 1087.33i −2.01639 1.16416i
\(935\) 13.7663 + 61.2531i 0.0147233 + 0.0655113i
\(936\) 0 0
\(937\) 662.090 662.090i 0.706606 0.706606i −0.259214 0.965820i \(-0.583463\pi\)
0.965820 + 0.259214i \(0.0834635\pi\)
\(938\) 483.669 129.599i 0.515639 0.138165i
\(939\) 0 0
\(940\) 558.395 + 605.838i 0.594037 + 0.644508i
\(941\) −766.885 1328.28i −0.814969 1.41157i −0.909350 0.416031i \(-0.863421\pi\)
0.0943819 0.995536i \(-0.469913\pi\)
\(942\) 0 0
\(943\) 644.832 172.782i 0.683809 0.183226i
\(944\) 537.056i 0.568915i
\(945\) 0 0
\(946\) 335.151 0.354282
\(947\) −429.417 1602.61i −0.453450 1.69230i −0.692605 0.721317i \(-0.743537\pi\)
0.239155 0.970982i \(-0.423130\pi\)
\(948\) 0 0
\(949\) 720.120 415.762i 0.758820 0.438105i
\(950\) −1601.55 + 292.002i −1.68584 + 0.307371i
\(951\) 0 0
\(952\) 11.8865 + 44.3610i 0.0124858 + 0.0465977i
\(953\) 145.501 + 145.501i 0.152676 + 0.152676i 0.779312 0.626636i \(-0.215569\pi\)
−0.626636 + 0.779312i \(0.715569\pi\)
\(954\) 0 0
\(955\) −107.212 + 169.373i −0.112264 + 0.177354i
\(956\) 962.130 1666.46i 1.00641 1.74316i
\(957\) 0 0
\(958\) −150.606 + 562.071i −0.157209 + 0.586713i
\(959\) −36.7327 + 21.2077i −0.0383032 + 0.0221143i
\(960\) 0 0
\(961\) 305.712 529.509i 0.318119 0.550998i
\(962\) −1768.92 + 1768.92i −1.83879 + 1.83879i
\(963\) 0 0
\(964\) 787.959i 0.817385i
\(965\) 163.407 523.562i 0.169334 0.542551i
\(966\) 0 0
\(967\) −1573.24 421.548i −1.62693 0.435934i −0.673901 0.738822i \(-0.735382\pi\)
−0.953026 + 0.302888i \(0.902049\pi\)
\(968\) 169.772 633.597i 0.175384 0.654542i
\(969\) 0 0
\(970\) −287.595 + 150.776i −0.296490 + 0.155439i
\(971\) −72.4383 −0.0746017 −0.0373009 0.999304i \(-0.511876\pi\)
−0.0373009 + 0.999304i \(0.511876\pi\)
\(972\) 0 0
\(973\) 120.556 + 120.556i 0.123901 + 0.123901i
\(974\) −465.033 268.487i −0.477447 0.275654i
\(975\) 0 0
\(976\) −225.722 390.962i −0.231272 0.400576i
\(977\) 964.876 + 258.538i 0.987591 + 0.264624i 0.716238 0.697856i \(-0.245862\pi\)
0.271352 + 0.962480i \(0.412529\pi\)
\(978\) 0 0
\(979\) 273.113 + 157.682i 0.278972 + 0.161065i
\(980\) −706.699 + 1116.44i −0.721122 + 1.13923i
\(981\) 0 0
\(982\) 235.116 235.116i 0.239425 0.239425i
\(983\) −183.953 + 49.2900i −0.187134 + 0.0501424i −0.351169 0.936312i \(-0.614216\pi\)
0.164035 + 0.986455i \(0.447549\pi\)
\(984\) 0 0
\(985\) 349.938 322.535i 0.355267 0.327446i
\(986\) −5.03520 8.72123i −0.00510670 0.00884506i
\(987\) 0 0
\(988\) 1742.76 466.970i 1.76392 0.472642i
\(989\) 740.059i 0.748290i
\(990\) 0 0
\(991\) −1131.94 −1.14222 −0.571109 0.820874i \(-0.693487\pi\)
−0.571109 + 0.820874i \(0.693487\pi\)
\(992\) −188.699 704.233i −0.190221 0.709913i
\(993\) 0 0
\(994\) 379.809 219.283i 0.382101 0.220606i
\(995\) 51.1794 1255.93i 0.0514366 1.26224i
\(996\) 0 0
\(997\) −408.216 1523.48i −0.409444 1.52807i −0.795709 0.605679i \(-0.792902\pi\)
0.386265 0.922388i \(-0.373765\pi\)
\(998\) 1645.39 + 1645.39i 1.64868 + 1.64868i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.f.298.2 8
3.2 odd 2 405.3.l.h.298.1 8
5.2 odd 4 inner 405.3.l.f.217.1 8
9.2 odd 6 15.3.f.a.13.1 yes 4
9.4 even 3 inner 405.3.l.f.28.1 8
9.5 odd 6 405.3.l.h.28.2 8
9.7 even 3 45.3.g.b.28.2 4
15.2 even 4 405.3.l.h.217.2 8
36.7 odd 6 720.3.bh.k.433.1 4
36.11 even 6 240.3.bg.a.193.1 4
45.2 even 12 15.3.f.a.7.1 4
45.7 odd 12 45.3.g.b.37.2 4
45.22 odd 12 inner 405.3.l.f.352.2 8
45.29 odd 6 75.3.f.c.43.2 4
45.32 even 12 405.3.l.h.352.1 8
45.34 even 6 225.3.g.a.118.1 4
45.38 even 12 75.3.f.c.7.2 4
45.43 odd 12 225.3.g.a.82.1 4
72.11 even 6 960.3.bg.h.193.2 4
72.29 odd 6 960.3.bg.i.193.1 4
180.7 even 12 720.3.bh.k.577.1 4
180.47 odd 12 240.3.bg.a.97.1 4
180.83 odd 12 1200.3.bg.k.1057.2 4
180.119 even 6 1200.3.bg.k.193.2 4
360.227 odd 12 960.3.bg.h.577.2 4
360.317 even 12 960.3.bg.i.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.3.f.a.7.1 4 45.2 even 12
15.3.f.a.13.1 yes 4 9.2 odd 6
45.3.g.b.28.2 4 9.7 even 3
45.3.g.b.37.2 4 45.7 odd 12
75.3.f.c.7.2 4 45.38 even 12
75.3.f.c.43.2 4 45.29 odd 6
225.3.g.a.82.1 4 45.43 odd 12
225.3.g.a.118.1 4 45.34 even 6
240.3.bg.a.97.1 4 180.47 odd 12
240.3.bg.a.193.1 4 36.11 even 6
405.3.l.f.28.1 8 9.4 even 3 inner
405.3.l.f.217.1 8 5.2 odd 4 inner
405.3.l.f.298.2 8 1.1 even 1 trivial
405.3.l.f.352.2 8 45.22 odd 12 inner
405.3.l.h.28.2 8 9.5 odd 6
405.3.l.h.217.2 8 15.2 even 4
405.3.l.h.298.1 8 3.2 odd 2
405.3.l.h.352.1 8 45.32 even 12
720.3.bh.k.433.1 4 36.7 odd 6
720.3.bh.k.577.1 4 180.7 even 12
960.3.bg.h.193.2 4 72.11 even 6
960.3.bg.h.577.2 4 360.227 odd 12
960.3.bg.i.193.1 4 72.29 odd 6
960.3.bg.i.577.1 4 360.317 even 12
1200.3.bg.k.193.2 4 180.119 even 6
1200.3.bg.k.1057.2 4 180.83 odd 12