Properties

Label 405.3.l.f.28.1
Level $405$
Weight $3$
Character 405.28
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(28,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 405.28
Dual form 405.3.l.f.217.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.03906 - 0.814313i) q^{2} +(5.10867 + 2.94949i) q^{4} +(-2.32162 - 4.42833i) q^{5} +(1.98004 + 0.530550i) q^{7} +(-4.22474 - 4.22474i) q^{8} +(3.44949 + 15.3485i) q^{10} +(-1.67423 - 2.89986i) q^{11} +(14.2743 - 3.82478i) q^{13} +(-5.58542 - 3.22474i) q^{14} +(-2.39898 - 4.15515i) q^{16} +(2.65153 - 2.65153i) q^{17} +20.6969i q^{19} +(1.20093 - 29.4704i) q^{20} +(2.72670 + 10.1762i) q^{22} +(22.4704 - 6.02093i) q^{23} +(-14.2202 + 20.5618i) q^{25} -46.4949 q^{26} +(8.55051 + 8.55051i) q^{28} +(0.739215 - 0.426786i) q^{29} +(9.34847 - 16.1920i) q^{31} +(10.0925 + 37.6657i) q^{32} +(-10.2173 + 5.89898i) q^{34} +(-2.24745 - 10.0000i) q^{35} +(38.0454 - 38.0454i) q^{37} +(16.8538 - 62.8992i) q^{38} +(-8.90031 + 28.5168i) q^{40} +(-14.3485 + 24.8523i) q^{41} +(8.23370 - 30.7286i) q^{43} -19.7526i q^{44} -73.1918 q^{46} +(26.9825 + 7.22994i) q^{47} +(-38.7962 - 22.3990i) q^{49} +(59.9596 - 50.9088i) q^{50} +(84.2036 + 22.5623i) q^{52} +(-28.6969 - 28.6969i) q^{53} +(-8.95459 + 14.1464i) q^{55} +(-6.12372 - 10.6066i) q^{56} +(-2.59405 + 0.695075i) q^{58} +(-96.9378 - 55.9671i) q^{59} +(-47.0454 - 81.4850i) q^{61} +(-41.5959 + 41.5959i) q^{62} -103.495i q^{64} +(-50.0768 - 54.3315i) q^{65} +(-20.0944 - 74.9934i) q^{67} +(21.3664 - 5.72512i) q^{68} +(-1.31300 + 32.2207i) q^{70} +68.0000 q^{71} +(-39.7878 - 39.7878i) q^{73} +(-146.603 + 84.6413i) q^{74} +(-61.0454 + 105.734i) q^{76} +(-1.77653 - 6.63010i) q^{77} +(-21.2132 + 12.2474i) q^{79} +(-12.8309 + 20.2702i) q^{80} +(63.8434 - 63.8434i) q^{82} +(7.74013 - 28.8866i) q^{83} +(-17.8977 - 5.58600i) q^{85} +(-50.0454 + 86.6812i) q^{86} +(-5.17795 + 19.3244i) q^{88} -94.1816i q^{89} +30.2929 q^{91} +(132.553 + 35.5173i) q^{92} +(-76.1139 - 43.9444i) q^{94} +(91.6528 - 48.0504i) q^{95} +(-19.9384 - 5.34248i) q^{97} +(99.6640 + 99.6640i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{5} - 4 q^{7} - 24 q^{8} + 8 q^{10} + 16 q^{11} + 32 q^{13} + 20 q^{16} + 80 q^{17} - 36 q^{20} - 20 q^{22} + 56 q^{23} - 16 q^{25} - 176 q^{26} + 88 q^{28} + 16 q^{31} - 76 q^{32} + 80 q^{35}+ \cdots + 376 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.03906 0.814313i −1.51953 0.407157i −0.599942 0.800043i \(-0.704810\pi\)
−0.919587 + 0.392887i \(0.871476\pi\)
\(3\) 0 0
\(4\) 5.10867 + 2.94949i 1.27717 + 0.737372i
\(5\) −2.32162 4.42833i −0.464324 0.885666i
\(6\) 0 0
\(7\) 1.98004 + 0.530550i 0.282863 + 0.0757929i 0.397461 0.917619i \(-0.369891\pi\)
−0.114598 + 0.993412i \(0.536558\pi\)
\(8\) −4.22474 4.22474i −0.528093 0.528093i
\(9\) 0 0
\(10\) 3.44949 + 15.3485i 0.344949 + 1.53485i
\(11\) −1.67423 2.89986i −0.152203 0.263624i 0.779834 0.625986i \(-0.215303\pi\)
−0.932037 + 0.362363i \(0.881970\pi\)
\(12\) 0 0
\(13\) 14.2743 3.82478i 1.09802 0.294214i 0.336062 0.941840i \(-0.390905\pi\)
0.761958 + 0.647626i \(0.224238\pi\)
\(14\) −5.58542 3.22474i −0.398959 0.230339i
\(15\) 0 0
\(16\) −2.39898 4.15515i −0.149936 0.259697i
\(17\) 2.65153 2.65153i 0.155972 0.155972i −0.624807 0.780779i \(-0.714822\pi\)
0.780779 + 0.624807i \(0.214822\pi\)
\(18\) 0 0
\(19\) 20.6969i 1.08931i 0.838659 + 0.544656i \(0.183340\pi\)
−0.838659 + 0.544656i \(0.816660\pi\)
\(20\) 1.20093 29.4704i 0.0600465 1.47352i
\(21\) 0 0
\(22\) 2.72670 + 10.1762i 0.123941 + 0.462554i
\(23\) 22.4704 6.02093i 0.976975 0.261780i 0.265205 0.964192i \(-0.414560\pi\)
0.711770 + 0.702413i \(0.247894\pi\)
\(24\) 0 0
\(25\) −14.2202 + 20.5618i −0.568807 + 0.822471i
\(26\) −46.4949 −1.78827
\(27\) 0 0
\(28\) 8.55051 + 8.55051i 0.305375 + 0.305375i
\(29\) 0.739215 0.426786i 0.0254902 0.0147168i −0.487201 0.873290i \(-0.661982\pi\)
0.512691 + 0.858573i \(0.328649\pi\)
\(30\) 0 0
\(31\) 9.34847 16.1920i 0.301564 0.522323i −0.674927 0.737885i \(-0.735825\pi\)
0.976490 + 0.215561i \(0.0691581\pi\)
\(32\) 10.0925 + 37.6657i 0.315391 + 1.17705i
\(33\) 0 0
\(34\) −10.2173 + 5.89898i −0.300510 + 0.173499i
\(35\) −2.24745 10.0000i −0.0642128 0.285714i
\(36\) 0 0
\(37\) 38.0454 38.0454i 1.02825 1.02825i 0.0286652 0.999589i \(-0.490874\pi\)
0.999589 0.0286652i \(-0.00912566\pi\)
\(38\) 16.8538 62.8992i 0.443521 1.65524i
\(39\) 0 0
\(40\) −8.90031 + 28.5168i −0.222508 + 0.712920i
\(41\) −14.3485 + 24.8523i −0.349963 + 0.606153i −0.986242 0.165305i \(-0.947139\pi\)
0.636280 + 0.771458i \(0.280472\pi\)
\(42\) 0 0
\(43\) 8.23370 30.7286i 0.191481 0.714619i −0.801668 0.597769i \(-0.796054\pi\)
0.993150 0.116849i \(-0.0372795\pi\)
\(44\) 19.7526i 0.448922i
\(45\) 0 0
\(46\) −73.1918 −1.59113
\(47\) 26.9825 + 7.22994i 0.574095 + 0.153828i 0.534174 0.845374i \(-0.320623\pi\)
0.0399212 + 0.999203i \(0.487289\pi\)
\(48\) 0 0
\(49\) −38.7962 22.3990i −0.791759 0.457122i
\(50\) 59.9596 50.9088i 1.19919 1.01818i
\(51\) 0 0
\(52\) 84.2036 + 22.5623i 1.61930 + 0.433890i
\(53\) −28.6969 28.6969i −0.541452 0.541452i 0.382503 0.923954i \(-0.375062\pi\)
−0.923954 + 0.382503i \(0.875062\pi\)
\(54\) 0 0
\(55\) −8.95459 + 14.1464i −0.162811 + 0.257208i
\(56\) −6.12372 10.6066i −0.109352 0.189404i
\(57\) 0 0
\(58\) −2.59405 + 0.695075i −0.0447251 + 0.0119840i
\(59\) −96.9378 55.9671i −1.64301 0.948595i −0.979754 0.200206i \(-0.935839\pi\)
−0.663261 0.748389i \(-0.730828\pi\)
\(60\) 0 0
\(61\) −47.0454 81.4850i −0.771236 1.33582i −0.936886 0.349636i \(-0.886305\pi\)
0.165650 0.986185i \(-0.447028\pi\)
\(62\) −41.5959 + 41.5959i −0.670902 + 0.670902i
\(63\) 0 0
\(64\) 103.495i 1.61711i
\(65\) −50.0768 54.3315i −0.770412 0.835869i
\(66\) 0 0
\(67\) −20.0944 74.9934i −0.299917 1.11930i −0.937233 0.348703i \(-0.886622\pi\)
0.637317 0.770602i \(-0.280044\pi\)
\(68\) 21.3664 5.72512i 0.314212 0.0841930i
\(69\) 0 0
\(70\) −1.31300 + 32.2207i −0.0187572 + 0.460296i
\(71\) 68.0000 0.957746 0.478873 0.877884i \(-0.341045\pi\)
0.478873 + 0.877884i \(0.341045\pi\)
\(72\) 0 0
\(73\) −39.7878 39.7878i −0.545038 0.545038i 0.379964 0.925001i \(-0.375936\pi\)
−0.925001 + 0.379964i \(0.875936\pi\)
\(74\) −146.603 + 84.6413i −1.98112 + 1.14380i
\(75\) 0 0
\(76\) −61.0454 + 105.734i −0.803229 + 1.39123i
\(77\) −1.77653 6.63010i −0.0230718 0.0861052i
\(78\) 0 0
\(79\) −21.2132 + 12.2474i −0.268522 + 0.155031i −0.628216 0.778039i \(-0.716214\pi\)
0.359694 + 0.933070i \(0.382881\pi\)
\(80\) −12.8309 + 20.2702i −0.160386 + 0.253377i
\(81\) 0 0
\(82\) 63.8434 63.8434i 0.778578 0.778578i
\(83\) 7.74013 28.8866i 0.0932546 0.348031i −0.903494 0.428600i \(-0.859007\pi\)
0.996749 + 0.0805689i \(0.0256737\pi\)
\(84\) 0 0
\(85\) −17.8977 5.58600i −0.210561 0.0657177i
\(86\) −50.0454 + 86.6812i −0.581923 + 1.00792i
\(87\) 0 0
\(88\) −5.17795 + 19.3244i −0.0588404 + 0.219595i
\(89\) 94.1816i 1.05822i −0.848553 0.529110i \(-0.822526\pi\)
0.848553 0.529110i \(-0.177474\pi\)
\(90\) 0 0
\(91\) 30.2929 0.332889
\(92\) 132.553 + 35.5173i 1.44079 + 0.386058i
\(93\) 0 0
\(94\) −76.1139 43.9444i −0.809722 0.467493i
\(95\) 91.6528 48.0504i 0.964767 0.505794i
\(96\) 0 0
\(97\) −19.9384 5.34248i −0.205550 0.0550771i 0.154575 0.987981i \(-0.450599\pi\)
−0.360125 + 0.932904i \(0.617266\pi\)
\(98\) 99.6640 + 99.6640i 1.01698 + 1.01698i
\(99\) 0 0
\(100\) −133.293 + 63.1010i −1.33293 + 0.631010i
\(101\) 86.8105 + 150.360i 0.859509 + 1.48871i 0.872397 + 0.488797i \(0.162564\pi\)
−0.0128880 + 0.999917i \(0.504102\pi\)
\(102\) 0 0
\(103\) 88.4536 23.7011i 0.858773 0.230108i 0.197546 0.980294i \(-0.436703\pi\)
0.661227 + 0.750186i \(0.270036\pi\)
\(104\) −76.4639 44.1464i −0.735229 0.424485i
\(105\) 0 0
\(106\) 63.8434 + 110.580i 0.602296 + 1.04321i
\(107\) 4.74235 4.74235i 0.0443210 0.0443210i −0.684599 0.728920i \(-0.740023\pi\)
0.728920 + 0.684599i \(0.240023\pi\)
\(108\) 0 0
\(109\) 39.3031i 0.360579i −0.983614 0.180289i \(-0.942297\pi\)
0.983614 0.180289i \(-0.0577034\pi\)
\(110\) 38.7331 35.7000i 0.352120 0.324545i
\(111\) 0 0
\(112\) −2.54556 9.50015i −0.0227282 0.0848228i
\(113\) 19.6143 5.25564i 0.173578 0.0465101i −0.170983 0.985274i \(-0.554694\pi\)
0.344561 + 0.938764i \(0.388028\pi\)
\(114\) 0 0
\(115\) −78.8304 85.5281i −0.685482 0.743722i
\(116\) 5.03520 0.0434069
\(117\) 0 0
\(118\) 249.025 + 249.025i 2.11038 + 2.11038i
\(119\) 6.65691 3.84337i 0.0559404 0.0322972i
\(120\) 0 0
\(121\) 54.8939 95.0790i 0.453668 0.785777i
\(122\) 76.6194 + 285.947i 0.628028 + 2.34383i
\(123\) 0 0
\(124\) 95.5164 55.1464i 0.770294 0.444729i
\(125\) 124.068 + 15.2350i 0.992545 + 0.121880i
\(126\) 0 0
\(127\) −114.621 + 114.621i −0.902527 + 0.902527i −0.995654 0.0931273i \(-0.970314\pi\)
0.0931273 + 0.995654i \(0.470314\pi\)
\(128\) −43.9073 + 163.864i −0.343026 + 1.28019i
\(129\) 0 0
\(130\) 107.943 + 205.895i 0.830334 + 1.58380i
\(131\) −13.0681 + 22.6346i −0.0997566 + 0.172783i −0.911584 0.411114i \(-0.865140\pi\)
0.811827 + 0.583898i \(0.198473\pi\)
\(132\) 0 0
\(133\) −10.9808 + 40.9808i −0.0825621 + 0.308126i
\(134\) 244.272i 1.82293i
\(135\) 0 0
\(136\) −22.4041 −0.164736
\(137\) 19.9865 + 5.35536i 0.145887 + 0.0390902i 0.331023 0.943623i \(-0.392606\pi\)
−0.185137 + 0.982713i \(0.559273\pi\)
\(138\) 0 0
\(139\) 72.0286 + 41.5857i 0.518191 + 0.299178i 0.736194 0.676770i \(-0.236621\pi\)
−0.218003 + 0.975948i \(0.569954\pi\)
\(140\) 18.0134 57.7155i 0.128667 0.412253i
\(141\) 0 0
\(142\) −206.656 55.3733i −1.45532 0.389953i
\(143\) −34.9898 34.9898i −0.244684 0.244684i
\(144\) 0 0
\(145\) −3.60612 2.28265i −0.0248698 0.0157424i
\(146\) 88.5176 + 153.317i 0.606285 + 1.05012i
\(147\) 0 0
\(148\) 306.576 82.1467i 2.07146 0.555046i
\(149\) −103.184 59.5732i −0.692509 0.399820i 0.112042 0.993703i \(-0.464261\pi\)
−0.804551 + 0.593883i \(0.797594\pi\)
\(150\) 0 0
\(151\) 72.4847 + 125.547i 0.480031 + 0.831438i 0.999738 0.0229066i \(-0.00729205\pi\)
−0.519707 + 0.854345i \(0.673959\pi\)
\(152\) 87.4393 87.4393i 0.575258 0.575258i
\(153\) 0 0
\(154\) 21.5959i 0.140233i
\(155\) −93.4072 3.80637i −0.602627 0.0245572i
\(156\) 0 0
\(157\) 18.7209 + 69.8673i 0.119241 + 0.445015i 0.999569 0.0293510i \(-0.00934407\pi\)
−0.880328 + 0.474366i \(0.842677\pi\)
\(158\) 74.4414 19.9465i 0.471148 0.126244i
\(159\) 0 0
\(160\) 143.365 132.138i 0.896032 0.825864i
\(161\) 47.6867 0.296191
\(162\) 0 0
\(163\) 189.394 + 189.394i 1.16193 + 1.16193i 0.984054 + 0.177872i \(0.0569213\pi\)
0.177872 + 0.984054i \(0.443079\pi\)
\(164\) −146.603 + 84.6413i −0.893921 + 0.516106i
\(165\) 0 0
\(166\) −47.0454 + 81.4850i −0.283406 + 0.490874i
\(167\) −35.5173 132.553i −0.212679 0.793728i −0.986971 0.160899i \(-0.948561\pi\)
0.774292 0.632828i \(-0.218106\pi\)
\(168\) 0 0
\(169\) 42.7675 24.6918i 0.253062 0.146106i
\(170\) 49.8434 + 31.5505i 0.293196 + 0.185591i
\(171\) 0 0
\(172\) 132.697 132.697i 0.771494 0.771494i
\(173\) 12.6759 47.3070i 0.0732709 0.273451i −0.919565 0.392938i \(-0.871459\pi\)
0.992836 + 0.119488i \(0.0381252\pi\)
\(174\) 0 0
\(175\) −39.0656 + 33.1686i −0.223232 + 0.189535i
\(176\) −8.03291 + 13.9134i −0.0456415 + 0.0790534i
\(177\) 0 0
\(178\) −76.6933 + 286.223i −0.430861 + 1.60800i
\(179\) 183.712i 1.02632i −0.858292 0.513161i \(-0.828474\pi\)
0.858292 0.513161i \(-0.171526\pi\)
\(180\) 0 0
\(181\) −21.7276 −0.120042 −0.0600209 0.998197i \(-0.519117\pi\)
−0.0600209 + 0.998197i \(0.519117\pi\)
\(182\) −92.0617 24.6679i −0.505834 0.135538i
\(183\) 0 0
\(184\) −120.369 69.4949i −0.654178 0.377690i
\(185\) −256.804 80.1506i −1.38813 0.433246i
\(186\) 0 0
\(187\) −12.1284 3.24978i −0.0648575 0.0173785i
\(188\) 116.520 + 116.520i 0.619787 + 0.619787i
\(189\) 0 0
\(190\) −317.666 + 71.3939i −1.67193 + 0.375757i
\(191\) −20.0454 34.7197i −0.104950 0.181778i 0.808768 0.588128i \(-0.200135\pi\)
−0.913718 + 0.406350i \(0.866802\pi\)
\(192\) 0 0
\(193\) −105.956 + 28.3909i −0.548996 + 0.147103i −0.522646 0.852550i \(-0.675055\pi\)
−0.0263498 + 0.999653i \(0.508388\pi\)
\(194\) 56.2435 + 32.4722i 0.289915 + 0.167382i
\(195\) 0 0
\(196\) −132.131 228.858i −0.674138 1.16764i
\(197\) 67.3031 67.3031i 0.341640 0.341640i −0.515344 0.856984i \(-0.672336\pi\)
0.856984 + 0.515344i \(0.172336\pi\)
\(198\) 0 0
\(199\) 251.394i 1.26329i −0.775259 0.631643i \(-0.782381\pi\)
0.775259 0.631643i \(-0.217619\pi\)
\(200\) 146.945 26.7917i 0.734724 0.133958i
\(201\) 0 0
\(202\) −141.382 527.644i −0.699910 2.61210i
\(203\) 1.69011 0.452863i 0.00832565 0.00223085i
\(204\) 0 0
\(205\) 143.366 + 5.84220i 0.699345 + 0.0284985i
\(206\) −288.116 −1.39862
\(207\) 0 0
\(208\) −50.1362 50.1362i −0.241040 0.241040i
\(209\) 60.0182 34.6515i 0.287168 0.165797i
\(210\) 0 0
\(211\) −132.394 + 229.313i −0.627459 + 1.08679i 0.360601 + 0.932720i \(0.382572\pi\)
−0.988060 + 0.154071i \(0.950762\pi\)
\(212\) −61.9618 231.244i −0.292272 1.09078i
\(213\) 0 0
\(214\) −18.2740 + 10.5505i −0.0853926 + 0.0493014i
\(215\) −155.192 + 34.8786i −0.721822 + 0.162226i
\(216\) 0 0
\(217\) 27.1010 27.1010i 0.124889 0.124889i
\(218\) −32.0050 + 119.444i −0.146812 + 0.547910i
\(219\) 0 0
\(220\) −87.4708 + 45.8579i −0.397594 + 0.208445i
\(221\) 27.7071 47.9902i 0.125372 0.217150i
\(222\) 0 0
\(223\) −12.2359 + 45.6650i −0.0548695 + 0.204776i −0.987919 0.154973i \(-0.950471\pi\)
0.933049 + 0.359749i \(0.117138\pi\)
\(224\) 79.9342i 0.356849i
\(225\) 0 0
\(226\) −63.8888 −0.282694
\(227\) −28.9207 7.74928i −0.127404 0.0341378i 0.194554 0.980892i \(-0.437674\pi\)
−0.321958 + 0.946754i \(0.604341\pi\)
\(228\) 0 0
\(229\) −211.135 121.899i −0.921988 0.532310i −0.0377192 0.999288i \(-0.512009\pi\)
−0.884269 + 0.466978i \(0.845343\pi\)
\(230\) 169.924 + 324.117i 0.738798 + 1.40921i
\(231\) 0 0
\(232\) −4.92606 1.31993i −0.0212330 0.00568936i
\(233\) −161.712 161.712i −0.694042 0.694042i 0.269077 0.963119i \(-0.413281\pi\)
−0.963119 + 0.269077i \(0.913281\pi\)
\(234\) 0 0
\(235\) −30.6265 136.272i −0.130326 0.579883i
\(236\) −330.149 571.834i −1.39894 2.42303i
\(237\) 0 0
\(238\) −23.3604 + 6.25941i −0.0981531 + 0.0263000i
\(239\) 282.499 + 163.101i 1.18201 + 0.682431i 0.956478 0.291806i \(-0.0942561\pi\)
0.225528 + 0.974237i \(0.427589\pi\)
\(240\) 0 0
\(241\) 66.7878 + 115.680i 0.277128 + 0.479999i 0.970670 0.240417i \(-0.0772842\pi\)
−0.693542 + 0.720416i \(0.743951\pi\)
\(242\) −244.250 + 244.250i −1.00930 + 1.00930i
\(243\) 0 0
\(244\) 555.040i 2.27475i
\(245\) −9.12009 + 223.804i −0.0372249 + 0.913486i
\(246\) 0 0
\(247\) 79.1612 + 295.434i 0.320491 + 1.19609i
\(248\) −107.902 + 28.9123i −0.435089 + 0.116582i
\(249\) 0 0
\(250\) −364.644 147.330i −1.45858 0.589321i
\(251\) 404.742 1.61252 0.806260 0.591562i \(-0.201488\pi\)
0.806260 + 0.591562i \(0.201488\pi\)
\(252\) 0 0
\(253\) −55.0806 55.0806i −0.217710 0.217710i
\(254\) 441.677 255.002i 1.73889 1.00395i
\(255\) 0 0
\(256\) 59.8837 103.722i 0.233921 0.405162i
\(257\) 32.6631 + 121.900i 0.127094 + 0.474320i 0.999906 0.0137364i \(-0.00437256\pi\)
−0.872812 + 0.488057i \(0.837706\pi\)
\(258\) 0 0
\(259\) 95.5164 55.1464i 0.368789 0.212921i
\(260\) −95.5755 425.262i −0.367598 1.63562i
\(261\) 0 0
\(262\) 58.1464 58.1464i 0.221933 0.221933i
\(263\) 125.123 466.967i 0.475754 1.77554i −0.142751 0.989759i \(-0.545595\pi\)
0.618506 0.785780i \(-0.287738\pi\)
\(264\) 0 0
\(265\) −60.4561 + 193.703i −0.228136 + 0.730954i
\(266\) 66.7423 115.601i 0.250911 0.434591i
\(267\) 0 0
\(268\) 118.537 442.385i 0.442301 1.65069i
\(269\) 3.50052i 0.0130131i −0.999979 0.00650653i \(-0.997929\pi\)
0.999979 0.00650653i \(-0.00207111\pi\)
\(270\) 0 0
\(271\) −103.576 −0.382197 −0.191099 0.981571i \(-0.561205\pi\)
−0.191099 + 0.981571i \(0.561205\pi\)
\(272\) −17.3785 4.65655i −0.0638915 0.0171197i
\(273\) 0 0
\(274\) −56.3791 32.5505i −0.205763 0.118797i
\(275\) 83.4342 + 6.81125i 0.303397 + 0.0247682i
\(276\) 0 0
\(277\) 390.013 + 104.504i 1.40799 + 0.377270i 0.881208 0.472730i \(-0.156731\pi\)
0.526783 + 0.850000i \(0.323398\pi\)
\(278\) −185.035 185.035i −0.665594 0.665594i
\(279\) 0 0
\(280\) −32.7526 + 51.7423i −0.116973 + 0.184794i
\(281\) 186.348 + 322.765i 0.663162 + 1.14863i 0.979780 + 0.200077i \(0.0641192\pi\)
−0.316618 + 0.948553i \(0.602547\pi\)
\(282\) 0 0
\(283\) 105.446 28.2542i 0.372601 0.0998381i −0.0676591 0.997709i \(-0.521553\pi\)
0.440260 + 0.897870i \(0.354886\pi\)
\(284\) 347.389 + 200.565i 1.22320 + 0.706216i
\(285\) 0 0
\(286\) 77.8434 + 134.829i 0.272180 + 0.471429i
\(287\) −41.5959 + 41.5959i −0.144934 + 0.144934i
\(288\) 0 0
\(289\) 274.939i 0.951345i
\(290\) 9.10042 + 9.87362i 0.0313808 + 0.0340470i
\(291\) 0 0
\(292\) −85.9088 320.616i −0.294208 1.09800i
\(293\) −323.154 + 86.5889i −1.10292 + 0.295525i −0.763951 0.645274i \(-0.776743\pi\)
−0.338964 + 0.940799i \(0.610077\pi\)
\(294\) 0 0
\(295\) −22.7879 + 559.207i −0.0772470 + 1.89562i
\(296\) −321.464 −1.08603
\(297\) 0 0
\(298\) 265.070 + 265.070i 0.889498 + 0.889498i
\(299\) 297.720 171.889i 0.995719 0.574879i
\(300\) 0 0
\(301\) 32.6061 56.4755i 0.108326 0.187626i
\(302\) −118.050 440.570i −0.390896 1.45884i
\(303\) 0 0
\(304\) 85.9990 49.6515i 0.282891 0.163327i
\(305\) −251.621 + 397.510i −0.824987 + 1.30331i
\(306\) 0 0
\(307\) 168.969 168.969i 0.550389 0.550389i −0.376164 0.926553i \(-0.622757\pi\)
0.926553 + 0.376164i \(0.122757\pi\)
\(308\) 10.4797 39.1108i 0.0340251 0.126983i
\(309\) 0 0
\(310\) 280.770 + 87.6305i 0.905710 + 0.282679i
\(311\) 177.151 306.835i 0.569617 0.986606i −0.426986 0.904258i \(-0.640425\pi\)
0.996604 0.0823482i \(-0.0262420\pi\)
\(312\) 0 0
\(313\) 55.7726 208.146i 0.178187 0.665003i −0.817800 0.575503i \(-0.804806\pi\)
0.995987 0.0895003i \(-0.0285270\pi\)
\(314\) 227.576i 0.724763i
\(315\) 0 0
\(316\) −144.495 −0.457262
\(317\) −583.589 156.372i −1.84097 0.493288i −0.842039 0.539416i \(-0.818645\pi\)
−0.998936 + 0.0461283i \(0.985312\pi\)
\(318\) 0 0
\(319\) −2.47524 1.42908i −0.00775937 0.00447987i
\(320\) −458.309 + 240.276i −1.43222 + 0.750862i
\(321\) 0 0
\(322\) −144.923 38.8319i −0.450071 0.120596i
\(323\) 54.8786 + 54.8786i 0.169903 + 0.169903i
\(324\) 0 0
\(325\) −124.338 + 347.893i −0.382579 + 1.07044i
\(326\) −421.353 729.805i −1.29249 2.23867i
\(327\) 0 0
\(328\) 165.613 44.3759i 0.504918 0.135292i
\(329\) 49.5906 + 28.6311i 0.150731 + 0.0870247i
\(330\) 0 0
\(331\) −244.712 423.853i −0.739310 1.28052i −0.952806 0.303579i \(-0.901818\pi\)
0.213496 0.976944i \(-0.431515\pi\)
\(332\) 124.742 124.742i 0.375730 0.375730i
\(333\) 0 0
\(334\) 431.757i 1.29269i
\(335\) −285.444 + 263.091i −0.852071 + 0.785346i
\(336\) 0 0
\(337\) 106.950 + 399.141i 0.317358 + 1.18440i 0.921774 + 0.387727i \(0.126740\pi\)
−0.604416 + 0.796669i \(0.706594\pi\)
\(338\) −150.080 + 40.2138i −0.444023 + 0.118976i
\(339\) 0 0
\(340\) −74.9575 81.3261i −0.220463 0.239194i
\(341\) −62.6061 −0.183596
\(342\) 0 0
\(343\) −135.959 135.959i −0.396382 0.396382i
\(344\) −164.606 + 95.0352i −0.478505 + 0.276265i
\(345\) 0 0
\(346\) −77.0454 + 133.447i −0.222675 + 0.385684i
\(347\) −117.146 437.196i −0.337598 1.25993i −0.901025 0.433767i \(-0.857184\pi\)
0.563428 0.826166i \(-0.309482\pi\)
\(348\) 0 0
\(349\) −497.107 + 287.005i −1.42437 + 0.822363i −0.996669 0.0815556i \(-0.974011\pi\)
−0.427705 + 0.903918i \(0.640678\pi\)
\(350\) 145.732 68.9898i 0.416378 0.197114i
\(351\) 0 0
\(352\) 92.3281 92.3281i 0.262296 0.262296i
\(353\) −97.5531 + 364.073i −0.276354 + 1.03137i 0.678574 + 0.734532i \(0.262598\pi\)
−0.954928 + 0.296836i \(0.904068\pi\)
\(354\) 0 0
\(355\) −157.870 301.126i −0.444704 0.848243i
\(356\) 277.788 481.143i 0.780303 1.35152i
\(357\) 0 0
\(358\) −149.599 + 558.311i −0.417874 + 1.55953i
\(359\) 216.272i 0.602430i −0.953556 0.301215i \(-0.902608\pi\)
0.953556 0.301215i \(-0.0973922\pi\)
\(360\) 0 0
\(361\) −67.3633 −0.186602
\(362\) 66.0313 + 17.6930i 0.182407 + 0.0488758i
\(363\) 0 0
\(364\) 154.756 + 89.3485i 0.425154 + 0.245463i
\(365\) −83.8212 + 268.565i −0.229647 + 0.735795i
\(366\) 0 0
\(367\) 328.542 + 88.0327i 0.895211 + 0.239871i 0.676958 0.736021i \(-0.263298\pi\)
0.218252 + 0.975892i \(0.429964\pi\)
\(368\) −78.9240 78.9240i −0.214467 0.214467i
\(369\) 0 0
\(370\) 715.176 + 452.702i 1.93291 + 1.22352i
\(371\) −41.5959 72.0462i −0.112118 0.194195i
\(372\) 0 0
\(373\) 451.071 120.864i 1.20930 0.324032i 0.402816 0.915281i \(-0.368032\pi\)
0.806489 + 0.591249i \(0.201365\pi\)
\(374\) 34.2124 + 19.7526i 0.0914771 + 0.0528143i
\(375\) 0 0
\(376\) −83.4495 144.539i −0.221940 0.384412i
\(377\) 8.91939 8.91939i 0.0236589 0.0236589i
\(378\) 0 0
\(379\) 210.000i 0.554090i 0.960857 + 0.277045i \(0.0893551\pi\)
−0.960857 + 0.277045i \(0.910645\pi\)
\(380\) 609.948 + 24.8556i 1.60513 + 0.0654094i
\(381\) 0 0
\(382\) 32.6465 + 121.838i 0.0854620 + 0.318948i
\(383\) 233.086 62.4553i 0.608581 0.163069i 0.0586495 0.998279i \(-0.481321\pi\)
0.549931 + 0.835210i \(0.314654\pi\)
\(384\) 0 0
\(385\) −25.2358 + 23.2596i −0.0655476 + 0.0604146i
\(386\) 345.126 0.894109
\(387\) 0 0
\(388\) −86.1010 86.1010i −0.221910 0.221910i
\(389\) 474.008 273.669i 1.21853 0.703518i 0.253926 0.967224i \(-0.418278\pi\)
0.964603 + 0.263705i \(0.0849446\pi\)
\(390\) 0 0
\(391\) 43.6163 75.5457i 0.111551 0.193212i
\(392\) 69.2739 + 258.534i 0.176719 + 0.659525i
\(393\) 0 0
\(394\) −259.344 + 149.732i −0.658233 + 0.380031i
\(395\) 103.485 + 65.5051i 0.261987 + 0.165836i
\(396\) 0 0
\(397\) 45.2577 45.2577i 0.113999 0.113999i −0.647806 0.761805i \(-0.724313\pi\)
0.761805 + 0.647806i \(0.224313\pi\)
\(398\) −204.713 + 764.001i −0.514355 + 1.91960i
\(399\) 0 0
\(400\) 119.551 + 9.75971i 0.298878 + 0.0243993i
\(401\) −260.151 + 450.595i −0.648756 + 1.12368i 0.334665 + 0.942337i \(0.391377\pi\)
−0.983420 + 0.181340i \(0.941956\pi\)
\(402\) 0 0
\(403\) 71.5117 266.885i 0.177448 0.662246i
\(404\) 1024.19i 2.53511i
\(405\) 0 0
\(406\) −5.50510 −0.0135594
\(407\) −174.023 46.6294i −0.427576 0.114569i
\(408\) 0 0
\(409\) 300.606 + 173.555i 0.734979 + 0.424340i 0.820241 0.572018i \(-0.193839\pi\)
−0.0852621 + 0.996359i \(0.527173\pi\)
\(410\) −430.939 134.499i −1.05107 0.328047i
\(411\) 0 0
\(412\) 521.786 + 139.812i 1.26647 + 0.339350i
\(413\) −162.247 162.247i −0.392851 0.392851i
\(414\) 0 0
\(415\) −145.889 + 32.7878i −0.351539 + 0.0790066i
\(416\) 288.126 + 499.049i 0.692611 + 1.19964i
\(417\) 0 0
\(418\) −210.616 + 56.4344i −0.503866 + 0.135011i
\(419\) 505.238 + 291.699i 1.20582 + 0.696180i 0.961843 0.273602i \(-0.0882151\pi\)
0.243975 + 0.969781i \(0.421548\pi\)
\(420\) 0 0
\(421\) −106.576 184.594i −0.253148 0.438466i 0.711243 0.702947i \(-0.248133\pi\)
−0.964391 + 0.264481i \(0.914799\pi\)
\(422\) 589.085 589.085i 1.39594 1.39594i
\(423\) 0 0
\(424\) 242.474i 0.571874i
\(425\) 16.8150 + 92.2254i 0.0395646 + 0.217001i
\(426\) 0 0
\(427\) −49.9199 186.304i −0.116908 0.436308i
\(428\) 38.2146 10.2396i 0.0892864 0.0239242i
\(429\) 0 0
\(430\) 500.039 + 20.3768i 1.16288 + 0.0473878i
\(431\) −187.364 −0.434720 −0.217360 0.976092i \(-0.569745\pi\)
−0.217360 + 0.976092i \(0.569745\pi\)
\(432\) 0 0
\(433\) 154.848 + 154.848i 0.357617 + 0.357617i 0.862934 0.505317i \(-0.168624\pi\)
−0.505317 + 0.862934i \(0.668624\pi\)
\(434\) −104.430 + 60.2929i −0.240623 + 0.138924i
\(435\) 0 0
\(436\) 115.924 200.786i 0.265881 0.460519i
\(437\) 124.615 + 465.069i 0.285160 + 1.06423i
\(438\) 0 0
\(439\) 219.043 126.464i 0.498958 0.288074i −0.229325 0.973350i \(-0.573652\pi\)
0.728283 + 0.685276i \(0.240319\pi\)
\(440\) 97.5959 21.9342i 0.221809 0.0498504i
\(441\) 0 0
\(442\) −123.283 + 123.283i −0.278920 + 0.278920i
\(443\) 154.144 575.275i 0.347956 1.29859i −0.541165 0.840917i \(-0.682016\pi\)
0.889121 0.457673i \(-0.151317\pi\)
\(444\) 0 0
\(445\) −417.067 + 218.654i −0.937229 + 0.491357i
\(446\) 74.3712 128.815i 0.166752 0.288822i
\(447\) 0 0
\(448\) 54.9092 204.924i 0.122565 0.457420i
\(449\) 297.909i 0.663495i 0.943368 + 0.331747i \(0.107638\pi\)
−0.943368 + 0.331747i \(0.892362\pi\)
\(450\) 0 0
\(451\) 96.0908 0.213062
\(452\) 115.704 + 31.0029i 0.255983 + 0.0685905i
\(453\) 0 0
\(454\) 81.5814 + 47.1010i 0.179695 + 0.103747i
\(455\) −70.3285 134.147i −0.154568 0.294828i
\(456\) 0 0
\(457\) −390.338 104.591i −0.854130 0.228864i −0.194917 0.980820i \(-0.562444\pi\)
−0.659213 + 0.751956i \(0.729110\pi\)
\(458\) 542.388 + 542.388i 1.18425 + 1.18425i
\(459\) 0 0
\(460\) −150.454 669.444i −0.327074 1.45531i
\(461\) 263.310 + 456.066i 0.571171 + 0.989298i 0.996446 + 0.0842333i \(0.0268441\pi\)
−0.425275 + 0.905064i \(0.639823\pi\)
\(462\) 0 0
\(463\) −458.577 + 122.875i −0.990447 + 0.265389i −0.717438 0.696622i \(-0.754685\pi\)
−0.273009 + 0.962012i \(0.588019\pi\)
\(464\) −3.54672 2.04770i −0.00764380 0.00441315i
\(465\) 0 0
\(466\) 359.767 + 623.135i 0.772033 + 1.33720i
\(467\) −488.742 + 488.742i −1.04656 + 1.04656i −0.0476956 + 0.998862i \(0.515188\pi\)
−0.998862 + 0.0476956i \(0.984812\pi\)
\(468\) 0 0
\(469\) 159.151i 0.339341i
\(470\) −17.8926 + 439.079i −0.0380694 + 0.934212i
\(471\) 0 0
\(472\) 173.091 + 645.984i 0.366718 + 1.36861i
\(473\) −102.894 + 27.5703i −0.217534 + 0.0582882i
\(474\) 0 0
\(475\) −425.566 294.314i −0.895928 0.619608i
\(476\) 45.3439 0.0952603
\(477\) 0 0
\(478\) −725.716 725.716i −1.51823 1.51823i
\(479\) −160.171 + 92.4745i −0.334385 + 0.193057i −0.657786 0.753205i \(-0.728507\pi\)
0.323401 + 0.946262i \(0.395174\pi\)
\(480\) 0 0
\(481\) 397.555 688.586i 0.826518 1.43157i
\(482\) −108.772 405.944i −0.225669 0.842207i
\(483\) 0 0
\(484\) 560.869 323.818i 1.15882 0.669045i
\(485\) 22.6311 + 100.697i 0.0466621 + 0.207623i
\(486\) 0 0
\(487\) −120.682 + 120.682i −0.247807 + 0.247807i −0.820070 0.572263i \(-0.806066\pi\)
0.572263 + 0.820070i \(0.306066\pi\)
\(488\) −145.499 + 543.008i −0.298153 + 1.11272i
\(489\) 0 0
\(490\) 209.963 672.727i 0.428496 1.37291i
\(491\) −52.8411 + 91.5234i −0.107619 + 0.186402i −0.914805 0.403895i \(-0.867656\pi\)
0.807186 + 0.590297i \(0.200989\pi\)
\(492\) 0 0
\(493\) 0.828415 3.09169i 0.00168035 0.00627117i
\(494\) 962.302i 1.94798i
\(495\) 0 0
\(496\) −89.7071 −0.180861
\(497\) 134.643 + 36.0774i 0.270911 + 0.0725904i
\(498\) 0 0
\(499\) −640.499 369.792i −1.28357 0.741067i −0.306067 0.952010i \(-0.599013\pi\)
−0.977498 + 0.210943i \(0.932347\pi\)
\(500\) 588.887 + 443.768i 1.17777 + 0.887536i
\(501\) 0 0
\(502\) −1230.04 329.587i −2.45027 0.656548i
\(503\) 406.409 + 406.409i 0.807970 + 0.807970i 0.984326 0.176357i \(-0.0564312\pi\)
−0.176357 + 0.984326i \(0.556431\pi\)
\(504\) 0 0
\(505\) 464.303 733.504i 0.919412 1.45248i
\(506\) 122.540 + 212.246i 0.242175 + 0.419459i
\(507\) 0 0
\(508\) −923.633 + 247.487i −1.81818 + 0.487179i
\(509\) −168.451 97.2554i −0.330945 0.191071i 0.325315 0.945606i \(-0.394530\pi\)
−0.656261 + 0.754534i \(0.727863\pi\)
\(510\) 0 0
\(511\) −57.6719 99.8907i −0.112861 0.195481i
\(512\) 213.376 213.376i 0.416750 0.416750i
\(513\) 0 0
\(514\) 397.060i 0.772491i
\(515\) −310.312 336.677i −0.602547 0.653741i
\(516\) 0 0
\(517\) −24.2092 90.3500i −0.0468263 0.174758i
\(518\) −335.186 + 89.8129i −0.647078 + 0.173384i
\(519\) 0 0
\(520\) −17.9749 + 441.098i −0.0345671 + 0.848266i
\(521\) 589.605 1.13168 0.565840 0.824515i \(-0.308552\pi\)
0.565840 + 0.824515i \(0.308552\pi\)
\(522\) 0 0
\(523\) −141.546 141.546i −0.270642 0.270642i 0.558716 0.829359i \(-0.311294\pi\)
−0.829359 + 0.558716i \(0.811294\pi\)
\(524\) −133.521 + 77.0885i −0.254812 + 0.147115i
\(525\) 0 0
\(526\) −760.514 + 1317.25i −1.44584 + 2.50428i
\(527\) −18.1459 67.7214i −0.0344324 0.128504i
\(528\) 0 0
\(529\) 10.5408 6.08571i 0.0199258 0.0115042i
\(530\) 341.464 539.444i 0.644272 1.01782i
\(531\) 0 0
\(532\) −176.969 + 176.969i −0.332649 + 0.332649i
\(533\) −109.759 + 409.628i −0.205928 + 0.768532i
\(534\) 0 0
\(535\) −32.0106 9.99074i −0.0598329 0.0186743i
\(536\) −231.934 + 401.722i −0.432713 + 0.749481i
\(537\) 0 0
\(538\) −2.85052 + 10.6383i −0.00529836 + 0.0197737i
\(539\) 150.005i 0.278302i
\(540\) 0 0
\(541\) 431.303 0.797233 0.398617 0.917118i \(-0.369490\pi\)
0.398617 + 0.917118i \(0.369490\pi\)
\(542\) 314.772 + 84.3429i 0.580760 + 0.155614i
\(543\) 0 0
\(544\) 126.632 + 73.1112i 0.232780 + 0.134396i
\(545\) −174.047 + 91.2467i −0.319352 + 0.167425i
\(546\) 0 0
\(547\) 609.551 + 163.329i 1.11435 + 0.298590i 0.768596 0.639734i \(-0.220956\pi\)
0.345757 + 0.938324i \(0.387622\pi\)
\(548\) 86.3087 + 86.3087i 0.157498 + 0.157498i
\(549\) 0 0
\(550\) −248.015 88.6413i −0.450936 0.161166i
\(551\) 8.83316 + 15.2995i 0.0160311 + 0.0277668i
\(552\) 0 0
\(553\) −48.5009 + 12.9958i −0.0877050 + 0.0235005i
\(554\) −1100.17 635.186i −1.98588 1.14655i
\(555\) 0 0
\(556\) 245.313 + 424.895i 0.441211 + 0.764200i
\(557\) −214.091 + 214.091i −0.384364 + 0.384364i −0.872672 0.488308i \(-0.837614\pi\)
0.488308 + 0.872672i \(0.337614\pi\)
\(558\) 0 0
\(559\) 470.120i 0.841003i
\(560\) −36.1600 + 33.3283i −0.0645714 + 0.0595148i
\(561\) 0 0
\(562\) −303.492 1132.65i −0.540021 2.01539i
\(563\) 917.982 245.972i 1.63052 0.436896i 0.676451 0.736488i \(-0.263517\pi\)
0.954067 + 0.299592i \(0.0968506\pi\)
\(564\) 0 0
\(565\) −68.8107 74.6570i −0.121789 0.132136i
\(566\) −343.464 −0.606827
\(567\) 0 0
\(568\) −287.283 287.283i −0.505779 0.505779i
\(569\) −841.916 + 486.081i −1.47964 + 0.854272i −0.999734 0.0230473i \(-0.992663\pi\)
−0.479908 + 0.877319i \(0.659330\pi\)
\(570\) 0 0
\(571\) 462.015 800.233i 0.809133 1.40146i −0.104333 0.994542i \(-0.533271\pi\)
0.913465 0.406917i \(-0.133396\pi\)
\(572\) −75.5491 281.953i −0.132079 0.492925i
\(573\) 0 0
\(574\) 160.285 92.5403i 0.279241 0.161220i
\(575\) −195.732 + 547.650i −0.340404 + 0.952436i
\(576\) 0 0
\(577\) −497.879 + 497.879i −0.862874 + 0.862874i −0.991671 0.128797i \(-0.958889\pi\)
0.128797 + 0.991671i \(0.458889\pi\)
\(578\) 223.886 835.555i 0.387346 1.44560i
\(579\) 0 0
\(580\) −11.6898 22.2975i −0.0201549 0.0384440i
\(581\) 30.6515 53.0900i 0.0527565 0.0913770i
\(582\) 0 0
\(583\) −35.1717 + 131.262i −0.0603288 + 0.225150i
\(584\) 336.186i 0.575661i
\(585\) 0 0
\(586\) 1052.59 1.79624
\(587\) 399.949 + 107.166i 0.681345 + 0.182566i 0.582860 0.812573i \(-0.301934\pi\)
0.0984849 + 0.995139i \(0.468600\pi\)
\(588\) 0 0
\(589\) 335.125 + 193.485i 0.568973 + 0.328497i
\(590\) 524.623 1680.91i 0.889192 2.84899i
\(591\) 0 0
\(592\) −249.355 66.8144i −0.421207 0.112862i
\(593\) −451.258 451.258i −0.760974 0.760974i 0.215524 0.976498i \(-0.430854\pi\)
−0.976498 + 0.215524i \(0.930854\pi\)
\(594\) 0 0
\(595\) −32.4745 20.5561i −0.0545790 0.0345481i
\(596\) −351.421 608.679i −0.589633 1.02127i
\(597\) 0 0
\(598\) −1044.76 + 279.943i −1.74709 + 0.468131i
\(599\) −28.4560 16.4291i −0.0475058 0.0274275i 0.476059 0.879413i \(-0.342065\pi\)
−0.523565 + 0.851986i \(0.675398\pi\)
\(600\) 0 0
\(601\) 92.2418 + 159.768i 0.153481 + 0.265836i 0.932505 0.361158i \(-0.117618\pi\)
−0.779024 + 0.626994i \(0.784285\pi\)
\(602\) −145.081 + 145.081i −0.240998 + 0.240998i
\(603\) 0 0
\(604\) 855.171i 1.41585i
\(605\) −548.484 22.3509i −0.906584 0.0369436i
\(606\) 0 0
\(607\) 49.9219 + 186.311i 0.0822437 + 0.306938i 0.994778 0.102062i \(-0.0325442\pi\)
−0.912534 + 0.409000i \(0.865878\pi\)
\(608\) −779.565 + 208.884i −1.28218 + 0.343559i
\(609\) 0 0
\(610\) 1088.39 1003.16i 1.78424 1.64452i
\(611\) 412.808 0.675627
\(612\) 0 0
\(613\) −12.7128 12.7128i −0.0207386 0.0207386i 0.696661 0.717400i \(-0.254668\pi\)
−0.717400 + 0.696661i \(0.754668\pi\)
\(614\) −651.102 + 375.914i −1.06043 + 0.612237i
\(615\) 0 0
\(616\) −20.5051 + 35.5159i −0.0332875 + 0.0576556i
\(617\) 145.953 + 544.705i 0.236553 + 0.882828i 0.977443 + 0.211201i \(0.0677375\pi\)
−0.740890 + 0.671627i \(0.765596\pi\)
\(618\) 0 0
\(619\) −709.388 + 409.565i −1.14602 + 0.661656i −0.947915 0.318524i \(-0.896813\pi\)
−0.198108 + 0.980180i \(0.563480\pi\)
\(620\) −465.959 294.949i −0.751547 0.475724i
\(621\) 0 0
\(622\) −788.232 + 788.232i −1.26725 + 1.26725i
\(623\) 49.9681 186.483i 0.0802056 0.299331i
\(624\) 0 0
\(625\) −220.574 584.784i −0.352918 0.935654i
\(626\) −338.992 + 587.152i −0.541521 + 0.937942i
\(627\) 0 0
\(628\) −110.434 + 412.146i −0.175851 + 0.656283i
\(629\) 201.757i 0.320759i
\(630\) 0 0
\(631\) 105.485 0.167171 0.0835853 0.996501i \(-0.473363\pi\)
0.0835853 + 0.996501i \(0.473363\pi\)
\(632\) 141.363 + 37.8780i 0.223675 + 0.0599336i
\(633\) 0 0
\(634\) 1646.23 + 950.448i 2.59657 + 1.49913i
\(635\) 773.685 + 241.473i 1.21840 + 0.380272i
\(636\) 0 0
\(637\) −639.458 171.342i −1.00386 0.268983i
\(638\) 6.35867 + 6.35867i 0.00996657 + 0.00996657i
\(639\) 0 0
\(640\) 827.580 185.994i 1.29309 0.290616i
\(641\) 82.3939 + 142.710i 0.128540 + 0.222637i 0.923111 0.384534i \(-0.125638\pi\)
−0.794571 + 0.607171i \(0.792304\pi\)
\(642\) 0 0
\(643\) 1044.15 279.780i 1.62388 0.435116i 0.671739 0.740788i \(-0.265548\pi\)
0.952137 + 0.305672i \(0.0988810\pi\)
\(644\) 243.616 + 140.652i 0.378285 + 0.218403i
\(645\) 0 0
\(646\) −122.091 211.467i −0.188995 0.327349i
\(647\) −321.287 + 321.287i −0.496580 + 0.496580i −0.910372 0.413792i \(-0.864204\pi\)
0.413792 + 0.910372i \(0.364204\pi\)
\(648\) 0 0
\(649\) 374.808i 0.577516i
\(650\) 661.165 956.018i 1.01718 1.47080i
\(651\) 0 0
\(652\) 408.935 + 1526.17i 0.627201 + 2.34074i
\(653\) −231.982 + 62.1595i −0.355256 + 0.0951907i −0.432033 0.901858i \(-0.642204\pi\)
0.0767769 + 0.997048i \(0.475537\pi\)
\(654\) 0 0
\(655\) 130.573 + 5.32088i 0.199348 + 0.00812348i
\(656\) 137.687 0.209888
\(657\) 0 0
\(658\) −127.394 127.394i −0.193608 0.193608i
\(659\) 830.313 479.381i 1.25996 0.727438i 0.286893 0.957963i \(-0.407378\pi\)
0.973066 + 0.230525i \(0.0740444\pi\)
\(660\) 0 0
\(661\) −198.196 + 343.286i −0.299843 + 0.519344i −0.976100 0.217322i \(-0.930268\pi\)
0.676257 + 0.736666i \(0.263601\pi\)
\(662\) 398.544 + 1487.39i 0.602030 + 2.24681i
\(663\) 0 0
\(664\) −154.738 + 89.3383i −0.233040 + 0.134546i
\(665\) 206.969 46.5153i 0.311232 0.0699478i
\(666\) 0 0
\(667\) 14.0408 14.0408i 0.0210507 0.0210507i
\(668\) 209.516 781.925i 0.313647 1.17055i
\(669\) 0 0
\(670\) 1081.72 567.108i 1.61451 0.846429i
\(671\) −157.530 + 272.850i −0.234769 + 0.406632i
\(672\) 0 0
\(673\) 60.2870 224.994i 0.0895795 0.334315i −0.906562 0.422072i \(-0.861303\pi\)
0.996142 + 0.0877564i \(0.0279697\pi\)
\(674\) 1300.10i 1.92894i
\(675\) 0 0
\(676\) 291.313 0.430937
\(677\) 743.648 + 199.260i 1.09845 + 0.294328i 0.762132 0.647422i \(-0.224153\pi\)
0.336315 + 0.941750i \(0.390819\pi\)
\(678\) 0 0
\(679\) −36.6444 21.1566i −0.0539681 0.0311585i
\(680\) 52.0137 + 99.2126i 0.0764908 + 0.145901i
\(681\) 0 0
\(682\) 190.264 + 50.9810i 0.278979 + 0.0747522i
\(683\) −786.590 786.590i −1.15167 1.15167i −0.986218 0.165452i \(-0.947092\pi\)
−0.165452 0.986218i \(-0.552908\pi\)
\(684\) 0 0
\(685\) −22.6857 100.940i −0.0331178 0.147357i
\(686\) 302.474 + 523.901i 0.440925 + 0.763704i
\(687\) 0 0
\(688\) −147.435 + 39.5050i −0.214294 + 0.0574200i
\(689\) −519.387 299.868i −0.753828 0.435223i
\(690\) 0 0
\(691\) −178.439 309.066i −0.258233 0.447273i 0.707535 0.706678i \(-0.249807\pi\)
−0.965769 + 0.259405i \(0.916474\pi\)
\(692\) 204.288 204.288i 0.295214 0.295214i
\(693\) 0 0
\(694\) 1424.06i 2.05196i
\(695\) 16.9323 415.512i 0.0243630 0.597859i
\(696\) 0 0
\(697\) 27.8512 + 103.942i 0.0399586 + 0.149128i
\(698\) 1744.45 467.423i 2.49921 0.669661i
\(699\) 0 0
\(700\) −297.403 + 54.2240i −0.424862 + 0.0774629i
\(701\) −885.680 −1.26345 −0.631726 0.775192i \(-0.717653\pi\)
−0.631726 + 0.775192i \(0.717653\pi\)
\(702\) 0 0
\(703\) 787.423 + 787.423i 1.12009 + 1.12009i
\(704\) −300.121 + 173.275i −0.426308 + 0.246129i
\(705\) 0 0
\(706\) 592.939 1027.00i 0.839857 1.45467i
\(707\) 92.1146 + 343.776i 0.130289 + 0.486247i
\(708\) 0 0
\(709\) 633.107 365.524i 0.892958 0.515549i 0.0180489 0.999837i \(-0.494255\pi\)
0.874909 + 0.484288i \(0.160921\pi\)
\(710\) 234.565 + 1043.70i 0.330374 + 1.46999i
\(711\) 0 0
\(712\) −397.893 + 397.893i −0.558839 + 0.558839i
\(713\) 112.573 420.128i 0.157886 0.589240i
\(714\) 0 0
\(715\) −73.7133 + 236.179i −0.103096 + 0.330321i
\(716\) 541.856 938.522i 0.756782 1.31078i
\(717\) 0 0
\(718\) −176.113 + 657.265i −0.245283 + 0.915410i
\(719\) 629.271i 0.875204i 0.899169 + 0.437602i \(0.144172\pi\)
−0.899169 + 0.437602i \(0.855828\pi\)
\(720\) 0 0
\(721\) 187.716 0.260356
\(722\) 204.721 + 54.8548i 0.283547 + 0.0759762i
\(723\) 0 0
\(724\) −110.999 64.0852i −0.153313 0.0885155i
\(725\) −1.73628 + 21.2685i −0.00239487 + 0.0293359i
\(726\) 0 0
\(727\) 21.6843 + 5.81028i 0.0298270 + 0.00799213i 0.273702 0.961815i \(-0.411752\pi\)
−0.243875 + 0.969807i \(0.578419\pi\)
\(728\) −127.980 127.980i −0.175796 0.175796i
\(729\) 0 0
\(730\) 473.434 747.929i 0.648539 1.02456i
\(731\) −59.6459 103.310i −0.0815950 0.141327i
\(732\) 0 0
\(733\) 537.172 143.935i 0.732840 0.196364i 0.126947 0.991910i \(-0.459482\pi\)
0.605894 + 0.795546i \(0.292816\pi\)
\(734\) −926.773 535.073i −1.26263 0.728982i
\(735\) 0 0
\(736\) 453.565 + 785.598i 0.616257 + 1.06739i
\(737\) −183.828 + 183.828i −0.249427 + 0.249427i
\(738\) 0 0
\(739\) 192.334i 0.260262i 0.991497 + 0.130131i \(0.0415398\pi\)
−0.991497 + 0.130131i \(0.958460\pi\)
\(740\) −1075.52 1166.90i −1.45341 1.57690i
\(741\) 0 0
\(742\) 67.7442 + 252.825i 0.0912995 + 0.340734i
\(743\) −61.0634 + 16.3619i −0.0821850 + 0.0220214i −0.299677 0.954041i \(-0.596879\pi\)
0.217492 + 0.976062i \(0.430212\pi\)
\(744\) 0 0
\(745\) −24.2561 + 595.238i −0.0325586 + 0.798977i
\(746\) −1469.25 −1.96951
\(747\) 0 0
\(748\) −52.3745 52.3745i −0.0700194 0.0700194i
\(749\) 11.9061 6.87398i 0.0158960 0.00917755i
\(750\) 0 0
\(751\) −113.893 + 197.269i −0.151656 + 0.262675i −0.931836 0.362879i \(-0.881794\pi\)
0.780181 + 0.625554i \(0.215127\pi\)
\(752\) −34.6889 129.461i −0.0461289 0.172155i
\(753\) 0 0
\(754\) −34.3697 + 19.8434i −0.0455832 + 0.0263175i
\(755\) 387.682 612.459i 0.513486 0.811204i
\(756\) 0 0
\(757\) −235.925 + 235.925i −0.311658 + 0.311658i −0.845552 0.533894i \(-0.820728\pi\)
0.533894 + 0.845552i \(0.320728\pi\)
\(758\) 171.006 638.202i 0.225601 0.841955i
\(759\) 0 0
\(760\) −590.211 184.209i −0.776593 0.242380i
\(761\) −440.621 + 763.178i −0.579003 + 1.00286i 0.416592 + 0.909094i \(0.363225\pi\)
−0.995594 + 0.0937680i \(0.970109\pi\)
\(762\) 0 0
\(763\) 20.8522 77.8216i 0.0273293 0.101994i
\(764\) 236.495i 0.309548i
\(765\) 0 0
\(766\) −759.221 −0.991151
\(767\) −1597.78 428.123i −2.08315 0.558179i
\(768\) 0 0
\(769\) −1046.51 604.201i −1.36087 0.785697i −0.371128 0.928582i \(-0.621029\pi\)
−0.989739 + 0.142885i \(0.954362\pi\)
\(770\) 95.6338 50.1375i 0.124200 0.0651136i
\(771\) 0 0
\(772\) −625.033 167.477i −0.809629 0.216939i
\(773\) 815.226 + 815.226i 1.05463 + 1.05463i 0.998419 + 0.0562070i \(0.0179007\pi\)
0.0562070 + 0.998419i \(0.482099\pi\)
\(774\) 0 0
\(775\) 200.000 + 422.474i 0.258065 + 0.545128i
\(776\) 61.6640 + 106.805i 0.0794640 + 0.137636i
\(777\) 0 0
\(778\) −1663.39 + 445.704i −2.13803 + 0.572884i
\(779\) −514.366 296.969i −0.660290 0.381219i
\(780\) 0 0
\(781\) −113.848 197.190i −0.145772 0.252485i
\(782\) −194.070 + 194.070i −0.248172 + 0.248172i
\(783\) 0 0
\(784\) 214.939i 0.274157i
\(785\) 265.933 245.108i 0.338768 0.312239i
\(786\) 0 0
\(787\) 297.582 + 1110.59i 0.378122 + 1.41117i 0.848728 + 0.528829i \(0.177369\pi\)
−0.470606 + 0.882343i \(0.655965\pi\)
\(788\) 542.339 145.319i 0.688247 0.184415i
\(789\) 0 0
\(790\) −261.154 283.343i −0.330575 0.358662i
\(791\) 41.6255 0.0526239
\(792\) 0 0
\(793\) −983.201 983.201i −1.23985 1.23985i
\(794\) −174.395 + 100.687i −0.219640 + 0.126809i
\(795\) 0 0
\(796\) 741.484 1284.29i 0.931512 1.61343i
\(797\) −113.913 425.130i −0.142928 0.533413i −0.999839 0.0179491i \(-0.994286\pi\)
0.856911 0.515464i \(-0.172380\pi\)
\(798\) 0 0
\(799\) 90.7153 52.3745i 0.113536 0.0655501i
\(800\) −917.991 328.093i −1.14749 0.410116i
\(801\) 0 0
\(802\) 1157.54 1157.54i 1.44332 1.44332i
\(803\) −48.7649 + 181.993i −0.0607283 + 0.226641i
\(804\) 0 0
\(805\) −110.710 211.172i −0.137528 0.262326i
\(806\) −434.656 + 752.846i −0.539276 + 0.934053i
\(807\) 0 0
\(808\) 268.481 1001.99i 0.332279 1.24008i
\(809\) 150.000i 0.185414i −0.995693 0.0927070i \(-0.970448\pi\)
0.995693 0.0927070i \(-0.0295520\pi\)
\(810\) 0 0
\(811\) −132.847 −0.163806 −0.0819032 0.996640i \(-0.526100\pi\)
−0.0819032 + 0.996640i \(0.526100\pi\)
\(812\) 9.96990 + 2.67143i 0.0122782 + 0.00328993i
\(813\) 0 0
\(814\) 490.896 + 283.419i 0.603066 + 0.348180i
\(815\) 398.998 1278.40i 0.489568 1.56859i
\(816\) 0 0
\(817\) 635.988 + 170.412i 0.778443 + 0.208583i
\(818\) −772.232 772.232i −0.944048 0.944048i
\(819\) 0 0
\(820\) 715.176 + 452.702i 0.872166 + 0.552075i
\(821\) 254.947 + 441.581i 0.310532 + 0.537857i 0.978478 0.206353i \(-0.0661595\pi\)
−0.667946 + 0.744210i \(0.732826\pi\)
\(822\) 0 0
\(823\) −410.312 + 109.943i −0.498556 + 0.133588i −0.499330 0.866412i \(-0.666420\pi\)
0.000773801 1.00000i \(0.499754\pi\)
\(824\) −473.825 273.563i −0.575030 0.331994i
\(825\) 0 0
\(826\) 360.959 + 625.200i 0.436997 + 0.756900i
\(827\) 1030.76 1030.76i 1.24638 1.24638i 0.289073 0.957307i \(-0.406653\pi\)
0.957307 0.289073i \(-0.0933469\pi\)
\(828\) 0 0
\(829\) 37.4235i 0.0451429i −0.999745 0.0225714i \(-0.992815\pi\)
0.999745 0.0225714i \(-0.00718533\pi\)
\(830\) 470.064 + 19.1553i 0.566342 + 0.0230786i
\(831\) 0 0
\(832\) −395.845 1477.31i −0.475775 1.77562i
\(833\) −162.261 + 43.4777i −0.194791 + 0.0521941i
\(834\) 0 0
\(835\) −504.528 + 465.019i −0.604226 + 0.556909i
\(836\) 408.817 0.489016
\(837\) 0 0
\(838\) −1297.91 1297.91i −1.54882 1.54882i
\(839\) −997.984 + 576.186i −1.18949 + 0.686754i −0.958191 0.286129i \(-0.907631\pi\)
−0.231301 + 0.972882i \(0.574298\pi\)
\(840\) 0 0
\(841\) −420.136 + 727.696i −0.499567 + 0.865275i
\(842\) 173.572 + 647.778i 0.206142 + 0.769333i
\(843\) 0 0
\(844\) −1352.71 + 780.989i −1.60274 + 0.925342i
\(845\) −208.633 132.064i −0.246903 0.156288i
\(846\) 0 0
\(847\) 159.136 159.136i 0.187882 0.187882i
\(848\) −50.3968 + 188.084i −0.0594302 + 0.221797i
\(849\) 0 0
\(850\) 23.9987 293.971i 0.0282337 0.345848i
\(851\) 625.828 1083.97i 0.735403 1.27375i
\(852\) 0 0
\(853\) 254.230 948.800i 0.298042 1.11231i −0.640728 0.767768i \(-0.721368\pi\)
0.938771 0.344542i \(-0.111966\pi\)
\(854\) 606.838i 0.710583i
\(855\) 0 0
\(856\) −40.0704 −0.0468112
\(857\) 569.873 + 152.697i 0.664963 + 0.178176i 0.575485 0.817813i \(-0.304813\pi\)
0.0894780 + 0.995989i \(0.471480\pi\)
\(858\) 0 0
\(859\) 421.639 + 243.434i 0.490849 + 0.283392i 0.724927 0.688826i \(-0.241874\pi\)
−0.234077 + 0.972218i \(0.575207\pi\)
\(860\) −895.697 279.554i −1.04151 0.325063i
\(861\) 0 0
\(862\) 569.411 + 152.573i 0.660570 + 0.176999i
\(863\) 411.319 + 411.319i 0.476615 + 0.476615i 0.904047 0.427432i \(-0.140582\pi\)
−0.427432 + 0.904047i \(0.640582\pi\)
\(864\) 0 0
\(865\) −238.919 + 53.6959i −0.276207 + 0.0620762i
\(866\) −344.497 596.687i −0.397803 0.689015i
\(867\) 0 0
\(868\) 218.384 58.5159i 0.251595 0.0674146i
\(869\) 71.0318 + 41.0102i 0.0817397 + 0.0471924i
\(870\) 0 0
\(871\) −573.666 993.619i −0.658630 1.14078i
\(872\) −166.045 + 166.045i −0.190419 + 0.190419i
\(873\) 0 0
\(874\) 1514.85i 1.73323i
\(875\) 237.577 + 95.9902i 0.271516 + 0.109703i
\(876\) 0 0
\(877\) 121.718 + 454.259i 0.138789 + 0.517969i 0.999954 + 0.00964182i \(0.00306914\pi\)
−0.861164 + 0.508327i \(0.830264\pi\)
\(878\) −768.665 + 205.963i −0.875472 + 0.234582i
\(879\) 0 0
\(880\) 80.2625 + 3.27072i 0.0912074 + 0.00371673i
\(881\) −533.151 −0.605166 −0.302583 0.953123i \(-0.597849\pi\)
−0.302583 + 0.953123i \(0.597849\pi\)
\(882\) 0 0
\(883\) −745.939 745.939i −0.844778 0.844778i 0.144698 0.989476i \(-0.453779\pi\)
−0.989476 + 0.144698i \(0.953779\pi\)
\(884\) 283.093 163.444i 0.320241 0.184891i
\(885\) 0 0
\(886\) −936.908 + 1622.77i −1.05746 + 1.83157i
\(887\) 141.361 + 527.568i 0.159370 + 0.594778i 0.998691 + 0.0511420i \(0.0162861\pi\)
−0.839321 + 0.543636i \(0.817047\pi\)
\(888\) 0 0
\(889\) −287.766 + 166.142i −0.323696 + 0.186886i
\(890\) 1445.54 324.879i 1.62421 0.365032i
\(891\) 0 0
\(892\) −197.197 + 197.197i −0.221073 + 0.221073i
\(893\) −149.638 + 558.455i −0.167567 + 0.625369i
\(894\) 0 0
\(895\) −813.536 + 426.509i −0.908978 + 0.476546i
\(896\) −173.876 + 301.163i −0.194058 + 0.336119i
\(897\) 0 0
\(898\) 242.591 905.363i 0.270146 1.00820i
\(899\) 15.9592i 0.0177521i
\(900\) 0 0
\(901\) −152.182 −0.168903
\(902\) −292.026 78.2480i −0.323753 0.0867495i
\(903\) 0 0
\(904\) −105.069 60.6617i −0.116227 0.0671037i
\(905\) 50.4431 + 96.2167i 0.0557382 + 0.106317i
\(906\) 0 0
\(907\) 1294.09 + 346.751i 1.42678 + 0.382306i 0.887885 0.460065i \(-0.152174\pi\)
0.538899 + 0.842371i \(0.318841\pi\)
\(908\) −124.890 124.890i −0.137544 0.137544i
\(909\) 0 0
\(910\) 104.495 + 464.949i 0.114830 + 0.510933i
\(911\) −574.681 995.377i −0.630824 1.09262i −0.987383 0.158347i \(-0.949383\pi\)
0.356559 0.934273i \(-0.383950\pi\)
\(912\) 0 0
\(913\) −96.7258 + 25.9176i −0.105943 + 0.0283873i
\(914\) 1101.09 + 635.714i 1.20469 + 0.695530i
\(915\) 0 0
\(916\) −719.080 1245.48i −0.785021 1.35970i
\(917\) −37.8842 + 37.8842i −0.0413132 + 0.0413132i
\(918\) 0 0
\(919\) 412.577i 0.448941i −0.974481 0.224470i \(-0.927935\pi\)
0.974481 0.224470i \(-0.0720652\pi\)
\(920\) −28.2959 + 694.373i −0.0307564 + 0.754753i
\(921\) 0 0
\(922\) −428.833 1600.43i −0.465112 1.73582i
\(923\) 970.650 260.085i 1.05163 0.281782i
\(924\) 0 0
\(925\) 241.269 + 1323.29i 0.260831 + 1.43059i
\(926\) 1493.70 1.61307
\(927\) 0 0
\(928\) 23.5357 + 23.5357i 0.0253618 + 0.0253618i
\(929\) −131.382 + 75.8536i −0.141423 + 0.0816508i −0.569042 0.822308i \(-0.692686\pi\)
0.427619 + 0.903959i \(0.359353\pi\)
\(930\) 0 0
\(931\) 463.590 802.962i 0.497949 0.862473i
\(932\) −349.164 1303.10i −0.374640 1.39817i
\(933\) 0 0
\(934\) 1883.31 1087.33i 2.01639 1.16416i
\(935\) 13.7663 + 61.2531i 0.0147233 + 0.0655113i
\(936\) 0 0
\(937\) 662.090 662.090i 0.706606 0.706606i −0.259214 0.965820i \(-0.583463\pi\)
0.965820 + 0.259214i \(0.0834635\pi\)
\(938\) −129.599 + 483.669i −0.138165 + 0.515639i
\(939\) 0 0
\(940\) 245.473 786.503i 0.261142 0.836705i
\(941\) −766.885 + 1328.28i −0.814969 + 1.41157i 0.0943819 + 0.995536i \(0.469913\pi\)
−0.909350 + 0.416031i \(0.863421\pi\)
\(942\) 0 0
\(943\) −172.782 + 644.832i −0.183226 + 0.683809i
\(944\) 537.056i 0.568915i
\(945\) 0 0
\(946\) 335.151 0.354282
\(947\) 1602.61 + 429.417i 1.69230 + 0.453450i 0.970982 0.239155i \(-0.0768703\pi\)
0.721317 + 0.692605i \(0.243537\pi\)
\(948\) 0 0
\(949\) −720.120 415.762i −0.758820 0.438105i
\(950\) 1053.66 + 1240.98i 1.10911 + 1.30630i
\(951\) 0 0
\(952\) −44.3610 11.8865i −0.0465977 0.0124858i
\(953\) 145.501 + 145.501i 0.152676 + 0.152676i 0.779312 0.626636i \(-0.215569\pi\)
−0.626636 + 0.779312i \(0.715569\pi\)
\(954\) 0 0
\(955\) −107.212 + 169.373i −0.112264 + 0.177354i
\(956\) 962.130 + 1666.46i 1.00641 + 1.74316i
\(957\) 0 0
\(958\) 562.071 150.606i 0.586713 0.157209i
\(959\) 36.7327 + 21.2077i 0.0383032 + 0.0221143i
\(960\) 0 0
\(961\) 305.712 + 529.509i 0.318119 + 0.550998i
\(962\) −1768.92 + 1768.92i −1.83879 + 1.83879i
\(963\) 0 0
\(964\) 787.959i 0.817385i
\(965\) 371.714 + 403.296i 0.385196 + 0.417923i
\(966\) 0 0
\(967\) 421.548 + 1573.24i 0.435934 + 1.62693i 0.738822 + 0.673901i \(0.235382\pi\)
−0.302888 + 0.953026i \(0.597951\pi\)
\(968\) −633.597 + 169.772i −0.654542 + 0.175384i
\(969\) 0 0
\(970\) 13.2216 324.453i 0.0136305 0.334487i
\(971\) −72.4383 −0.0746017 −0.0373009 0.999304i \(-0.511876\pi\)
−0.0373009 + 0.999304i \(0.511876\pi\)
\(972\) 0 0
\(973\) 120.556 + 120.556i 0.123901 + 0.123901i
\(974\) 465.033 268.487i 0.477447 0.275654i
\(975\) 0 0
\(976\) −225.722 + 390.962i −0.231272 + 0.400576i
\(977\) −258.538 964.876i −0.264624 0.987591i −0.962480 0.271352i \(-0.912529\pi\)
0.697856 0.716238i \(-0.254138\pi\)
\(978\) 0 0
\(979\) −273.113 + 157.682i −0.278972 + 0.161065i
\(980\) −706.699 + 1116.44i −0.721122 + 1.13923i
\(981\) 0 0
\(982\) 235.116 235.116i 0.239425 0.239425i
\(983\) 49.2900 183.953i 0.0501424 0.187134i −0.936312 0.351169i \(-0.885784\pi\)
0.986455 + 0.164035i \(0.0524510\pi\)
\(984\) 0 0
\(985\) −454.292 141.788i −0.461210 0.143947i
\(986\) −5.03520 + 8.72123i −0.00510670 + 0.00884506i
\(987\) 0 0
\(988\) −466.970 + 1742.76i −0.472642 + 1.76392i
\(989\) 740.059i 0.748290i
\(990\) 0 0
\(991\) −1131.94 −1.14222 −0.571109 0.820874i \(-0.693487\pi\)
−0.571109 + 0.820874i \(0.693487\pi\)
\(992\) 704.233 + 188.699i 0.709913 + 0.190221i
\(993\) 0 0
\(994\) −379.809 219.283i −0.382101 0.220606i
\(995\) −1113.25 + 583.641i −1.11885 + 0.586574i
\(996\) 0 0
\(997\) 1523.48 + 408.216i 1.52807 + 0.409444i 0.922388 0.386265i \(-0.126235\pi\)
0.605679 + 0.795709i \(0.292902\pi\)
\(998\) 1645.39 + 1645.39i 1.64868 + 1.64868i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.f.28.1 8
3.2 odd 2 405.3.l.h.28.2 8
5.2 odd 4 inner 405.3.l.f.352.2 8
9.2 odd 6 405.3.l.h.298.1 8
9.4 even 3 45.3.g.b.28.2 4
9.5 odd 6 15.3.f.a.13.1 yes 4
9.7 even 3 inner 405.3.l.f.298.2 8
15.2 even 4 405.3.l.h.352.1 8
36.23 even 6 240.3.bg.a.193.1 4
36.31 odd 6 720.3.bh.k.433.1 4
45.2 even 12 405.3.l.h.217.2 8
45.4 even 6 225.3.g.a.118.1 4
45.7 odd 12 inner 405.3.l.f.217.1 8
45.13 odd 12 225.3.g.a.82.1 4
45.14 odd 6 75.3.f.c.43.2 4
45.22 odd 12 45.3.g.b.37.2 4
45.23 even 12 75.3.f.c.7.2 4
45.32 even 12 15.3.f.a.7.1 4
72.5 odd 6 960.3.bg.i.193.1 4
72.59 even 6 960.3.bg.h.193.2 4
180.23 odd 12 1200.3.bg.k.1057.2 4
180.59 even 6 1200.3.bg.k.193.2 4
180.67 even 12 720.3.bh.k.577.1 4
180.167 odd 12 240.3.bg.a.97.1 4
360.77 even 12 960.3.bg.i.577.1 4
360.347 odd 12 960.3.bg.h.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.3.f.a.7.1 4 45.32 even 12
15.3.f.a.13.1 yes 4 9.5 odd 6
45.3.g.b.28.2 4 9.4 even 3
45.3.g.b.37.2 4 45.22 odd 12
75.3.f.c.7.2 4 45.23 even 12
75.3.f.c.43.2 4 45.14 odd 6
225.3.g.a.82.1 4 45.13 odd 12
225.3.g.a.118.1 4 45.4 even 6
240.3.bg.a.97.1 4 180.167 odd 12
240.3.bg.a.193.1 4 36.23 even 6
405.3.l.f.28.1 8 1.1 even 1 trivial
405.3.l.f.217.1 8 45.7 odd 12 inner
405.3.l.f.298.2 8 9.7 even 3 inner
405.3.l.f.352.2 8 5.2 odd 4 inner
405.3.l.h.28.2 8 3.2 odd 2
405.3.l.h.217.2 8 45.2 even 12
405.3.l.h.298.1 8 9.2 odd 6
405.3.l.h.352.1 8 15.2 even 4
720.3.bh.k.433.1 4 36.31 odd 6
720.3.bh.k.577.1 4 180.67 even 12
960.3.bg.h.193.2 4 72.59 even 6
960.3.bg.h.577.2 4 360.347 odd 12
960.3.bg.i.193.1 4 72.5 odd 6
960.3.bg.i.577.1 4 360.77 even 12
1200.3.bg.k.193.2 4 180.59 even 6
1200.3.bg.k.1057.2 4 180.23 odd 12