Properties

Label 405.3.h.k.269.11
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.11
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.k.134.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0484988 + 0.0840023i) q^{2} +(1.99530 + 3.45595i) q^{4} +(-0.121738 + 4.99852i) q^{5} +(-8.81825 - 5.09122i) q^{7} -0.775068 q^{8} +(-0.413983 - 0.252648i) q^{10} +(1.54895 + 0.894287i) q^{11} +(-11.8975 + 6.86902i) q^{13} +(0.855349 - 0.493836i) q^{14} +(-7.94359 + 13.7587i) q^{16} +13.0802 q^{17} -16.5731 q^{19} +(-17.5175 + 9.55280i) q^{20} +(-0.150244 + 0.0867437i) q^{22} +(-20.8350 - 36.0872i) q^{23} +(-24.9704 - 1.21702i) q^{25} -1.33256i q^{26} -40.6340i q^{28} +(38.2663 + 22.0931i) q^{29} +(-3.23261 - 5.59904i) q^{31} +(-2.32064 - 4.01947i) q^{32} +(-0.634376 + 1.09877i) q^{34} +(26.5221 - 43.4584i) q^{35} -20.6967i q^{37} +(0.803775 - 1.39218i) q^{38} +(0.0943554 - 3.87419i) q^{40} +(-49.3054 + 28.4665i) q^{41} +(-29.7314 - 17.1654i) q^{43} +7.13747i q^{44} +4.04188 q^{46} +(-30.0635 + 52.0715i) q^{47} +(27.3411 + 47.3561i) q^{49} +(1.31326 - 2.03854i) q^{50} +(-47.4780 - 27.4114i) q^{52} +25.5290 q^{53} +(-4.65868 + 7.63359i) q^{55} +(6.83474 + 3.94604i) q^{56} +(-3.71174 + 2.14297i) q^{58} +(35.1292 - 20.2819i) q^{59} +(-34.6084 + 59.9435i) q^{61} +0.627110 q^{62} -63.0986 q^{64} +(-32.8865 - 60.3060i) q^{65} +(-52.0413 + 30.0461i) q^{67} +(26.0989 + 45.2047i) q^{68} +(2.36432 + 4.33560i) q^{70} +91.1989i q^{71} +74.8762i q^{73} +(1.73857 + 1.00376i) q^{74} +(-33.0682 - 57.2759i) q^{76} +(-9.10603 - 15.7721i) q^{77} +(30.8261 - 53.3923i) q^{79} +(-67.8061 - 41.3812i) q^{80} -5.52236i q^{82} +(-29.2645 + 50.6877i) q^{83} +(-1.59237 + 65.3818i) q^{85} +(2.88387 - 1.66500i) q^{86} +(-1.20054 - 0.693133i) q^{88} -66.7514i q^{89} +139.887 q^{91} +(83.1439 - 144.009i) q^{92} +(-2.91608 - 5.05081i) q^{94} +(2.01758 - 82.8409i) q^{95} +(136.899 + 79.0389i) q^{97} -5.30403 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0484988 + 0.0840023i −0.0242494 + 0.0420012i −0.877895 0.478852i \(-0.841053\pi\)
0.853646 + 0.520854i \(0.174386\pi\)
\(3\) 0 0
\(4\) 1.99530 + 3.45595i 0.498824 + 0.863988i
\(5\) −0.121738 + 4.99852i −0.0243476 + 0.999704i
\(6\) 0 0
\(7\) −8.81825 5.09122i −1.25975 0.727317i −0.286725 0.958013i \(-0.592566\pi\)
−0.973026 + 0.230696i \(0.925900\pi\)
\(8\) −0.775068 −0.0968835
\(9\) 0 0
\(10\) −0.413983 0.252648i −0.0413983 0.0252648i
\(11\) 1.54895 + 0.894287i 0.140814 + 0.0812988i 0.568752 0.822509i \(-0.307427\pi\)
−0.427938 + 0.903808i \(0.640760\pi\)
\(12\) 0 0
\(13\) −11.8975 + 6.86902i −0.915191 + 0.528386i −0.882098 0.471066i \(-0.843869\pi\)
−0.0330935 + 0.999452i \(0.510536\pi\)
\(14\) 0.855349 0.493836i 0.0610964 0.0352740i
\(15\) 0 0
\(16\) −7.94359 + 13.7587i −0.496475 + 0.859919i
\(17\) 13.0802 0.769426 0.384713 0.923036i \(-0.374300\pi\)
0.384713 + 0.923036i \(0.374300\pi\)
\(18\) 0 0
\(19\) −16.5731 −0.872268 −0.436134 0.899882i \(-0.643653\pi\)
−0.436134 + 0.899882i \(0.643653\pi\)
\(20\) −17.5175 + 9.55280i −0.875877 + 0.477640i
\(21\) 0 0
\(22\) −0.150244 + 0.0867437i −0.00682929 + 0.00394289i
\(23\) −20.8350 36.0872i −0.905869 1.56901i −0.819747 0.572726i \(-0.805886\pi\)
−0.0861214 0.996285i \(-0.527447\pi\)
\(24\) 0 0
\(25\) −24.9704 1.21702i −0.998814 0.0486809i
\(26\) 1.33256i 0.0512521i
\(27\) 0 0
\(28\) 40.6340i 1.45121i
\(29\) 38.2663 + 22.0931i 1.31953 + 0.761830i 0.983653 0.180077i \(-0.0576347\pi\)
0.335875 + 0.941907i \(0.390968\pi\)
\(30\) 0 0
\(31\) −3.23261 5.59904i −0.104278 0.180614i 0.809165 0.587581i \(-0.199920\pi\)
−0.913443 + 0.406967i \(0.866586\pi\)
\(32\) −2.32064 4.01947i −0.0725201 0.125609i
\(33\) 0 0
\(34\) −0.634376 + 1.09877i −0.0186581 + 0.0323168i
\(35\) 26.5221 43.4584i 0.757774 1.24167i
\(36\) 0 0
\(37\) 20.6967i 0.559370i −0.960092 0.279685i \(-0.909770\pi\)
0.960092 0.279685i \(-0.0902300\pi\)
\(38\) 0.803775 1.39218i 0.0211520 0.0366363i
\(39\) 0 0
\(40\) 0.0943554 3.87419i 0.00235888 0.0968547i
\(41\) −49.3054 + 28.4665i −1.20257 + 0.694305i −0.961126 0.276109i \(-0.910955\pi\)
−0.241445 + 0.970414i \(0.577622\pi\)
\(42\) 0 0
\(43\) −29.7314 17.1654i −0.691427 0.399196i 0.112719 0.993627i \(-0.464044\pi\)
−0.804146 + 0.594431i \(0.797377\pi\)
\(44\) 7.13747i 0.162215i
\(45\) 0 0
\(46\) 4.04188 0.0878670
\(47\) −30.0635 + 52.0715i −0.639649 + 1.10790i 0.345861 + 0.938286i \(0.387587\pi\)
−0.985510 + 0.169618i \(0.945747\pi\)
\(48\) 0 0
\(49\) 27.3411 + 47.3561i 0.557981 + 0.966451i
\(50\) 1.31326 2.03854i 0.0262653 0.0407709i
\(51\) 0 0
\(52\) −47.4780 27.4114i −0.913039 0.527143i
\(53\) 25.5290 0.481680 0.240840 0.970565i \(-0.422577\pi\)
0.240840 + 0.970565i \(0.422577\pi\)
\(54\) 0 0
\(55\) −4.65868 + 7.63359i −0.0847032 + 0.138793i
\(56\) 6.83474 + 3.94604i 0.122049 + 0.0704650i
\(57\) 0 0
\(58\) −3.71174 + 2.14297i −0.0639955 + 0.0369478i
\(59\) 35.1292 20.2819i 0.595411 0.343761i −0.171823 0.985128i \(-0.554966\pi\)
0.767234 + 0.641367i \(0.221632\pi\)
\(60\) 0 0
\(61\) −34.6084 + 59.9435i −0.567351 + 0.982681i 0.429476 + 0.903079i \(0.358698\pi\)
−0.996827 + 0.0796026i \(0.974635\pi\)
\(62\) 0.627110 0.0101147
\(63\) 0 0
\(64\) −63.0986 −0.985915
\(65\) −32.8865 60.3060i −0.505947 0.927785i
\(66\) 0 0
\(67\) −52.0413 + 30.0461i −0.776736 + 0.448449i −0.835272 0.549836i \(-0.814690\pi\)
0.0585360 + 0.998285i \(0.481357\pi\)
\(68\) 26.0989 + 45.2047i 0.383808 + 0.664775i
\(69\) 0 0
\(70\) 2.36432 + 4.33560i 0.0337760 + 0.0619371i
\(71\) 91.1989i 1.28449i 0.766499 + 0.642246i \(0.221997\pi\)
−0.766499 + 0.642246i \(0.778003\pi\)
\(72\) 0 0
\(73\) 74.8762i 1.02570i 0.858478 + 0.512850i \(0.171410\pi\)
−0.858478 + 0.512850i \(0.828590\pi\)
\(74\) 1.73857 + 1.00376i 0.0234942 + 0.0135644i
\(75\) 0 0
\(76\) −33.0682 57.2759i −0.435108 0.753630i
\(77\) −9.10603 15.7721i −0.118260 0.204833i
\(78\) 0 0
\(79\) 30.8261 53.3923i 0.390203 0.675852i −0.602273 0.798290i \(-0.705738\pi\)
0.992476 + 0.122438i \(0.0390713\pi\)
\(80\) −67.8061 41.3812i −0.847576 0.517264i
\(81\) 0 0
\(82\) 5.52236i 0.0673459i
\(83\) −29.2645 + 50.6877i −0.352585 + 0.610695i −0.986702 0.162543i \(-0.948031\pi\)
0.634117 + 0.773237i \(0.281364\pi\)
\(84\) 0 0
\(85\) −1.59237 + 65.3818i −0.0187337 + 0.769198i
\(86\) 2.88387 1.66500i 0.0335334 0.0193605i
\(87\) 0 0
\(88\) −1.20054 0.693133i −0.0136425 0.00787651i
\(89\) 66.7514i 0.750016i −0.927022 0.375008i \(-0.877640\pi\)
0.927022 0.375008i \(-0.122360\pi\)
\(90\) 0 0
\(91\) 139.887 1.53722
\(92\) 83.1439 144.009i 0.903738 1.56532i
\(93\) 0 0
\(94\) −2.91608 5.05081i −0.0310222 0.0537320i
\(95\) 2.01758 82.8409i 0.0212377 0.872010i
\(96\) 0 0
\(97\) 136.899 + 79.0389i 1.41133 + 0.814834i 0.995514 0.0946130i \(-0.0301614\pi\)
0.415820 + 0.909447i \(0.363495\pi\)
\(98\) −5.30403 −0.0541228
\(99\) 0 0
\(100\) −45.6173 88.7247i −0.456173 0.887247i
\(101\) 82.9054 + 47.8654i 0.820845 + 0.473915i 0.850708 0.525639i \(-0.176174\pi\)
−0.0298626 + 0.999554i \(0.509507\pi\)
\(102\) 0 0
\(103\) 82.7872 47.7972i 0.803759 0.464051i −0.0410247 0.999158i \(-0.513062\pi\)
0.844784 + 0.535107i \(0.179729\pi\)
\(104\) 9.22136 5.32395i 0.0886669 0.0511919i
\(105\) 0 0
\(106\) −1.23813 + 2.14450i −0.0116804 + 0.0202311i
\(107\) −60.3812 −0.564310 −0.282155 0.959369i \(-0.591049\pi\)
−0.282155 + 0.959369i \(0.591049\pi\)
\(108\) 0 0
\(109\) 80.8515 0.741757 0.370878 0.928681i \(-0.379057\pi\)
0.370878 + 0.928681i \(0.379057\pi\)
\(110\) −0.415299 0.761560i −0.00377545 0.00692327i
\(111\) 0 0
\(112\) 140.097 80.8852i 1.25087 0.722189i
\(113\) 61.8236 + 107.082i 0.547112 + 0.947625i 0.998471 + 0.0552829i \(0.0176061\pi\)
−0.451359 + 0.892342i \(0.649061\pi\)
\(114\) 0 0
\(115\) 182.919 99.7508i 1.59060 0.867398i
\(116\) 176.329i 1.52008i
\(117\) 0 0
\(118\) 3.93458i 0.0333439i
\(119\) −115.345 66.5944i −0.969285 0.559617i
\(120\) 0 0
\(121\) −58.9005 102.019i −0.486781 0.843129i
\(122\) −3.35693 5.81438i −0.0275158 0.0476588i
\(123\) 0 0
\(124\) 12.9000 22.3435i 0.104032 0.180189i
\(125\) 9.12315 124.667i 0.0729852 0.997333i
\(126\) 0 0
\(127\) 151.814i 1.19539i 0.801724 + 0.597694i \(0.203916\pi\)
−0.801724 + 0.597694i \(0.796084\pi\)
\(128\) 12.3428 21.3783i 0.0964280 0.167018i
\(129\) 0 0
\(130\) 6.66080 + 0.162223i 0.0512369 + 0.00124787i
\(131\) −135.726 + 78.3614i −1.03608 + 0.598178i −0.918719 0.394911i \(-0.870775\pi\)
−0.117356 + 0.993090i \(0.537442\pi\)
\(132\) 0 0
\(133\) 146.146 + 84.3773i 1.09884 + 0.634416i
\(134\) 5.82879i 0.0434985i
\(135\) 0 0
\(136\) −10.1381 −0.0745446
\(137\) −37.7777 + 65.4329i −0.275750 + 0.477613i −0.970324 0.241808i \(-0.922259\pi\)
0.694574 + 0.719421i \(0.255593\pi\)
\(138\) 0 0
\(139\) −47.7956 82.7844i −0.343853 0.595571i 0.641291 0.767297i \(-0.278399\pi\)
−0.985145 + 0.171726i \(0.945066\pi\)
\(140\) 203.110 + 4.94671i 1.45078 + 0.0353336i
\(141\) 0 0
\(142\) −7.66092 4.42303i −0.0539501 0.0311481i
\(143\) −24.5715 −0.171829
\(144\) 0 0
\(145\) −115.091 + 188.585i −0.793731 + 1.30059i
\(146\) −6.28977 3.63140i −0.0430806 0.0248726i
\(147\) 0 0
\(148\) 71.5268 41.2960i 0.483289 0.279027i
\(149\) 41.8031 24.1350i 0.280557 0.161980i −0.353118 0.935579i \(-0.614879\pi\)
0.633676 + 0.773599i \(0.281545\pi\)
\(150\) 0 0
\(151\) 11.4151 19.7716i 0.0755968 0.130938i −0.825749 0.564038i \(-0.809247\pi\)
0.901346 + 0.433100i \(0.142580\pi\)
\(152\) 12.8453 0.0845084
\(153\) 0 0
\(154\) 1.76652 0.0114709
\(155\) 28.3804 15.4766i 0.183100 0.0998493i
\(156\) 0 0
\(157\) −101.514 + 58.6091i −0.646585 + 0.373306i −0.787147 0.616766i \(-0.788443\pi\)
0.140561 + 0.990072i \(0.455109\pi\)
\(158\) 2.99005 + 5.17892i 0.0189244 + 0.0327780i
\(159\) 0 0
\(160\) 20.3739 11.1105i 0.127337 0.0694404i
\(161\) 424.302i 2.63542i
\(162\) 0 0
\(163\) 91.1992i 0.559504i 0.960072 + 0.279752i \(0.0902523\pi\)
−0.960072 + 0.279752i \(0.909748\pi\)
\(164\) −196.758 113.598i −1.19974 0.692672i
\(165\) 0 0
\(166\) −2.83859 4.91658i −0.0170999 0.0296179i
\(167\) 82.1001 + 142.201i 0.491617 + 0.851506i 0.999953 0.00965281i \(-0.00307263\pi\)
−0.508336 + 0.861159i \(0.669739\pi\)
\(168\) 0 0
\(169\) 9.86679 17.0898i 0.0583834 0.101123i
\(170\) −5.41500 3.30470i −0.0318529 0.0194394i
\(171\) 0 0
\(172\) 137.000i 0.796513i
\(173\) 112.723 195.241i 0.651576 1.12856i −0.331164 0.943573i \(-0.607441\pi\)
0.982740 0.184990i \(-0.0592252\pi\)
\(174\) 0 0
\(175\) 213.999 + 137.862i 1.22285 + 0.787781i
\(176\) −24.6085 + 14.2077i −0.139821 + 0.0807256i
\(177\) 0 0
\(178\) 5.60728 + 3.23736i 0.0315016 + 0.0181874i
\(179\) 349.517i 1.95261i −0.216395 0.976306i \(-0.569430\pi\)
0.216395 0.976306i \(-0.430570\pi\)
\(180\) 0 0
\(181\) 254.586 1.40655 0.703275 0.710918i \(-0.251720\pi\)
0.703275 + 0.710918i \(0.251720\pi\)
\(182\) −6.78434 + 11.7508i −0.0372766 + 0.0645649i
\(183\) 0 0
\(184\) 16.1485 + 27.9701i 0.0877637 + 0.152011i
\(185\) 103.453 + 2.51958i 0.559204 + 0.0136193i
\(186\) 0 0
\(187\) 20.2607 + 11.6975i 0.108346 + 0.0625534i
\(188\) −239.942 −1.27629
\(189\) 0 0
\(190\) 6.86098 + 4.18716i 0.0361104 + 0.0220377i
\(191\) 232.380 + 134.165i 1.21665 + 0.702433i 0.964200 0.265177i \(-0.0854305\pi\)
0.252450 + 0.967610i \(0.418764\pi\)
\(192\) 0 0
\(193\) −265.924 + 153.531i −1.37784 + 0.795499i −0.991900 0.127023i \(-0.959458\pi\)
−0.385944 + 0.922522i \(0.626124\pi\)
\(194\) −13.2789 + 7.66658i −0.0684480 + 0.0395185i
\(195\) 0 0
\(196\) −109.107 + 188.979i −0.556668 + 0.964178i
\(197\) −62.4666 −0.317089 −0.158545 0.987352i \(-0.550680\pi\)
−0.158545 + 0.987352i \(0.550680\pi\)
\(198\) 0 0
\(199\) 74.6147 0.374948 0.187474 0.982270i \(-0.439970\pi\)
0.187474 + 0.982270i \(0.439970\pi\)
\(200\) 19.3537 + 0.943274i 0.0967686 + 0.00471637i
\(201\) 0 0
\(202\) −8.04162 + 4.64283i −0.0398100 + 0.0229843i
\(203\) −224.961 389.644i −1.10818 1.91943i
\(204\) 0 0
\(205\) −136.288 249.920i −0.664820 1.21912i
\(206\) 9.27243i 0.0450118i
\(207\) 0 0
\(208\) 218.259i 1.04932i
\(209\) −25.6709 14.8211i −0.122827 0.0709144i
\(210\) 0 0
\(211\) −81.7692 141.628i −0.387532 0.671225i 0.604585 0.796541i \(-0.293339\pi\)
−0.992117 + 0.125316i \(0.960006\pi\)
\(212\) 50.9380 + 88.2271i 0.240273 + 0.416166i
\(213\) 0 0
\(214\) 2.92841 5.07216i 0.0136842 0.0237017i
\(215\) 89.4211 146.523i 0.415912 0.681503i
\(216\) 0 0
\(217\) 65.8317i 0.303372i
\(218\) −3.92120 + 6.79171i −0.0179871 + 0.0311546i
\(219\) 0 0
\(220\) −35.6768 0.868903i −0.162167 0.00394956i
\(221\) −155.622 + 89.8484i −0.704172 + 0.406554i
\(222\) 0 0
\(223\) 15.5644 + 8.98609i 0.0697954 + 0.0402964i 0.534492 0.845174i \(-0.320503\pi\)
−0.464696 + 0.885470i \(0.653836\pi\)
\(224\) 47.2597i 0.210981i
\(225\) 0 0
\(226\) −11.9935 −0.0530685
\(227\) −16.0367 + 27.7764i −0.0706464 + 0.122363i −0.899185 0.437569i \(-0.855840\pi\)
0.828538 + 0.559932i \(0.189173\pi\)
\(228\) 0 0
\(229\) 80.3274 + 139.131i 0.350775 + 0.607559i 0.986385 0.164450i \(-0.0525850\pi\)
−0.635611 + 0.772010i \(0.719252\pi\)
\(230\) −0.492052 + 20.2034i −0.00213936 + 0.0878410i
\(231\) 0 0
\(232\) −29.6590 17.1236i −0.127840 0.0738087i
\(233\) 345.174 1.48143 0.740717 0.671817i \(-0.234486\pi\)
0.740717 + 0.671817i \(0.234486\pi\)
\(234\) 0 0
\(235\) −256.620 156.612i −1.09200 0.666434i
\(236\) 140.186 + 80.9367i 0.594010 + 0.342952i
\(237\) 0 0
\(238\) 11.1882 6.45949i 0.0470091 0.0271407i
\(239\) 93.8860 54.2051i 0.392828 0.226800i −0.290557 0.956858i \(-0.593840\pi\)
0.683385 + 0.730058i \(0.260507\pi\)
\(240\) 0 0
\(241\) −109.271 + 189.263i −0.453406 + 0.785323i −0.998595 0.0529906i \(-0.983125\pi\)
0.545189 + 0.838313i \(0.316458\pi\)
\(242\) 11.4264 0.0472166
\(243\) 0 0
\(244\) −276.216 −1.13203
\(245\) −240.039 + 130.900i −0.979750 + 0.534285i
\(246\) 0 0
\(247\) 197.178 113.841i 0.798292 0.460894i
\(248\) 2.50549 + 4.33964i 0.0101028 + 0.0174985i
\(249\) 0 0
\(250\) 10.0298 + 6.81254i 0.0401193 + 0.0272502i
\(251\) 178.976i 0.713053i 0.934285 + 0.356527i \(0.116039\pi\)
−0.934285 + 0.356527i \(0.883961\pi\)
\(252\) 0 0
\(253\) 74.5298i 0.294584i
\(254\) −12.7528 7.36281i −0.0502077 0.0289874i
\(255\) 0 0
\(256\) −125.000 216.506i −0.488281 0.845727i
\(257\) −213.437 369.683i −0.830493 1.43846i −0.897647 0.440714i \(-0.854725\pi\)
0.0671541 0.997743i \(-0.478608\pi\)
\(258\) 0 0
\(259\) −105.371 + 182.509i −0.406840 + 0.704667i
\(260\) 142.796 233.983i 0.549217 0.899933i
\(261\) 0 0
\(262\) 15.2017i 0.0580218i
\(263\) −194.336 + 336.599i −0.738919 + 1.27984i 0.214064 + 0.976820i \(0.431330\pi\)
−0.952983 + 0.303025i \(0.902003\pi\)
\(264\) 0 0
\(265\) −3.10786 + 127.607i −0.0117278 + 0.481537i
\(266\) −14.1758 + 8.18439i −0.0532924 + 0.0307684i
\(267\) 0 0
\(268\) −207.676 119.902i −0.774909 0.447394i
\(269\) 57.7020i 0.214506i −0.994232 0.107253i \(-0.965795\pi\)
0.994232 0.107253i \(-0.0342054\pi\)
\(270\) 0 0
\(271\) −102.825 −0.379428 −0.189714 0.981839i \(-0.560756\pi\)
−0.189714 + 0.981839i \(0.560756\pi\)
\(272\) −103.904 + 179.967i −0.382000 + 0.661644i
\(273\) 0 0
\(274\) −3.66435 6.34683i −0.0133735 0.0231636i
\(275\) −37.5895 24.2158i −0.136689 0.0880574i
\(276\) 0 0
\(277\) −438.281 253.042i −1.58224 0.913508i −0.994531 0.104438i \(-0.966696\pi\)
−0.587712 0.809070i \(-0.699971\pi\)
\(278\) 9.27211 0.0333529
\(279\) 0 0
\(280\) −20.5564 + 33.6832i −0.0734157 + 0.120297i
\(281\) −75.2955 43.4719i −0.267956 0.154704i 0.360003 0.932951i \(-0.382776\pi\)
−0.627958 + 0.778247i \(0.716109\pi\)
\(282\) 0 0
\(283\) 79.8056 46.0758i 0.281998 0.162812i −0.352329 0.935876i \(-0.614610\pi\)
0.634328 + 0.773064i \(0.281277\pi\)
\(284\) −315.179 + 181.969i −1.10979 + 0.640735i
\(285\) 0 0
\(286\) 1.19169 2.06406i 0.00416674 0.00721701i
\(287\) 579.717 2.01992
\(288\) 0 0
\(289\) −117.907 −0.407984
\(290\) −10.2598 18.8141i −0.0353787 0.0648761i
\(291\) 0 0
\(292\) −258.769 + 149.400i −0.886194 + 0.511644i
\(293\) 197.351 + 341.822i 0.673554 + 1.16663i 0.976889 + 0.213745i \(0.0685662\pi\)
−0.303336 + 0.952884i \(0.598100\pi\)
\(294\) 0 0
\(295\) 97.1028 + 178.063i 0.329162 + 0.603604i
\(296\) 16.0413i 0.0541937i
\(297\) 0 0
\(298\) 4.68207i 0.0157117i
\(299\) 495.768 + 286.232i 1.65809 + 0.957296i
\(300\) 0 0
\(301\) 174.786 + 302.738i 0.580684 + 1.00577i
\(302\) 1.10724 + 1.91779i 0.00366635 + 0.00635031i
\(303\) 0 0
\(304\) 131.650 228.024i 0.433059 0.750080i
\(305\) −295.416 180.288i −0.968576 0.591109i
\(306\) 0 0
\(307\) 296.956i 0.967283i −0.875266 0.483642i \(-0.839314\pi\)
0.875266 0.483642i \(-0.160686\pi\)
\(308\) 36.3384 62.9400i 0.117982 0.204351i
\(309\) 0 0
\(310\) −0.0763433 + 3.13462i −0.000246269 + 0.0101117i
\(311\) −467.099 + 269.679i −1.50192 + 0.867137i −0.501927 + 0.864910i \(0.667375\pi\)
−0.999998 + 0.00222672i \(0.999291\pi\)
\(312\) 0 0
\(313\) −380.914 219.921i −1.21698 0.702623i −0.252708 0.967542i \(-0.581321\pi\)
−0.964271 + 0.264919i \(0.914655\pi\)
\(314\) 11.3699i 0.0362098i
\(315\) 0 0
\(316\) 246.029 0.778571
\(317\) 122.438 212.069i 0.386240 0.668987i −0.605701 0.795693i \(-0.707107\pi\)
0.991940 + 0.126706i \(0.0404404\pi\)
\(318\) 0 0
\(319\) 39.5151 + 68.4421i 0.123872 + 0.214552i
\(320\) 7.68151 315.399i 0.0240047 0.985623i
\(321\) 0 0
\(322\) −35.6423 20.5781i −0.110691 0.0639072i
\(323\) −216.780 −0.671146
\(324\) 0 0
\(325\) 305.444 157.042i 0.939828 0.483207i
\(326\) −7.66095 4.42305i −0.0234998 0.0135676i
\(327\) 0 0
\(328\) 38.2151 22.0635i 0.116509 0.0672667i
\(329\) 530.215 306.120i 1.61160 0.930455i
\(330\) 0 0
\(331\) −180.657 + 312.906i −0.545790 + 0.945336i 0.452767 + 0.891629i \(0.350437\pi\)
−0.998557 + 0.0537071i \(0.982896\pi\)
\(332\) −233.566 −0.703511
\(333\) 0 0
\(334\) −15.9270 −0.0476857
\(335\) −143.850 263.787i −0.429404 0.787425i
\(336\) 0 0
\(337\) −218.562 + 126.187i −0.648552 + 0.374442i −0.787901 0.615801i \(-0.788832\pi\)
0.139349 + 0.990243i \(0.455499\pi\)
\(338\) 0.957055 + 1.65767i 0.00283152 + 0.00490434i
\(339\) 0 0
\(340\) −229.134 + 124.953i −0.673923 + 0.367509i
\(341\) 11.5635i 0.0339106i
\(342\) 0 0
\(343\) 57.8579i 0.168682i
\(344\) 23.0438 + 13.3044i 0.0669879 + 0.0386755i
\(345\) 0 0
\(346\) 10.9338 + 18.9379i 0.0316006 + 0.0547339i
\(347\) −53.9964 93.5244i −0.155609 0.269523i 0.777672 0.628671i \(-0.216401\pi\)
−0.933281 + 0.359148i \(0.883067\pi\)
\(348\) 0 0
\(349\) 0.857841 1.48582i 0.00245800 0.00425738i −0.864794 0.502127i \(-0.832551\pi\)
0.867252 + 0.497870i \(0.165884\pi\)
\(350\) −21.9594 + 11.2903i −0.0627411 + 0.0322580i
\(351\) 0 0
\(352\) 8.30129i 0.0235832i
\(353\) −74.5906 + 129.195i −0.211305 + 0.365991i −0.952123 0.305715i \(-0.901105\pi\)
0.740818 + 0.671705i \(0.234438\pi\)
\(354\) 0 0
\(355\) −455.859 11.1024i −1.28411 0.0312743i
\(356\) 230.690 133.189i 0.648005 0.374126i
\(357\) 0 0
\(358\) 29.3603 + 16.9512i 0.0820120 + 0.0473496i
\(359\) 108.011i 0.300865i 0.988620 + 0.150433i \(0.0480666\pi\)
−0.988620 + 0.150433i \(0.951933\pi\)
\(360\) 0 0
\(361\) −86.3325 −0.239148
\(362\) −12.3471 + 21.3858i −0.0341080 + 0.0590768i
\(363\) 0 0
\(364\) 279.115 + 483.442i 0.766801 + 1.32814i
\(365\) −374.270 9.11529i −1.02540 0.0249734i
\(366\) 0 0
\(367\) 415.166 + 239.696i 1.13124 + 0.653123i 0.944247 0.329237i \(-0.106792\pi\)
0.186996 + 0.982361i \(0.440125\pi\)
\(368\) 662.018 1.79896
\(369\) 0 0
\(370\) −5.22898 + 8.56808i −0.0141324 + 0.0231570i
\(371\) −225.121 129.974i −0.606796 0.350334i
\(372\) 0 0
\(373\) −91.0064 + 52.5426i −0.243985 + 0.140865i −0.617007 0.786958i \(-0.711655\pi\)
0.373022 + 0.927823i \(0.378322\pi\)
\(374\) −1.96523 + 1.13463i −0.00525464 + 0.00303376i
\(375\) 0 0
\(376\) 23.3012 40.3589i 0.0619714 0.107338i
\(377\) −607.030 −1.61016
\(378\) 0 0
\(379\) −175.029 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(380\) 290.320 158.319i 0.764000 0.416630i
\(381\) 0 0
\(382\) −22.5403 + 13.0136i −0.0590060 + 0.0340671i
\(383\) 155.870 + 269.975i 0.406972 + 0.704896i 0.994549 0.104272i \(-0.0332513\pi\)
−0.587577 + 0.809168i \(0.699918\pi\)
\(384\) 0 0
\(385\) 79.9457 43.5966i 0.207651 0.113238i
\(386\) 29.7843i 0.0771614i
\(387\) 0 0
\(388\) 630.824i 1.62583i
\(389\) 10.1966 + 5.88701i 0.0262123 + 0.0151337i 0.513049 0.858359i \(-0.328516\pi\)
−0.486837 + 0.873493i \(0.661849\pi\)
\(390\) 0 0
\(391\) −272.526 472.030i −0.696999 1.20724i
\(392\) −21.1912 36.7042i −0.0540591 0.0936332i
\(393\) 0 0
\(394\) 3.02955 5.24734i 0.00768922 0.0133181i
\(395\) 263.130 + 160.585i 0.666151 + 0.406543i
\(396\) 0 0
\(397\) 261.770i 0.659369i 0.944091 + 0.329685i \(0.106942\pi\)
−0.944091 + 0.329685i \(0.893058\pi\)
\(398\) −3.61872 + 6.26781i −0.00909227 + 0.0157483i
\(399\) 0 0
\(400\) 215.099 333.892i 0.537748 0.834731i
\(401\) 286.137 165.201i 0.713559 0.411973i −0.0988186 0.995105i \(-0.531506\pi\)
0.812377 + 0.583132i \(0.198173\pi\)
\(402\) 0 0
\(403\) 76.9198 + 44.4097i 0.190868 + 0.110198i
\(404\) 382.023i 0.945601i
\(405\) 0 0
\(406\) 43.6414 0.107491
\(407\) 18.5088 32.0582i 0.0454761 0.0787670i
\(408\) 0 0
\(409\) −255.501 442.540i −0.624696 1.08201i −0.988599 0.150569i \(-0.951889\pi\)
0.363903 0.931437i \(-0.381444\pi\)
\(410\) 27.6036 + 0.672283i 0.0673259 + 0.00163971i
\(411\) 0 0
\(412\) 330.370 + 190.739i 0.801869 + 0.462959i
\(413\) −413.038 −1.00009
\(414\) 0 0
\(415\) −249.801 152.450i −0.601929 0.367349i
\(416\) 55.2197 + 31.8811i 0.132740 + 0.0766372i
\(417\) 0 0
\(418\) 2.49002 1.43761i 0.00595698 0.00343926i
\(419\) 52.9387 30.5642i 0.126345 0.0729455i −0.435495 0.900191i \(-0.643427\pi\)
0.561841 + 0.827245i \(0.310093\pi\)
\(420\) 0 0
\(421\) 309.246 535.629i 0.734551 1.27228i −0.220370 0.975416i \(-0.570726\pi\)
0.954920 0.296862i \(-0.0959403\pi\)
\(422\) 15.8628 0.0375896
\(423\) 0 0
\(424\) −19.7867 −0.0466668
\(425\) −326.618 15.9189i −0.768514 0.0374563i
\(426\) 0 0
\(427\) 610.372 352.398i 1.42944 0.825289i
\(428\) −120.478 208.674i −0.281491 0.487557i
\(429\) 0 0
\(430\) 7.97147 + 14.6178i 0.0185383 + 0.0339948i
\(431\) 344.839i 0.800089i −0.916496 0.400045i \(-0.868995\pi\)
0.916496 0.400045i \(-0.131005\pi\)
\(432\) 0 0
\(433\) 164.525i 0.379966i −0.981787 0.189983i \(-0.939157\pi\)
0.981787 0.189983i \(-0.0608433\pi\)
\(434\) −5.53002 3.19276i −0.0127420 0.00735658i
\(435\) 0 0
\(436\) 161.323 + 279.419i 0.370006 + 0.640869i
\(437\) 345.300 + 598.077i 0.790160 + 1.36860i
\(438\) 0 0
\(439\) 163.542 283.263i 0.372533 0.645246i −0.617422 0.786632i \(-0.711823\pi\)
0.989954 + 0.141387i \(0.0451561\pi\)
\(440\) 3.61079 5.91655i 0.00820634 0.0134467i
\(441\) 0 0
\(442\) 17.4301i 0.0394347i
\(443\) 178.631 309.398i 0.403230 0.698415i −0.590884 0.806757i \(-0.701221\pi\)
0.994114 + 0.108342i \(0.0345541\pi\)
\(444\) 0 0
\(445\) 333.658 + 8.12620i 0.749794 + 0.0182611i
\(446\) −1.50971 + 0.871629i −0.00338499 + 0.00195432i
\(447\) 0 0
\(448\) 556.419 + 321.249i 1.24201 + 0.717073i
\(449\) 154.756i 0.344668i 0.985039 + 0.172334i \(0.0551309\pi\)
−0.985039 + 0.172334i \(0.944869\pi\)
\(450\) 0 0
\(451\) −101.829 −0.225785
\(452\) −246.713 + 427.319i −0.545825 + 0.945396i
\(453\) 0 0
\(454\) −1.55552 2.69425i −0.00342626 0.00593446i
\(455\) −17.0296 + 699.226i −0.0374276 + 1.53676i
\(456\) 0 0
\(457\) −134.021 77.3772i −0.293263 0.169316i 0.346149 0.938179i \(-0.387489\pi\)
−0.639413 + 0.768864i \(0.720822\pi\)
\(458\) −15.5831 −0.0340243
\(459\) 0 0
\(460\) 709.712 + 433.128i 1.54285 + 0.941582i
\(461\) −226.337 130.676i −0.490970 0.283462i 0.234007 0.972235i \(-0.424816\pi\)
−0.724977 + 0.688773i \(0.758149\pi\)
\(462\) 0 0
\(463\) 689.113 397.860i 1.48837 0.859308i 0.488454 0.872590i \(-0.337561\pi\)
0.999912 + 0.0132816i \(0.00422778\pi\)
\(464\) −607.944 + 350.997i −1.31022 + 0.756458i
\(465\) 0 0
\(466\) −16.7405 + 28.9954i −0.0359239 + 0.0622220i
\(467\) 427.874 0.916218 0.458109 0.888896i \(-0.348527\pi\)
0.458109 + 0.888896i \(0.348527\pi\)
\(468\) 0 0
\(469\) 611.885 1.30466
\(470\) 25.6015 13.9612i 0.0544714 0.0297047i
\(471\) 0 0
\(472\) −27.2275 + 15.7198i −0.0576855 + 0.0333047i
\(473\) −30.7016 53.1768i −0.0649083 0.112424i
\(474\) 0 0
\(475\) 413.836 + 20.1698i 0.871234 + 0.0424628i
\(476\) 531.502i 1.11660i
\(477\) 0 0
\(478\) 10.5155i 0.0219990i
\(479\) 188.554 + 108.862i 0.393641 + 0.227269i 0.683736 0.729729i \(-0.260354\pi\)
−0.290096 + 0.956998i \(0.593687\pi\)
\(480\) 0 0
\(481\) 142.166 + 246.239i 0.295563 + 0.511931i
\(482\) −10.5990 18.3580i −0.0219896 0.0380872i
\(483\) 0 0
\(484\) 235.048 407.115i 0.485636 0.841146i
\(485\) −411.743 + 674.672i −0.848955 + 1.39108i
\(486\) 0 0
\(487\) 106.417i 0.218515i −0.994013 0.109257i \(-0.965153\pi\)
0.994013 0.109257i \(-0.0348473\pi\)
\(488\) 26.8239 46.4603i 0.0549670 0.0952056i
\(489\) 0 0
\(490\) 0.645704 26.5123i 0.00131776 0.0541067i
\(491\) 526.599 304.032i 1.07250 0.619210i 0.143639 0.989630i \(-0.454120\pi\)
0.928864 + 0.370420i \(0.120786\pi\)
\(492\) 0 0
\(493\) 500.532 + 288.983i 1.01528 + 0.586171i
\(494\) 22.0846i 0.0447056i
\(495\) 0 0
\(496\) 102.714 0.207085
\(497\) 464.314 804.215i 0.934233 1.61814i
\(498\) 0 0
\(499\) −284.944 493.538i −0.571030 0.989054i −0.996460 0.0840624i \(-0.973211\pi\)
0.425430 0.904991i \(-0.360123\pi\)
\(500\) 449.045 217.218i 0.898091 0.434435i
\(501\) 0 0
\(502\) −15.0344 8.68014i −0.0299491 0.0172911i
\(503\) −811.764 −1.61385 −0.806923 0.590657i \(-0.798869\pi\)
−0.806923 + 0.590657i \(0.798869\pi\)
\(504\) 0 0
\(505\) −249.349 + 408.577i −0.493760 + 0.809063i
\(506\) 6.26068 + 3.61460i 0.0123729 + 0.00714349i
\(507\) 0 0
\(508\) −524.663 + 302.914i −1.03280 + 0.596288i
\(509\) 293.109 169.227i 0.575853 0.332469i −0.183631 0.982995i \(-0.558785\pi\)
0.759484 + 0.650527i \(0.225452\pi\)
\(510\) 0 0
\(511\) 381.211 660.277i 0.746010 1.29213i
\(512\) 122.992 0.240218
\(513\) 0 0
\(514\) 41.4057 0.0805558
\(515\) 228.837 + 419.632i 0.444343 + 0.814820i
\(516\) 0 0
\(517\) −93.1337 + 53.7708i −0.180143 + 0.104005i
\(518\) −10.2208 17.7029i −0.0197312 0.0341755i
\(519\) 0 0
\(520\) 25.4893 + 46.7413i 0.0490179 + 0.0898870i
\(521\) 90.5848i 0.173867i −0.996214 0.0869336i \(-0.972293\pi\)
0.996214 0.0869336i \(-0.0277068\pi\)
\(522\) 0 0
\(523\) 350.782i 0.670712i −0.942091 0.335356i \(-0.891143\pi\)
0.942091 0.335356i \(-0.108857\pi\)
\(524\) −541.627 312.708i −1.03364 0.596771i
\(525\) 0 0
\(526\) −18.8501 32.6493i −0.0358367 0.0620709i
\(527\) −42.2833 73.2368i −0.0802340 0.138969i
\(528\) 0 0
\(529\) −603.692 + 1045.63i −1.14120 + 1.97661i
\(530\) −10.5686 6.44986i −0.0199407 0.0121696i
\(531\) 0 0
\(532\) 673.431i 1.26585i
\(533\) 391.074 677.360i 0.733722 1.27084i
\(534\) 0 0
\(535\) 7.35069 301.816i 0.0137396 0.564143i
\(536\) 40.3356 23.2877i 0.0752529 0.0434473i
\(537\) 0 0
\(538\) 4.84711 + 2.79848i 0.00900949 + 0.00520163i
\(539\) 97.8031i 0.181453i
\(540\) 0 0
\(541\) −845.632 −1.56309 −0.781545 0.623848i \(-0.785568\pi\)
−0.781545 + 0.623848i \(0.785568\pi\)
\(542\) 4.98689 8.63754i 0.00920090 0.0159364i
\(543\) 0 0
\(544\) −30.3546 52.5757i −0.0557989 0.0966465i
\(545\) −9.84272 + 404.138i −0.0180600 + 0.741537i
\(546\) 0 0
\(547\) 85.5754 + 49.4070i 0.156445 + 0.0903235i 0.576179 0.817324i \(-0.304543\pi\)
−0.419734 + 0.907647i \(0.637877\pi\)
\(548\) −301.511 −0.550202
\(549\) 0 0
\(550\) 3.85723 1.98317i 0.00701314 0.00360576i
\(551\) −634.191 366.150i −1.15098 0.664520i
\(552\) 0 0
\(553\) −543.664 + 313.885i −0.983118 + 0.567603i
\(554\) 42.5122 24.5444i 0.0767368 0.0443040i
\(555\) 0 0
\(556\) 190.733 330.359i 0.343044 0.594170i
\(557\) −569.696 −1.02279 −0.511397 0.859345i \(-0.670872\pi\)
−0.511397 + 0.859345i \(0.670872\pi\)
\(558\) 0 0
\(559\) 471.638 0.843717
\(560\) 387.251 + 710.125i 0.691519 + 1.26808i
\(561\) 0 0
\(562\) 7.30348 4.21667i 0.0129955 0.00750297i
\(563\) −315.194 545.931i −0.559847 0.969683i −0.997509 0.0705431i \(-0.977527\pi\)
0.437662 0.899139i \(-0.355807\pi\)
\(564\) 0 0
\(565\) −542.776 + 295.991i −0.960665 + 0.523877i
\(566\) 8.93847i 0.0157924i
\(567\) 0 0
\(568\) 70.6853i 0.124446i
\(569\) −502.877 290.336i −0.883790 0.510257i −0.0118840 0.999929i \(-0.503783\pi\)
−0.871906 + 0.489673i \(0.837116\pi\)
\(570\) 0 0
\(571\) 416.566 + 721.514i 0.729538 + 1.26360i 0.957079 + 0.289828i \(0.0935982\pi\)
−0.227541 + 0.973769i \(0.573068\pi\)
\(572\) −49.0274 84.9180i −0.0857123 0.148458i
\(573\) 0 0
\(574\) −28.1156 + 48.6976i −0.0489818 + 0.0848390i
\(575\) 476.338 + 926.468i 0.828414 + 1.61125i
\(576\) 0 0
\(577\) 454.896i 0.788382i 0.919029 + 0.394191i \(0.128975\pi\)
−0.919029 + 0.394191i \(0.871025\pi\)
\(578\) 5.71836 9.90449i 0.00989336 0.0171358i
\(579\) 0 0
\(580\) −881.382 21.4660i −1.51962 0.0370103i
\(581\) 516.124 297.984i 0.888338 0.512882i
\(582\) 0 0
\(583\) 39.5432 + 22.8303i 0.0678271 + 0.0391600i
\(584\) 58.0341i 0.0993734i
\(585\) 0 0
\(586\) −38.2852 −0.0653330
\(587\) −41.2876 + 71.5121i −0.0703365 + 0.121826i −0.899049 0.437848i \(-0.855741\pi\)
0.828712 + 0.559675i \(0.189074\pi\)
\(588\) 0 0
\(589\) 53.5743 + 92.7935i 0.0909581 + 0.157544i
\(590\) −19.6671 0.478989i −0.0333341 0.000811846i
\(591\) 0 0
\(592\) 284.760 + 164.406i 0.481013 + 0.277713i
\(593\) 588.773 0.992872 0.496436 0.868073i \(-0.334642\pi\)
0.496436 + 0.868073i \(0.334642\pi\)
\(594\) 0 0
\(595\) 346.915 568.446i 0.583051 0.955372i
\(596\) 166.819 + 96.3129i 0.279898 + 0.161599i
\(597\) 0 0
\(598\) −48.0882 + 27.7638i −0.0804151 + 0.0464277i
\(599\) 260.869 150.613i 0.435508 0.251441i −0.266182 0.963923i \(-0.585762\pi\)
0.701690 + 0.712482i \(0.252429\pi\)
\(600\) 0 0
\(601\) −3.33029 + 5.76822i −0.00554124 + 0.00959771i −0.868783 0.495193i \(-0.835097\pi\)
0.863241 + 0.504791i \(0.168431\pi\)
\(602\) −33.9076 −0.0563249
\(603\) 0 0
\(604\) 91.1062 0.150838
\(605\) 517.113 281.996i 0.854731 0.466108i
\(606\) 0 0
\(607\) 350.322 202.258i 0.577137 0.333210i −0.182858 0.983139i \(-0.558535\pi\)
0.759995 + 0.649929i \(0.225202\pi\)
\(608\) 38.4603 + 66.6151i 0.0632570 + 0.109564i
\(609\) 0 0
\(610\) 29.4719 16.0719i 0.0483146 0.0263473i
\(611\) 826.026i 1.35193i
\(612\) 0 0
\(613\) 27.7082i 0.0452010i 0.999745 + 0.0226005i \(0.00719458\pi\)
−0.999745 + 0.0226005i \(0.992805\pi\)
\(614\) 24.9450 + 14.4020i 0.0406270 + 0.0234560i
\(615\) 0 0
\(616\) 7.05779 + 12.2245i 0.0114575 + 0.0198449i
\(617\) 229.443 + 397.407i 0.371869 + 0.644095i 0.989853 0.142095i \(-0.0453839\pi\)
−0.617984 + 0.786190i \(0.712051\pi\)
\(618\) 0 0
\(619\) −30.4780 + 52.7895i −0.0492375 + 0.0852819i −0.889594 0.456753i \(-0.849012\pi\)
0.840356 + 0.542035i \(0.182346\pi\)
\(620\) 110.114 + 67.2010i 0.177603 + 0.108389i
\(621\) 0 0
\(622\) 52.3165i 0.0841101i
\(623\) −339.846 + 588.631i −0.545500 + 0.944833i
\(624\) 0 0
\(625\) 622.038 + 60.7789i 0.995260 + 0.0972463i
\(626\) 36.9478 21.3318i 0.0590220 0.0340764i
\(627\) 0 0
\(628\) −405.100 233.885i −0.645064 0.372428i
\(629\) 270.718i 0.430394i
\(630\) 0 0
\(631\) −590.614 −0.935997 −0.467999 0.883729i \(-0.655025\pi\)
−0.467999 + 0.883729i \(0.655025\pi\)
\(632\) −23.8923 + 41.3827i −0.0378043 + 0.0654789i
\(633\) 0 0
\(634\) 11.8762 + 20.5702i 0.0187322 + 0.0324450i
\(635\) −758.846 18.4816i −1.19503 0.0291049i
\(636\) 0 0
\(637\) −650.580 375.612i −1.02132 0.589659i
\(638\) −7.66573 −0.0120153
\(639\) 0 0
\(640\) 105.357 + 64.2982i 0.164621 + 0.100466i
\(641\) 241.560 + 139.465i 0.376848 + 0.217573i 0.676446 0.736492i \(-0.263519\pi\)
−0.299598 + 0.954066i \(0.596852\pi\)
\(642\) 0 0
\(643\) 640.916 370.033i 0.996759 0.575479i 0.0894713 0.995989i \(-0.471482\pi\)
0.907288 + 0.420510i \(0.138149\pi\)
\(644\) −1466.37 + 846.608i −2.27697 + 1.31461i
\(645\) 0 0
\(646\) 10.5136 18.2100i 0.0162749 0.0281889i
\(647\) 71.8283 0.111017 0.0555087 0.998458i \(-0.482322\pi\)
0.0555087 + 0.998458i \(0.482322\pi\)
\(648\) 0 0
\(649\) 72.5513 0.111789
\(650\) −1.62175 + 33.2744i −0.00249500 + 0.0511914i
\(651\) 0 0
\(652\) −315.180 + 181.969i −0.483405 + 0.279094i
\(653\) 244.236 + 423.029i 0.374021 + 0.647824i 0.990180 0.139798i \(-0.0446454\pi\)
−0.616159 + 0.787622i \(0.711312\pi\)
\(654\) 0 0
\(655\) −375.168 687.968i −0.572775 1.05033i
\(656\) 904.505i 1.37882i
\(657\) 0 0
\(658\) 59.3857i 0.0902518i
\(659\) 378.708 + 218.647i 0.574671 + 0.331786i 0.759013 0.651076i \(-0.225682\pi\)
−0.184342 + 0.982862i \(0.559015\pi\)
\(660\) 0 0
\(661\) 476.242 + 824.876i 0.720487 + 1.24792i 0.960805 + 0.277226i \(0.0894152\pi\)
−0.240317 + 0.970694i \(0.577251\pi\)
\(662\) −17.5232 30.3511i −0.0264701 0.0458476i
\(663\) 0 0
\(664\) 22.6820 39.2864i 0.0341596 0.0591662i
\(665\) −439.553 + 720.240i −0.660982 + 1.08307i
\(666\) 0 0
\(667\) 1841.23i 2.76047i
\(668\) −327.628 + 567.468i −0.490461 + 0.849503i
\(669\) 0 0
\(670\) 29.1353 + 0.709587i 0.0434856 + 0.00105908i
\(671\) −107.214 + 61.8997i −0.159782 + 0.0922500i
\(672\) 0 0
\(673\) −741.142 427.899i −1.10125 0.635808i −0.164702 0.986343i \(-0.552666\pi\)
−0.936549 + 0.350535i \(0.886000\pi\)
\(674\) 24.4796i 0.0363199i
\(675\) 0 0
\(676\) 78.7487 0.116492
\(677\) −519.485 + 899.774i −0.767333 + 1.32906i 0.171671 + 0.985154i \(0.445083\pi\)
−0.939004 + 0.343906i \(0.888250\pi\)
\(678\) 0 0
\(679\) −804.809 1393.97i −1.18529 2.05298i
\(680\) 1.23419 50.6753i 0.00181499 0.0745225i
\(681\) 0 0
\(682\) 0.971363 + 0.560817i 0.00142429 + 0.000822312i
\(683\) 1308.84 1.91632 0.958158 0.286238i \(-0.0924049\pi\)
0.958158 + 0.286238i \(0.0924049\pi\)
\(684\) 0 0
\(685\) −322.469 196.798i −0.470757 0.287297i
\(686\) 4.86020 + 2.80604i 0.00708484 + 0.00409044i
\(687\) 0 0
\(688\) 472.348 272.710i 0.686552 0.396381i
\(689\) −303.731 + 175.359i −0.440829 + 0.254513i
\(690\) 0 0
\(691\) 159.467 276.204i 0.230776 0.399717i −0.727260 0.686362i \(-0.759207\pi\)
0.958037 + 0.286645i \(0.0925401\pi\)
\(692\) 899.660 1.30009
\(693\) 0 0
\(694\) 10.4750 0.0150937
\(695\) 419.618 228.829i 0.603767 0.329251i
\(696\) 0 0
\(697\) −644.927 + 372.349i −0.925290 + 0.534216i
\(698\) 0.0832085 + 0.144121i 0.000119210 + 0.000206477i
\(699\) 0 0
\(700\) −49.4524 + 1014.64i −0.0706463 + 1.44949i
\(701\) 823.878i 1.17529i −0.809119 0.587644i \(-0.800055\pi\)
0.809119 0.587644i \(-0.199945\pi\)
\(702\) 0 0
\(703\) 343.008i 0.487921i
\(704\) −97.7366 56.4282i −0.138830 0.0801537i
\(705\) 0 0
\(706\) −7.23510 12.5316i −0.0102480 0.0177501i
\(707\) −487.387 844.179i −0.689374 1.19403i
\(708\) 0 0
\(709\) −531.033 + 919.776i −0.748989 + 1.29729i 0.199319 + 0.979935i \(0.436127\pi\)
−0.948308 + 0.317352i \(0.897206\pi\)
\(710\) 23.0412 37.7548i 0.0324524 0.0531757i
\(711\) 0 0
\(712\) 51.7369i 0.0726642i
\(713\) −134.703 + 233.312i −0.188924 + 0.327226i
\(714\) 0 0
\(715\) 2.99129 122.821i 0.00418362 0.171778i
\(716\) 1207.92 697.391i 1.68703 0.974009i
\(717\) 0 0
\(718\) −9.07314 5.23838i −0.0126367 0.00729579i
\(719\) 325.811i 0.453144i 0.973994 + 0.226572i \(0.0727519\pi\)
−0.973994 + 0.226572i \(0.927248\pi\)
\(720\) 0 0
\(721\) −973.385 −1.35005
\(722\) 4.18702 7.25213i 0.00579920 0.0100445i
\(723\) 0 0
\(724\) 507.974 + 879.836i 0.701621 + 1.21524i
\(725\) −928.636 598.243i −1.28088 0.825162i
\(726\) 0 0
\(727\) 39.2560 + 22.6645i 0.0539973 + 0.0311754i 0.526756 0.850017i \(-0.323408\pi\)
−0.472758 + 0.881192i \(0.656742\pi\)
\(728\) −108.422 −0.148931
\(729\) 0 0
\(730\) 18.9173 30.9975i 0.0259142 0.0424623i
\(731\) −388.893 224.528i −0.532002 0.307151i
\(732\) 0 0
\(733\) −535.405 + 309.116i −0.730429 + 0.421714i −0.818579 0.574394i \(-0.805238\pi\)
0.0881499 + 0.996107i \(0.471905\pi\)
\(734\) −40.2701 + 23.2500i −0.0548639 + 0.0316757i
\(735\) 0 0
\(736\) −96.7011 + 167.491i −0.131387 + 0.227570i
\(737\) −107.479 −0.145834
\(738\) 0 0
\(739\) −62.7472 −0.0849082 −0.0424541 0.999098i \(-0.513518\pi\)
−0.0424541 + 0.999098i \(0.513518\pi\)
\(740\) 197.711 + 362.555i 0.267178 + 0.489940i
\(741\) 0 0
\(742\) 21.8362 12.6071i 0.0294289 0.0169908i
\(743\) 136.862 + 237.052i 0.184202 + 0.319047i 0.943307 0.331921i \(-0.107697\pi\)
−0.759105 + 0.650968i \(0.774363\pi\)
\(744\) 0 0
\(745\) 115.550 + 211.891i 0.155101 + 0.284418i
\(746\) 10.1930i 0.0136635i
\(747\) 0 0
\(748\) 93.3598i 0.124813i
\(749\) 532.456 + 307.414i 0.710890 + 0.410432i
\(750\) 0 0
\(751\) −207.136 358.769i −0.275813 0.477722i 0.694527 0.719467i \(-0.255614\pi\)
−0.970340 + 0.241745i \(0.922280\pi\)
\(752\) −477.624 827.269i −0.635138 1.10009i
\(753\) 0 0
\(754\) 29.4402 50.9920i 0.0390454 0.0676286i
\(755\) 97.4389 + 59.4656i 0.129058 + 0.0787624i
\(756\) 0 0
\(757\) 93.2727i 0.123214i −0.998100 0.0616068i \(-0.980378\pi\)
0.998100 0.0616068i \(-0.0196225\pi\)
\(758\) 8.48868 14.7028i 0.0111988 0.0193969i
\(759\) 0 0
\(760\) −1.56376 + 64.2073i −0.00205758 + 0.0844833i
\(761\) −222.719 + 128.587i −0.292666 + 0.168971i −0.639144 0.769087i \(-0.720711\pi\)
0.346477 + 0.938058i \(0.387378\pi\)
\(762\) 0 0
\(763\) −712.969 411.633i −0.934428 0.539492i
\(764\) 1070.79i 1.40156i
\(765\) 0 0
\(766\) −30.2381 −0.0394753
\(767\) −278.633 + 482.607i −0.363277 + 0.629213i
\(768\) 0 0
\(769\) 204.932 + 354.952i 0.266491 + 0.461576i 0.967953 0.251131i \(-0.0808024\pi\)
−0.701462 + 0.712707i \(0.747469\pi\)
\(770\) −0.215054 + 8.83001i −0.000279290 + 0.0114675i
\(771\) 0 0
\(772\) −1061.19 612.680i −1.37460 0.793628i
\(773\) −27.9346 −0.0361379 −0.0180690 0.999837i \(-0.505752\pi\)
−0.0180690 + 0.999837i \(0.505752\pi\)
\(774\) 0 0
\(775\) 73.9053 + 143.744i 0.0953616 + 0.185476i
\(776\) −106.106 61.2605i −0.136735 0.0789439i
\(777\) 0 0
\(778\) −0.989045 + 0.571025i −0.00127127 + 0.000733966i
\(779\) 817.144 471.778i 1.04897 0.605620i
\(780\) 0 0
\(781\) −81.5580 + 141.263i −0.104428 + 0.180874i
\(782\) 52.8688 0.0676072
\(783\) 0 0
\(784\) −868.745 −1.10809
\(785\) −280.600 514.554i −0.357453 0.655483i
\(786\) 0 0
\(787\) −879.225 + 507.621i −1.11719 + 0.645008i −0.940681 0.339292i \(-0.889812\pi\)
−0.176505 + 0.984300i \(0.556479\pi\)
\(788\) −124.639 215.882i −0.158172 0.273961i
\(789\) 0 0
\(790\) −26.2510 + 14.3154i −0.0332291 + 0.0181207i
\(791\) 1259.03i 1.59170i
\(792\) 0 0
\(793\) 950.903i 1.19912i
\(794\) −21.9893 12.6955i −0.0276943 0.0159893i
\(795\) 0 0
\(796\) 148.878 + 257.865i 0.187033 + 0.323951i
\(797\) 252.602 + 437.519i 0.316941 + 0.548958i 0.979848 0.199744i \(-0.0640110\pi\)
−0.662907 + 0.748701i \(0.730678\pi\)
\(798\) 0 0
\(799\) −393.238 + 681.107i −0.492162 + 0.852450i
\(800\) 53.0555 + 103.192i 0.0663194 + 0.128990i
\(801\) 0 0
\(802\) 32.0482i 0.0399604i
\(803\) −66.9608 + 115.980i −0.0833883 + 0.144433i
\(804\) 0 0
\(805\) −2120.88 51.6538i −2.63463 0.0641662i
\(806\) −7.46104 + 4.30763i −0.00925687 + 0.00534446i
\(807\) 0 0
\(808\) −64.2573 37.0990i −0.0795263 0.0459146i
\(809\) 326.016i 0.402986i −0.979490 0.201493i \(-0.935421\pi\)
0.979490 0.201493i \(-0.0645794\pi\)
\(810\) 0 0
\(811\) −176.933 −0.218167 −0.109083 0.994033i \(-0.534792\pi\)
−0.109083 + 0.994033i \(0.534792\pi\)
\(812\) 897.729 1554.91i 1.10558 1.91492i
\(813\) 0 0
\(814\) 1.79531 + 3.10956i 0.00220554 + 0.00382010i
\(815\) −455.861 11.1024i −0.559338 0.0136226i
\(816\) 0 0
\(817\) 492.741 + 284.484i 0.603110 + 0.348206i
\(818\) 49.5659 0.0605940
\(819\) 0 0
\(820\) 591.776 969.668i 0.721678 1.18252i
\(821\) −196.287 113.326i −0.239083 0.138035i 0.375672 0.926753i \(-0.377412\pi\)
−0.614755 + 0.788718i \(0.710745\pi\)
\(822\) 0 0
\(823\) 15.8312 9.14018i 0.0192360 0.0111059i −0.490351 0.871525i \(-0.663131\pi\)
0.509587 + 0.860419i \(0.329798\pi\)
\(824\) −64.1657 + 37.0461i −0.0778710 + 0.0449588i
\(825\) 0 0
\(826\) 20.0318 34.6962i 0.0242516 0.0420050i
\(827\) −1046.88 −1.26588 −0.632940 0.774201i \(-0.718152\pi\)
−0.632940 + 0.774201i \(0.718152\pi\)
\(828\) 0 0
\(829\) 1083.19 1.30662 0.653309 0.757091i \(-0.273380\pi\)
0.653309 + 0.757091i \(0.273380\pi\)
\(830\) 24.9212 13.5902i 0.0300255 0.0163737i
\(831\) 0 0
\(832\) 750.714 433.425i 0.902301 0.520944i
\(833\) 357.628 + 619.429i 0.429325 + 0.743613i
\(834\) 0 0
\(835\) −720.791 + 393.067i −0.863223 + 0.470739i
\(836\) 118.290i 0.141495i
\(837\) 0 0
\(838\) 5.92930i 0.00707553i
\(839\) 1112.94 + 642.555i 1.32651 + 0.765858i 0.984757 0.173933i \(-0.0556478\pi\)
0.341748 + 0.939792i \(0.388981\pi\)
\(840\) 0 0
\(841\) 555.707 + 962.512i 0.660769 + 1.14449i
\(842\) 29.9961 + 51.9547i 0.0356248 + 0.0617040i
\(843\) 0 0
\(844\) 326.308 565.181i 0.386620 0.669646i
\(845\) 84.2224 + 51.3998i 0.0996715 + 0.0608282i
\(846\) 0 0
\(847\) 1199.50i 1.41618i
\(848\) −202.792 + 351.246i −0.239142 + 0.414206i
\(849\) 0 0
\(850\) 17.1778 26.6647i 0.0202092 0.0313702i
\(851\) −746.886 + 431.215i −0.877657 + 0.506716i
\(852\) 0 0
\(853\) −167.854 96.9105i −0.196781 0.113611i 0.398372 0.917224i \(-0.369575\pi\)
−0.595153 + 0.803612i \(0.702909\pi\)
\(854\) 68.3635i 0.0800510i
\(855\) 0 0
\(856\) 46.7995 0.0546723
\(857\) −15.0743 + 26.1094i −0.0175896 + 0.0304661i −0.874686 0.484690i \(-0.838933\pi\)
0.857097 + 0.515156i \(0.172266\pi\)
\(858\) 0 0
\(859\) 386.902 + 670.134i 0.450410 + 0.780133i 0.998411 0.0563445i \(-0.0179445\pi\)
−0.548001 + 0.836477i \(0.684611\pi\)
\(860\) 684.798 + 16.6782i 0.796277 + 0.0193932i
\(861\) 0 0
\(862\) 28.9672 + 16.7242i 0.0336047 + 0.0194017i
\(863\) −421.375 −0.488267 −0.244134 0.969742i \(-0.578504\pi\)
−0.244134 + 0.969742i \(0.578504\pi\)
\(864\) 0 0
\(865\) 962.195 + 587.215i 1.11236 + 0.678861i
\(866\) 13.8205 + 7.97927i 0.0159590 + 0.00921394i
\(867\) 0 0
\(868\) −227.511 + 131.354i −0.262110 + 0.151329i
\(869\) 95.4962 55.1347i 0.109892 0.0634462i
\(870\) 0 0
\(871\) 412.774 714.946i 0.473908 0.820833i
\(872\) −62.6654 −0.0718640
\(873\) 0 0
\(874\) −66.9865 −0.0766436
\(875\) −715.156 + 1052.89i −0.817321 + 1.20331i
\(876\) 0 0
\(877\) 773.514 446.589i 0.882000 0.509223i 0.0106829 0.999943i \(-0.496599\pi\)
0.871317 + 0.490720i \(0.163266\pi\)
\(878\) 15.8632 + 27.4758i 0.0180674 + 0.0312936i
\(879\) 0 0
\(880\) −68.0217 124.736i −0.0772974 0.141745i
\(881\) 718.024i 0.815011i 0.913203 + 0.407505i \(0.133601\pi\)
−0.913203 + 0.407505i \(0.866399\pi\)
\(882\) 0 0
\(883\) 274.425i 0.310788i 0.987853 + 0.155394i \(0.0496646\pi\)
−0.987853 + 0.155394i \(0.950335\pi\)
\(884\) −621.024 358.548i −0.702516 0.405598i
\(885\) 0 0
\(886\) 17.3268 + 30.0108i 0.0195562 + 0.0338723i
\(887\) 119.843 + 207.574i 0.135110 + 0.234018i 0.925640 0.378406i \(-0.123528\pi\)
−0.790529 + 0.612424i \(0.790194\pi\)
\(888\) 0 0
\(889\) 772.920 1338.74i 0.869426 1.50589i
\(890\) −16.8646 + 27.6340i −0.0189490 + 0.0310494i
\(891\) 0 0
\(892\) 71.7196i 0.0804032i
\(893\) 498.245 862.986i 0.557945 0.966389i
\(894\) 0 0
\(895\) 1747.07 + 42.5496i 1.95203 + 0.0475415i
\(896\) −217.684 + 125.680i −0.242950 + 0.140267i
\(897\) 0 0
\(898\) −12.9999 7.50548i −0.0144765 0.00835800i
\(899\) 285.673i 0.317767i
\(900\) 0 0
\(901\) 333.926 0.370617
\(902\) 4.93858 8.55387i 0.00547514 0.00948323i
\(903\) 0 0
\(904\) −47.9175 82.9955i −0.0530061 0.0918092i
\(905\) −30.9928 + 1272.55i −0.0342462 + 1.40613i
\(906\) 0 0
\(907\) 181.082 + 104.548i 0.199649 + 0.115268i 0.596492 0.802619i \(-0.296561\pi\)
−0.396843 + 0.917887i \(0.629894\pi\)
\(908\) −127.992 −0.140960
\(909\) 0 0
\(910\) −57.9107 35.3421i −0.0636382 0.0388375i
\(911\) −1365.31 788.262i −1.49869 0.865271i −0.498694 0.866778i \(-0.666187\pi\)
−0.999999 + 0.00150692i \(0.999520\pi\)
\(912\) 0 0
\(913\) −90.6587 + 52.3418i −0.0992976 + 0.0573295i
\(914\) 12.9997 7.50540i 0.0142229 0.00821160i
\(915\) 0 0
\(916\) −320.554 + 555.215i −0.349950 + 0.606130i
\(917\) 1595.82 1.74026
\(918\) 0 0
\(919\) −1192.75 −1.29788 −0.648939 0.760841i \(-0.724787\pi\)
−0.648939 + 0.760841i \(0.724787\pi\)
\(920\) −141.775 + 77.3136i −0.154103 + 0.0840366i
\(921\) 0 0
\(922\) 21.9541 12.6752i 0.0238114 0.0137475i
\(923\) −626.447 1085.04i −0.678707 1.17555i
\(924\) 0 0
\(925\) −25.1883 + 516.804i −0.0272306 + 0.558707i
\(926\) 77.1828i 0.0833508i
\(927\) 0 0
\(928\) 205.081i 0.220992i
\(929\) 1169.54 + 675.233i 1.25892 + 0.726838i 0.972865 0.231375i \(-0.0743223\pi\)
0.286056 + 0.958213i \(0.407656\pi\)
\(930\) 0 0
\(931\) −453.126 784.837i −0.486709 0.843005i
\(932\) 688.724 + 1192.91i 0.738975 + 1.27994i
\(933\) 0 0
\(934\) −20.7514 + 35.9424i −0.0222177 + 0.0384822i
\(935\) −60.9366 + 99.8492i −0.0651729 + 0.106791i
\(936\) 0 0
\(937\) 559.923i 0.597570i −0.954320 0.298785i \(-0.903419\pi\)
0.954320 0.298785i \(-0.0965813\pi\)
\(938\) −29.6757 + 51.3998i −0.0316372 + 0.0547972i
\(939\) 0 0
\(940\) 29.2101 1199.36i 0.0310746 1.27591i
\(941\) 1015.67 586.395i 1.07935 0.623161i 0.148627 0.988893i \(-0.452515\pi\)
0.930720 + 0.365732i \(0.119181\pi\)
\(942\) 0 0
\(943\) 2054.56 + 1186.20i 2.17874 + 1.25790i
\(944\) 644.444i 0.682674i
\(945\) 0 0
\(946\) 5.95596 0.00629594
\(947\) −245.184 + 424.672i −0.258906 + 0.448439i −0.965949 0.258732i \(-0.916695\pi\)
0.707043 + 0.707171i \(0.250029\pi\)
\(948\) 0 0
\(949\) −514.326 890.838i −0.541966 0.938712i
\(950\) −21.7649 + 33.7850i −0.0229104 + 0.0355632i
\(951\) 0 0
\(952\) 89.4001 + 51.6152i 0.0939077 + 0.0542176i
\(953\) −607.867 −0.637846 −0.318923 0.947781i \(-0.603321\pi\)
−0.318923 + 0.947781i \(0.603321\pi\)
\(954\) 0 0
\(955\) −698.914 + 1145.22i −0.731847 + 1.19919i
\(956\) 374.661 + 216.310i 0.391904 + 0.226266i
\(957\) 0 0
\(958\) −18.2893 + 10.5593i −0.0190911 + 0.0110223i
\(959\) 666.267 384.669i 0.694752 0.401115i
\(960\) 0 0
\(961\) 459.600 796.051i 0.478252 0.828357i
\(962\) −27.5795 −0.0286689
\(963\) 0 0
\(964\) −872.111 −0.904680
\(965\) −735.056 1347.92i −0.761716 1.39680i
\(966\) 0 0
\(967\) 93.0243 53.7076i 0.0961989 0.0555405i −0.451129 0.892459i \(-0.648978\pi\)
0.547328 + 0.836918i \(0.315645\pi\)
\(968\) 45.6519 + 79.0714i 0.0471610 + 0.0816853i
\(969\) 0 0
\(970\) −36.7050 67.3082i −0.0378402 0.0693899i
\(971\) 351.974i 0.362486i −0.983438 0.181243i \(-0.941988\pi\)
0.983438 0.181243i \(-0.0580120\pi\)
\(972\) 0 0
\(973\) 973.352i 1.00036i
\(974\) 8.93926 + 5.16108i 0.00917788 + 0.00529885i
\(975\) 0 0
\(976\) −549.830 952.334i −0.563351 0.975752i
\(977\) −192.866 334.054i −0.197407 0.341919i 0.750280 0.661120i \(-0.229919\pi\)
−0.947687 + 0.319202i \(0.896585\pi\)
\(978\) 0 0
\(979\) 59.6950 103.395i 0.0609754 0.105613i
\(980\) −931.332 568.379i −0.950339 0.579979i
\(981\) 0 0
\(982\) 58.9808i 0.0600619i
\(983\) −24.5779 + 42.5702i −0.0250030 + 0.0433064i −0.878256 0.478190i \(-0.841293\pi\)
0.853253 + 0.521497i \(0.174626\pi\)
\(984\) 0 0
\(985\) 7.60457 312.240i 0.00772037 0.316995i
\(986\) −48.5504 + 28.0306i −0.0492398 + 0.0284286i
\(987\) 0 0
\(988\) 786.858 + 454.292i 0.796415 + 0.459810i
\(989\) 1430.56i 1.44647i
\(990\) 0 0
\(991\) 775.701 0.782746 0.391373 0.920232i \(-0.372000\pi\)
0.391373 + 0.920232i \(0.372000\pi\)
\(992\) −15.0035 + 25.9868i −0.0151245 + 0.0261963i
\(993\) 0 0
\(994\) 45.0373 + 78.0068i 0.0453091 + 0.0784777i
\(995\) −9.08347 + 372.963i −0.00912911 + 0.374837i
\(996\) 0 0
\(997\) 628.638 + 362.945i 0.630530 + 0.364037i 0.780957 0.624584i \(-0.214732\pi\)
−0.150427 + 0.988621i \(0.548065\pi\)
\(998\) 55.2778 0.0553885
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.269.11 48
3.2 odd 2 inner 405.3.h.k.269.14 48
5.4 even 2 inner 405.3.h.k.269.13 48
9.2 odd 6 405.3.d.b.404.12 yes 24
9.4 even 3 inner 405.3.h.k.134.12 48
9.5 odd 6 inner 405.3.h.k.134.13 48
9.7 even 3 405.3.d.b.404.13 yes 24
15.14 odd 2 inner 405.3.h.k.269.12 48
45.4 even 6 inner 405.3.h.k.134.14 48
45.14 odd 6 inner 405.3.h.k.134.11 48
45.29 odd 6 405.3.d.b.404.14 yes 24
45.34 even 6 405.3.d.b.404.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.11 24 45.34 even 6
405.3.d.b.404.12 yes 24 9.2 odd 6
405.3.d.b.404.13 yes 24 9.7 even 3
405.3.d.b.404.14 yes 24 45.29 odd 6
405.3.h.k.134.11 48 45.14 odd 6 inner
405.3.h.k.134.12 48 9.4 even 3 inner
405.3.h.k.134.13 48 9.5 odd 6 inner
405.3.h.k.134.14 48 45.4 even 6 inner
405.3.h.k.269.11 48 1.1 even 1 trivial
405.3.h.k.269.12 48 15.14 odd 2 inner
405.3.h.k.269.13 48 5.4 even 2 inner
405.3.h.k.269.14 48 3.2 odd 2 inner