Properties

Label 405.3.d.b.404.14
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.14
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.b.404.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0969975 q^{2} -3.99059 q^{4} +(-4.26797 + 2.60469i) q^{5} -10.1824i q^{7} -0.775068 q^{8} +(-0.413983 + 0.252648i) q^{10} +1.78857i q^{11} +13.7380i q^{13} -0.987672i q^{14} +15.8872 q^{16} +13.0802 q^{17} -16.5731 q^{19} +(17.0317 - 10.3942i) q^{20} +0.173487i q^{22} +41.6700 q^{23} +(11.4312 - 22.2335i) q^{25} +1.33256i q^{26} +40.6340i q^{28} +44.1861i q^{29} +6.46522 q^{31} +4.64129 q^{32} +1.26875 q^{34} +(26.5221 + 43.4584i) q^{35} +20.6967i q^{37} -1.60755 q^{38} +(3.30797 - 2.01881i) q^{40} +56.9330i q^{41} -34.3308i q^{43} -7.13747i q^{44} +4.04188 q^{46} +60.1270 q^{47} -54.6821 q^{49} +(1.10880 - 2.15659i) q^{50} -54.8229i q^{52} +25.5290 q^{53} +(-4.65868 - 7.63359i) q^{55} +7.89208i q^{56} +4.28595i q^{58} -40.5638i q^{59} +69.2168 q^{61} +0.627110 q^{62} -63.0986 q^{64} +(-35.7833 - 58.6336i) q^{65} +60.0922i q^{67} -52.1979 q^{68} +(2.57258 + 4.21536i) q^{70} -91.1989i q^{71} -74.8762i q^{73} +2.00753i q^{74} +66.1365 q^{76} +18.2121 q^{77} -61.6522 q^{79} +(-67.8061 + 41.3812i) q^{80} +5.52236i q^{82} +58.5291 q^{83} +(-55.8261 + 34.0699i) q^{85} -3.33001i q^{86} -1.38627i q^{88} +66.7514i q^{89} +139.887 q^{91} -166.288 q^{92} +5.83217 q^{94} +(70.7335 - 43.1677i) q^{95} +158.078i q^{97} -5.30403 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} + 12 q^{10} + 96 q^{16} + 48 q^{25} + 144 q^{34} + 72 q^{40} - 168 q^{46} - 288 q^{49} - 132 q^{55} - 360 q^{61} - 72 q^{64} - 156 q^{70} + 48 q^{76} - 480 q^{79} - 456 q^{85} - 48 q^{91}+ \cdots + 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0969975 0.0484988 0.0242494 0.999706i \(-0.492280\pi\)
0.0242494 + 0.999706i \(0.492280\pi\)
\(3\) 0 0
\(4\) −3.99059 −0.997648
\(5\) −4.26797 + 2.60469i −0.853595 + 0.520937i
\(6\) 0 0
\(7\) 10.1824i 1.45463i −0.686301 0.727317i \(-0.740767\pi\)
0.686301 0.727317i \(-0.259233\pi\)
\(8\) −0.775068 −0.0968835
\(9\) 0 0
\(10\) −0.413983 + 0.252648i −0.0413983 + 0.0252648i
\(11\) 1.78857i 0.162598i 0.996690 + 0.0812988i \(0.0259068\pi\)
−0.996690 + 0.0812988i \(0.974093\pi\)
\(12\) 0 0
\(13\) 13.7380i 1.05677i 0.849004 + 0.528386i \(0.177203\pi\)
−0.849004 + 0.528386i \(0.822797\pi\)
\(14\) 0.987672i 0.0705480i
\(15\) 0 0
\(16\) 15.8872 0.992949
\(17\) 13.0802 0.769426 0.384713 0.923036i \(-0.374300\pi\)
0.384713 + 0.923036i \(0.374300\pi\)
\(18\) 0 0
\(19\) −16.5731 −0.872268 −0.436134 0.899882i \(-0.643653\pi\)
−0.436134 + 0.899882i \(0.643653\pi\)
\(20\) 17.0317 10.3942i 0.851587 0.519712i
\(21\) 0 0
\(22\) 0.173487i 0.00788579i
\(23\) 41.6700 1.81174 0.905869 0.423559i \(-0.139219\pi\)
0.905869 + 0.423559i \(0.139219\pi\)
\(24\) 0 0
\(25\) 11.4312 22.2335i 0.457248 0.889339i
\(26\) 1.33256i 0.0512521i
\(27\) 0 0
\(28\) 40.6340i 1.45121i
\(29\) 44.1861i 1.52366i 0.647777 + 0.761830i \(0.275699\pi\)
−0.647777 + 0.761830i \(0.724301\pi\)
\(30\) 0 0
\(31\) 6.46522 0.208555 0.104278 0.994548i \(-0.466747\pi\)
0.104278 + 0.994548i \(0.466747\pi\)
\(32\) 4.64129 0.145040
\(33\) 0 0
\(34\) 1.26875 0.0373162
\(35\) 26.5221 + 43.4584i 0.757774 + 1.24167i
\(36\) 0 0
\(37\) 20.6967i 0.559370i 0.960092 + 0.279685i \(0.0902300\pi\)
−0.960092 + 0.279685i \(0.909770\pi\)
\(38\) −1.60755 −0.0423039
\(39\) 0 0
\(40\) 3.30797 2.01881i 0.0826992 0.0504702i
\(41\) 56.9330i 1.38861i 0.719681 + 0.694305i \(0.244288\pi\)
−0.719681 + 0.694305i \(0.755712\pi\)
\(42\) 0 0
\(43\) 34.3308i 0.798391i −0.916866 0.399196i \(-0.869289\pi\)
0.916866 0.399196i \(-0.130711\pi\)
\(44\) 7.13747i 0.162215i
\(45\) 0 0
\(46\) 4.04188 0.0878670
\(47\) 60.1270 1.27930 0.639649 0.768667i \(-0.279080\pi\)
0.639649 + 0.768667i \(0.279080\pi\)
\(48\) 0 0
\(49\) −54.6821 −1.11596
\(50\) 1.10880 2.15659i 0.0221760 0.0431319i
\(51\) 0 0
\(52\) 54.8229i 1.05429i
\(53\) 25.5290 0.481680 0.240840 0.970565i \(-0.422577\pi\)
0.240840 + 0.970565i \(0.422577\pi\)
\(54\) 0 0
\(55\) −4.65868 7.63359i −0.0847032 0.138793i
\(56\) 7.89208i 0.140930i
\(57\) 0 0
\(58\) 4.28595i 0.0738956i
\(59\) 40.5638i 0.687521i −0.939057 0.343761i \(-0.888299\pi\)
0.939057 0.343761i \(-0.111701\pi\)
\(60\) 0 0
\(61\) 69.2168 1.13470 0.567351 0.823476i \(-0.307968\pi\)
0.567351 + 0.823476i \(0.307968\pi\)
\(62\) 0.627110 0.0101147
\(63\) 0 0
\(64\) −63.0986 −0.985915
\(65\) −35.7833 58.6336i −0.550512 0.902055i
\(66\) 0 0
\(67\) 60.0922i 0.896898i 0.893808 + 0.448449i \(0.148023\pi\)
−0.893808 + 0.448449i \(0.851977\pi\)
\(68\) −52.1979 −0.767616
\(69\) 0 0
\(70\) 2.57258 + 4.21536i 0.0367511 + 0.0602194i
\(71\) 91.1989i 1.28449i −0.766499 0.642246i \(-0.778003\pi\)
0.766499 0.642246i \(-0.221997\pi\)
\(72\) 0 0
\(73\) 74.8762i 1.02570i −0.858478 0.512850i \(-0.828590\pi\)
0.858478 0.512850i \(-0.171410\pi\)
\(74\) 2.00753i 0.0271288i
\(75\) 0 0
\(76\) 66.1365 0.870217
\(77\) 18.2121 0.236520
\(78\) 0 0
\(79\) −61.6522 −0.780407 −0.390203 0.920729i \(-0.627595\pi\)
−0.390203 + 0.920729i \(0.627595\pi\)
\(80\) −67.8061 + 41.3812i −0.847576 + 0.517264i
\(81\) 0 0
\(82\) 5.52236i 0.0673459i
\(83\) 58.5291 0.705170 0.352585 0.935780i \(-0.385303\pi\)
0.352585 + 0.935780i \(0.385303\pi\)
\(84\) 0 0
\(85\) −55.8261 + 34.0699i −0.656778 + 0.400823i
\(86\) 3.33001i 0.0387210i
\(87\) 0 0
\(88\) 1.38627i 0.0157530i
\(89\) 66.7514i 0.750016i 0.927022 + 0.375008i \(0.122360\pi\)
−0.927022 + 0.375008i \(0.877640\pi\)
\(90\) 0 0
\(91\) 139.887 1.53722
\(92\) −166.288 −1.80748
\(93\) 0 0
\(94\) 5.83217 0.0620443
\(95\) 70.7335 43.1677i 0.744564 0.454397i
\(96\) 0 0
\(97\) 158.078i 1.62967i 0.579694 + 0.814834i \(0.303172\pi\)
−0.579694 + 0.814834i \(0.696828\pi\)
\(98\) −5.30403 −0.0541228
\(99\) 0 0
\(100\) −45.6173 + 88.7247i −0.456173 + 0.887247i
\(101\) 95.7309i 0.947831i 0.880570 + 0.473915i \(0.157160\pi\)
−0.880570 + 0.473915i \(0.842840\pi\)
\(102\) 0 0
\(103\) 95.5944i 0.928101i −0.885809 0.464051i \(-0.846396\pi\)
0.885809 0.464051i \(-0.153604\pi\)
\(104\) 10.6479i 0.102384i
\(105\) 0 0
\(106\) 2.47625 0.0233609
\(107\) −60.3812 −0.564310 −0.282155 0.959369i \(-0.591049\pi\)
−0.282155 + 0.959369i \(0.591049\pi\)
\(108\) 0 0
\(109\) 80.8515 0.741757 0.370878 0.928681i \(-0.379057\pi\)
0.370878 + 0.928681i \(0.379057\pi\)
\(110\) −0.451880 0.740440i −0.00410800 0.00673127i
\(111\) 0 0
\(112\) 161.770i 1.44438i
\(113\) −123.647 −1.09422 −0.547112 0.837060i \(-0.684273\pi\)
−0.547112 + 0.837060i \(0.684273\pi\)
\(114\) 0 0
\(115\) −177.846 + 108.537i −1.54649 + 0.943802i
\(116\) 176.329i 1.52008i
\(117\) 0 0
\(118\) 3.93458i 0.0333439i
\(119\) 133.189i 1.11923i
\(120\) 0 0
\(121\) 117.801 0.973562
\(122\) 6.71386 0.0550317
\(123\) 0 0
\(124\) −25.8000 −0.208065
\(125\) 9.12315 + 124.667i 0.0729852 + 0.997333i
\(126\) 0 0
\(127\) 151.814i 1.19539i −0.801724 0.597694i \(-0.796084\pi\)
0.801724 0.597694i \(-0.203916\pi\)
\(128\) −24.6856 −0.192856
\(129\) 0 0
\(130\) −3.47089 5.68731i −0.0266992 0.0437486i
\(131\) 156.723i 1.19636i 0.801363 + 0.598178i \(0.204109\pi\)
−0.801363 + 0.598178i \(0.795891\pi\)
\(132\) 0 0
\(133\) 168.755i 1.26883i
\(134\) 5.82879i 0.0434985i
\(135\) 0 0
\(136\) −10.1381 −0.0745446
\(137\) 75.5554 0.551500 0.275750 0.961229i \(-0.411074\pi\)
0.275750 + 0.961229i \(0.411074\pi\)
\(138\) 0 0
\(139\) 95.5912 0.687707 0.343853 0.939023i \(-0.388268\pi\)
0.343853 + 0.939023i \(0.388268\pi\)
\(140\) −105.839 173.425i −0.755991 1.23875i
\(141\) 0 0
\(142\) 8.84607i 0.0622962i
\(143\) −24.5715 −0.171829
\(144\) 0 0
\(145\) −115.091 188.585i −0.793731 1.30059i
\(146\) 7.26280i 0.0497452i
\(147\) 0 0
\(148\) 82.5920i 0.558054i
\(149\) 48.2700i 0.323960i −0.986794 0.161980i \(-0.948212\pi\)
0.986794 0.161980i \(-0.0517880\pi\)
\(150\) 0 0
\(151\) −22.8302 −0.151194 −0.0755968 0.997138i \(-0.524086\pi\)
−0.0755968 + 0.997138i \(0.524086\pi\)
\(152\) 12.8453 0.0845084
\(153\) 0 0
\(154\) 1.76652 0.0114709
\(155\) −27.5934 + 16.8399i −0.178022 + 0.108644i
\(156\) 0 0
\(157\) 117.218i 0.746612i 0.927708 + 0.373306i \(0.121776\pi\)
−0.927708 + 0.373306i \(0.878224\pi\)
\(158\) −5.98011 −0.0378488
\(159\) 0 0
\(160\) −19.8089 + 12.0891i −0.123806 + 0.0755569i
\(161\) 424.302i 2.63542i
\(162\) 0 0
\(163\) 91.1992i 0.559504i −0.960072 0.279752i \(-0.909748\pi\)
0.960072 0.279752i \(-0.0902523\pi\)
\(164\) 227.196i 1.38534i
\(165\) 0 0
\(166\) 5.67718 0.0341999
\(167\) −164.200 −0.983234 −0.491617 0.870811i \(-0.663594\pi\)
−0.491617 + 0.870811i \(0.663594\pi\)
\(168\) 0 0
\(169\) −19.7336 −0.116767
\(170\) −5.41500 + 3.30470i −0.0318529 + 0.0194394i
\(171\) 0 0
\(172\) 137.000i 0.796513i
\(173\) −225.445 −1.30315 −0.651576 0.758583i \(-0.725892\pi\)
−0.651576 + 0.758583i \(0.725892\pi\)
\(174\) 0 0
\(175\) −226.391 116.398i −1.29366 0.665129i
\(176\) 28.4154i 0.161451i
\(177\) 0 0
\(178\) 6.47473i 0.0363749i
\(179\) 349.517i 1.95261i 0.216395 + 0.976306i \(0.430570\pi\)
−0.216395 + 0.976306i \(0.569430\pi\)
\(180\) 0 0
\(181\) 254.586 1.40655 0.703275 0.710918i \(-0.251720\pi\)
0.703275 + 0.710918i \(0.251720\pi\)
\(182\) 13.5687 0.0745531
\(183\) 0 0
\(184\) −32.2970 −0.175527
\(185\) −53.9084 88.3330i −0.291397 0.477475i
\(186\) 0 0
\(187\) 23.3950i 0.125107i
\(188\) −239.942 −1.27629
\(189\) 0 0
\(190\) 6.86098 4.18716i 0.0361104 0.0220377i
\(191\) 268.329i 1.40487i 0.711750 + 0.702433i \(0.247903\pi\)
−0.711750 + 0.702433i \(0.752097\pi\)
\(192\) 0 0
\(193\) 307.062i 1.59100i 0.605955 + 0.795499i \(0.292791\pi\)
−0.605955 + 0.795499i \(0.707209\pi\)
\(194\) 15.3332i 0.0790369i
\(195\) 0 0
\(196\) 218.214 1.11334
\(197\) −62.4666 −0.317089 −0.158545 0.987352i \(-0.550680\pi\)
−0.158545 + 0.987352i \(0.550680\pi\)
\(198\) 0 0
\(199\) 74.6147 0.374948 0.187474 0.982270i \(-0.439970\pi\)
0.187474 + 0.982270i \(0.439970\pi\)
\(200\) −8.85996 + 17.2325i −0.0442998 + 0.0861623i
\(201\) 0 0
\(202\) 9.28566i 0.0459686i
\(203\) 449.923 2.21637
\(204\) 0 0
\(205\) −148.293 242.989i −0.723379 1.18531i
\(206\) 9.27243i 0.0450118i
\(207\) 0 0
\(208\) 218.259i 1.04932i
\(209\) 29.6422i 0.141829i
\(210\) 0 0
\(211\) 163.538 0.775064 0.387532 0.921856i \(-0.373328\pi\)
0.387532 + 0.921856i \(0.373328\pi\)
\(212\) −101.876 −0.480547
\(213\) 0 0
\(214\) −5.85682 −0.0273683
\(215\) 89.4211 + 146.523i 0.415912 + 0.681503i
\(216\) 0 0
\(217\) 65.8317i 0.303372i
\(218\) 7.84239 0.0359743
\(219\) 0 0
\(220\) 18.5909 + 30.4625i 0.0845040 + 0.138466i
\(221\) 179.697i 0.813108i
\(222\) 0 0
\(223\) 17.9722i 0.0805927i 0.999188 + 0.0402964i \(0.0128302\pi\)
−0.999188 + 0.0402964i \(0.987170\pi\)
\(224\) 47.2597i 0.210981i
\(225\) 0 0
\(226\) −11.9935 −0.0530685
\(227\) 32.0735 0.141293 0.0706464 0.997501i \(-0.477494\pi\)
0.0706464 + 0.997501i \(0.477494\pi\)
\(228\) 0 0
\(229\) −160.655 −0.701549 −0.350775 0.936460i \(-0.614082\pi\)
−0.350775 + 0.936460i \(0.614082\pi\)
\(230\) −17.2507 + 10.5278i −0.0750028 + 0.0457732i
\(231\) 0 0
\(232\) 34.2472i 0.147617i
\(233\) 345.174 1.48143 0.740717 0.671817i \(-0.234486\pi\)
0.740717 + 0.671817i \(0.234486\pi\)
\(234\) 0 0
\(235\) −256.620 + 156.612i −1.09200 + 0.666434i
\(236\) 161.873i 0.685904i
\(237\) 0 0
\(238\) 12.9190i 0.0542815i
\(239\) 108.410i 0.453599i −0.973941 0.226800i \(-0.927174\pi\)
0.973941 0.226800i \(-0.0728262\pi\)
\(240\) 0 0
\(241\) 218.542 0.906813 0.453406 0.891304i \(-0.350209\pi\)
0.453406 + 0.891304i \(0.350209\pi\)
\(242\) 11.4264 0.0472166
\(243\) 0 0
\(244\) −276.216 −1.13203
\(245\) 233.382 142.430i 0.952579 0.581346i
\(246\) 0 0
\(247\) 227.682i 0.921789i
\(248\) −5.01098 −0.0202056
\(249\) 0 0
\(250\) 0.884923 + 12.0924i 0.00353969 + 0.0483694i
\(251\) 178.976i 0.713053i −0.934285 0.356527i \(-0.883961\pi\)
0.934285 0.356527i \(-0.116039\pi\)
\(252\) 0 0
\(253\) 74.5298i 0.294584i
\(254\) 14.7256i 0.0579748i
\(255\) 0 0
\(256\) 250.000 0.976562
\(257\) 426.874 1.66099 0.830493 0.557028i \(-0.188059\pi\)
0.830493 + 0.557028i \(0.188059\pi\)
\(258\) 0 0
\(259\) 210.743 0.813679
\(260\) 142.796 + 233.983i 0.549217 + 0.899933i
\(261\) 0 0
\(262\) 15.2017i 0.0580218i
\(263\) 388.671 1.47784 0.738919 0.673794i \(-0.235337\pi\)
0.738919 + 0.673794i \(0.235337\pi\)
\(264\) 0 0
\(265\) −108.957 + 66.4951i −0.411159 + 0.250925i
\(266\) 16.3688i 0.0615368i
\(267\) 0 0
\(268\) 239.803i 0.894788i
\(269\) 57.7020i 0.214506i 0.994232 + 0.107253i \(0.0342054\pi\)
−0.994232 + 0.107253i \(0.965795\pi\)
\(270\) 0 0
\(271\) −102.825 −0.379428 −0.189714 0.981839i \(-0.560756\pi\)
−0.189714 + 0.981839i \(0.560756\pi\)
\(272\) 207.808 0.764001
\(273\) 0 0
\(274\) 7.32869 0.0267471
\(275\) 39.7662 + 20.4456i 0.144604 + 0.0743475i
\(276\) 0 0
\(277\) 506.084i 1.82702i −0.406820 0.913508i \(-0.633362\pi\)
0.406820 0.913508i \(-0.366638\pi\)
\(278\) 9.27211 0.0333529
\(279\) 0 0
\(280\) −20.5564 33.6832i −0.0734157 0.120297i
\(281\) 86.9438i 0.309408i −0.987961 0.154704i \(-0.950558\pi\)
0.987961 0.154704i \(-0.0494425\pi\)
\(282\) 0 0
\(283\) 92.1515i 0.325624i −0.986657 0.162812i \(-0.947944\pi\)
0.986657 0.162812i \(-0.0520564\pi\)
\(284\) 363.937i 1.28147i
\(285\) 0 0
\(286\) −2.38338 −0.00833348
\(287\) 579.717 2.01992
\(288\) 0 0
\(289\) −117.907 −0.407984
\(290\) −11.1635 18.2923i −0.0384950 0.0630769i
\(291\) 0 0
\(292\) 298.800i 1.02329i
\(293\) −394.702 −1.34711 −0.673554 0.739138i \(-0.735233\pi\)
−0.673554 + 0.739138i \(0.735233\pi\)
\(294\) 0 0
\(295\) 105.656 + 173.125i 0.358156 + 0.586865i
\(296\) 16.0413i 0.0541937i
\(297\) 0 0
\(298\) 4.68207i 0.0157117i
\(299\) 572.463i 1.91459i
\(300\) 0 0
\(301\) −349.572 −1.16137
\(302\) −2.21448 −0.00733271
\(303\) 0 0
\(304\) −263.300 −0.866118
\(305\) −295.416 + 180.288i −0.968576 + 0.591109i
\(306\) 0 0
\(307\) 296.956i 0.967283i 0.875266 + 0.483642i \(0.160686\pi\)
−0.875266 + 0.483642i \(0.839314\pi\)
\(308\) −72.6769 −0.235964
\(309\) 0 0
\(310\) −2.67649 + 1.63343i −0.00863384 + 0.00526912i
\(311\) 539.359i 1.73427i 0.498070 + 0.867137i \(0.334042\pi\)
−0.498070 + 0.867137i \(0.665958\pi\)
\(312\) 0 0
\(313\) 439.842i 1.40525i −0.711562 0.702623i \(-0.752012\pi\)
0.711562 0.702623i \(-0.247988\pi\)
\(314\) 11.3699i 0.0362098i
\(315\) 0 0
\(316\) 246.029 0.778571
\(317\) −244.876 −0.772479 −0.386240 0.922398i \(-0.626226\pi\)
−0.386240 + 0.922398i \(0.626226\pi\)
\(318\) 0 0
\(319\) −79.0302 −0.247743
\(320\) 269.303 164.352i 0.841572 0.513600i
\(321\) 0 0
\(322\) 41.1562i 0.127814i
\(323\) −216.780 −0.671146
\(324\) 0 0
\(325\) 305.444 + 157.042i 0.939828 + 0.483207i
\(326\) 8.84610i 0.0271353i
\(327\) 0 0
\(328\) 44.1269i 0.134533i
\(329\) 612.239i 1.86091i
\(330\) 0 0
\(331\) 361.313 1.09158 0.545790 0.837922i \(-0.316230\pi\)
0.545790 + 0.837922i \(0.316230\pi\)
\(332\) −233.566 −0.703511
\(333\) 0 0
\(334\) −15.9270 −0.0476857
\(335\) −156.521 256.472i −0.467228 0.765587i
\(336\) 0 0
\(337\) 252.374i 0.748884i 0.927250 + 0.374442i \(0.122166\pi\)
−0.927250 + 0.374442i \(0.877834\pi\)
\(338\) −1.91411 −0.00566305
\(339\) 0 0
\(340\) 222.779 135.959i 0.655233 0.399880i
\(341\) 11.5635i 0.0339106i
\(342\) 0 0
\(343\) 57.8579i 0.168682i
\(344\) 26.6087i 0.0773509i
\(345\) 0 0
\(346\) −21.8676 −0.0632013
\(347\) 107.993 0.311218 0.155609 0.987819i \(-0.450266\pi\)
0.155609 + 0.987819i \(0.450266\pi\)
\(348\) 0 0
\(349\) −1.71568 −0.00491599 −0.00245800 0.999997i \(-0.500782\pi\)
−0.00245800 + 0.999997i \(0.500782\pi\)
\(350\) −21.9594 11.2903i −0.0627411 0.0322580i
\(351\) 0 0
\(352\) 8.30129i 0.0235832i
\(353\) 149.181 0.422610 0.211305 0.977420i \(-0.432229\pi\)
0.211305 + 0.977420i \(0.432229\pi\)
\(354\) 0 0
\(355\) 237.545 + 389.234i 0.669139 + 1.09643i
\(356\) 266.378i 0.748252i
\(357\) 0 0
\(358\) 33.9023i 0.0946993i
\(359\) 108.011i 0.300865i −0.988620 0.150433i \(-0.951933\pi\)
0.988620 0.150433i \(-0.0480666\pi\)
\(360\) 0 0
\(361\) −86.3325 −0.239148
\(362\) 24.6942 0.0682160
\(363\) 0 0
\(364\) −558.231 −1.53360
\(365\) 195.029 + 319.569i 0.534326 + 0.875533i
\(366\) 0 0
\(367\) 479.393i 1.30625i 0.757251 + 0.653123i \(0.226542\pi\)
−0.757251 + 0.653123i \(0.773458\pi\)
\(368\) 662.018 1.79896
\(369\) 0 0
\(370\) −5.22898 8.56808i −0.0141324 0.0231570i
\(371\) 259.948i 0.700668i
\(372\) 0 0
\(373\) 105.085i 0.281730i 0.990029 + 0.140865i \(0.0449883\pi\)
−0.990029 + 0.140865i \(0.955012\pi\)
\(374\) 2.26926i 0.00606753i
\(375\) 0 0
\(376\) −46.6025 −0.123943
\(377\) −607.030 −1.61016
\(378\) 0 0
\(379\) −175.029 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(380\) −282.269 + 172.265i −0.742812 + 0.453328i
\(381\) 0 0
\(382\) 26.0273i 0.0681343i
\(383\) −311.741 −0.813944 −0.406972 0.913441i \(-0.633415\pi\)
−0.406972 + 0.913441i \(0.633415\pi\)
\(384\) 0 0
\(385\) −77.7286 + 47.4367i −0.201892 + 0.123212i
\(386\) 29.7843i 0.0771614i
\(387\) 0 0
\(388\) 630.824i 1.62583i
\(389\) 11.7740i 0.0302674i 0.999885 + 0.0151337i \(0.00481739\pi\)
−0.999885 + 0.0151337i \(0.995183\pi\)
\(390\) 0 0
\(391\) 545.053 1.39400
\(392\) 42.3824 0.108118
\(393\) 0 0
\(394\) −6.05910 −0.0153784
\(395\) 263.130 160.585i 0.666151 0.406543i
\(396\) 0 0
\(397\) 261.770i 0.659369i −0.944091 0.329685i \(-0.893058\pi\)
0.944091 0.329685i \(-0.106942\pi\)
\(398\) 7.23745 0.0181845
\(399\) 0 0
\(400\) 181.610 353.227i 0.454024 0.883068i
\(401\) 330.403i 0.823947i −0.911196 0.411973i \(-0.864840\pi\)
0.911196 0.411973i \(-0.135160\pi\)
\(402\) 0 0
\(403\) 88.8194i 0.220396i
\(404\) 382.023i 0.945601i
\(405\) 0 0
\(406\) 43.6414 0.107491
\(407\) −37.0176 −0.0909523
\(408\) 0 0
\(409\) 511.002 1.24939 0.624696 0.780868i \(-0.285223\pi\)
0.624696 + 0.780868i \(0.285223\pi\)
\(410\) −14.3840 23.5693i −0.0350830 0.0574861i
\(411\) 0 0
\(412\) 381.478i 0.925918i
\(413\) −413.038 −1.00009
\(414\) 0 0
\(415\) −249.801 + 152.450i −0.601929 + 0.367349i
\(416\) 63.7622i 0.153274i
\(417\) 0 0
\(418\) 2.87522i 0.00687852i
\(419\) 61.1283i 0.145891i −0.997336 0.0729455i \(-0.976760\pi\)
0.997336 0.0729455i \(-0.0232399\pi\)
\(420\) 0 0
\(421\) −618.492 −1.46910 −0.734551 0.678554i \(-0.762607\pi\)
−0.734551 + 0.678554i \(0.762607\pi\)
\(422\) 15.8628 0.0375896
\(423\) 0 0
\(424\) −19.7867 −0.0466668
\(425\) 149.523 290.819i 0.351819 0.684280i
\(426\) 0 0
\(427\) 704.797i 1.65058i
\(428\) 240.957 0.562983
\(429\) 0 0
\(430\) 8.67362 + 14.2124i 0.0201712 + 0.0330520i
\(431\) 344.839i 0.800089i 0.916496 + 0.400045i \(0.131005\pi\)
−0.916496 + 0.400045i \(0.868995\pi\)
\(432\) 0 0
\(433\) 164.525i 0.379966i 0.981787 + 0.189983i \(0.0608433\pi\)
−0.981787 + 0.189983i \(0.939157\pi\)
\(434\) 6.38551i 0.0147132i
\(435\) 0 0
\(436\) −322.645 −0.740012
\(437\) −690.600 −1.58032
\(438\) 0 0
\(439\) −327.084 −0.745065 −0.372533 0.928019i \(-0.621511\pi\)
−0.372533 + 0.928019i \(0.621511\pi\)
\(440\) 3.61079 + 5.91655i 0.00820634 + 0.0134467i
\(441\) 0 0
\(442\) 17.4301i 0.0394347i
\(443\) −357.262 −0.806460 −0.403230 0.915099i \(-0.632113\pi\)
−0.403230 + 0.915099i \(0.632113\pi\)
\(444\) 0 0
\(445\) −173.867 284.893i −0.390711 0.640210i
\(446\) 1.74326i 0.00390865i
\(447\) 0 0
\(448\) 642.497i 1.43415i
\(449\) 154.756i 0.344668i −0.985039 0.172334i \(-0.944869\pi\)
0.985039 0.172334i \(-0.0551309\pi\)
\(450\) 0 0
\(451\) −101.829 −0.225785
\(452\) 493.426 1.09165
\(453\) 0 0
\(454\) 3.11105 0.00685252
\(455\) −597.033 + 364.361i −1.31216 + 0.800794i
\(456\) 0 0
\(457\) 154.754i 0.338631i −0.985562 0.169316i \(-0.945844\pi\)
0.985562 0.169316i \(-0.0541557\pi\)
\(458\) −15.5831 −0.0340243
\(459\) 0 0
\(460\) 709.712 433.128i 1.54285 0.941582i
\(461\) 261.352i 0.566923i −0.958984 0.283462i \(-0.908517\pi\)
0.958984 0.283462i \(-0.0914828\pi\)
\(462\) 0 0
\(463\) 795.719i 1.71862i −0.511458 0.859308i \(-0.670894\pi\)
0.511458 0.859308i \(-0.329106\pi\)
\(464\) 701.993i 1.51292i
\(465\) 0 0
\(466\) 33.4810 0.0718477
\(467\) 427.874 0.916218 0.458109 0.888896i \(-0.348527\pi\)
0.458109 + 0.888896i \(0.348527\pi\)
\(468\) 0 0
\(469\) 611.885 1.30466
\(470\) −24.8915 + 15.1910i −0.0529607 + 0.0323212i
\(471\) 0 0
\(472\) 31.4397i 0.0666094i
\(473\) 61.4032 0.129817
\(474\) 0 0
\(475\) −189.451 + 368.478i −0.398843 + 0.775742i
\(476\) 531.502i 1.11660i
\(477\) 0 0
\(478\) 10.5155i 0.0219990i
\(479\) 217.723i 0.454537i 0.973832 + 0.227269i \(0.0729796\pi\)
−0.973832 + 0.227269i \(0.927020\pi\)
\(480\) 0 0
\(481\) −284.332 −0.591127
\(482\) 21.1980 0.0439793
\(483\) 0 0
\(484\) −470.096 −0.971272
\(485\) −411.743 674.672i −0.848955 1.39108i
\(486\) 0 0
\(487\) 106.417i 0.218515i 0.994013 + 0.109257i \(0.0348473\pi\)
−0.994013 + 0.109257i \(0.965153\pi\)
\(488\) −53.6477 −0.109934
\(489\) 0 0
\(490\) 22.6375 13.8153i 0.0461989 0.0281946i
\(491\) 608.064i 1.23842i −0.785225 0.619210i \(-0.787453\pi\)
0.785225 0.619210i \(-0.212547\pi\)
\(492\) 0 0
\(493\) 577.965i 1.17234i
\(494\) 22.0846i 0.0447056i
\(495\) 0 0
\(496\) 102.714 0.207085
\(497\) −928.627 −1.86847
\(498\) 0 0
\(499\) 569.888 1.14206 0.571030 0.820929i \(-0.306544\pi\)
0.571030 + 0.820929i \(0.306544\pi\)
\(500\) −36.4068 497.494i −0.0728135 0.994987i
\(501\) 0 0
\(502\) 17.3603i 0.0345822i
\(503\) −811.764 −1.61385 −0.806923 0.590657i \(-0.798869\pi\)
−0.806923 + 0.590657i \(0.798869\pi\)
\(504\) 0 0
\(505\) −249.349 408.577i −0.493760 0.809063i
\(506\) 7.22921i 0.0142870i
\(507\) 0 0
\(508\) 605.829i 1.19258i
\(509\) 338.453i 0.664938i −0.943114 0.332469i \(-0.892118\pi\)
0.943114 0.332469i \(-0.107882\pi\)
\(510\) 0 0
\(511\) −762.422 −1.49202
\(512\) 122.992 0.240218
\(513\) 0 0
\(514\) 41.4057 0.0805558
\(515\) 248.994 + 407.995i 0.483483 + 0.792223i
\(516\) 0 0
\(517\) 107.542i 0.208011i
\(518\) 20.4415 0.0394624
\(519\) 0 0
\(520\) 27.7345 + 45.4450i 0.0533355 + 0.0873942i
\(521\) 90.5848i 0.173867i 0.996214 + 0.0869336i \(0.0277068\pi\)
−0.996214 + 0.0869336i \(0.972293\pi\)
\(522\) 0 0
\(523\) 350.782i 0.670712i 0.942091 + 0.335356i \(0.108857\pi\)
−0.942091 + 0.335356i \(0.891143\pi\)
\(524\) 625.416i 1.19354i
\(525\) 0 0
\(526\) 37.7002 0.0716733
\(527\) 84.5666 0.160468
\(528\) 0 0
\(529\) 1207.38 2.28239
\(530\) −10.5686 + 6.44986i −0.0199407 + 0.0121696i
\(531\) 0 0
\(532\) 673.431i 1.26585i
\(533\) −782.148 −1.46744
\(534\) 0 0
\(535\) 257.705 157.274i 0.481692 0.293970i
\(536\) 46.5755i 0.0868946i
\(537\) 0 0
\(538\) 5.59695i 0.0104033i
\(539\) 97.8031i 0.181453i
\(540\) 0 0
\(541\) −845.632 −1.56309 −0.781545 0.623848i \(-0.785568\pi\)
−0.781545 + 0.623848i \(0.785568\pi\)
\(542\) −9.97377 −0.0184018
\(543\) 0 0
\(544\) 60.7092 0.111598
\(545\) −345.072 + 210.593i −0.633160 + 0.386409i
\(546\) 0 0
\(547\) 98.8139i 0.180647i 0.995912 + 0.0903235i \(0.0287901\pi\)
−0.995912 + 0.0903235i \(0.971210\pi\)
\(548\) −301.511 −0.550202
\(549\) 0 0
\(550\) 3.85723 + 1.98317i 0.00701314 + 0.00360576i
\(551\) 732.301i 1.32904i
\(552\) 0 0
\(553\) 627.769i 1.13521i
\(554\) 49.0889i 0.0886081i
\(555\) 0 0
\(556\) −381.465 −0.686089
\(557\) −569.696 −1.02279 −0.511397 0.859345i \(-0.670872\pi\)
−0.511397 + 0.859345i \(0.670872\pi\)
\(558\) 0 0
\(559\) 471.638 0.843717
\(560\) 421.361 + 690.432i 0.752431 + 1.23291i
\(561\) 0 0
\(562\) 8.43333i 0.0150059i
\(563\) 630.387 1.11969 0.559847 0.828596i \(-0.310860\pi\)
0.559847 + 0.828596i \(0.310860\pi\)
\(564\) 0 0
\(565\) 527.723 322.062i 0.934024 0.570022i
\(566\) 8.93847i 0.0157924i
\(567\) 0 0
\(568\) 70.6853i 0.124446i
\(569\) 580.672i 1.02051i −0.860022 0.510257i \(-0.829550\pi\)
0.860022 0.510257i \(-0.170450\pi\)
\(570\) 0 0
\(571\) −833.133 −1.45908 −0.729538 0.683940i \(-0.760265\pi\)
−0.729538 + 0.683940i \(0.760265\pi\)
\(572\) 98.0548 0.171425
\(573\) 0 0
\(574\) 56.2311 0.0979637
\(575\) 476.338 926.468i 0.828414 1.61125i
\(576\) 0 0
\(577\) 454.896i 0.788382i −0.919029 0.394191i \(-0.871025\pi\)
0.919029 0.394191i \(-0.128975\pi\)
\(578\) −11.4367 −0.0197867
\(579\) 0 0
\(580\) 459.281 + 752.567i 0.791864 + 1.29753i
\(581\) 595.969i 1.02576i
\(582\) 0 0
\(583\) 45.6606i 0.0783200i
\(584\) 58.0341i 0.0993734i
\(585\) 0 0
\(586\) −38.2852 −0.0653330
\(587\) 82.5751 0.140673 0.0703365 0.997523i \(-0.477593\pi\)
0.0703365 + 0.997523i \(0.477593\pi\)
\(588\) 0 0
\(589\) −107.149 −0.181916
\(590\) 10.2484 + 16.7927i 0.0173701 + 0.0284622i
\(591\) 0 0
\(592\) 328.812i 0.555426i
\(593\) 588.773 0.992872 0.496436 0.868073i \(-0.334642\pi\)
0.496436 + 0.868073i \(0.334642\pi\)
\(594\) 0 0
\(595\) 346.915 + 568.446i 0.583051 + 0.955372i
\(596\) 192.626i 0.323198i
\(597\) 0 0
\(598\) 55.5275i 0.0928554i
\(599\) 301.226i 0.502881i −0.967873 0.251441i \(-0.919096\pi\)
0.967873 0.251441i \(-0.0809043\pi\)
\(600\) 0 0
\(601\) 6.66057 0.0110825 0.00554124 0.999985i \(-0.498236\pi\)
0.00554124 + 0.999985i \(0.498236\pi\)
\(602\) −33.9076 −0.0563249
\(603\) 0 0
\(604\) 91.1062 0.150838
\(605\) −502.772 + 306.835i −0.831027 + 0.507165i
\(606\) 0 0
\(607\) 404.517i 0.666420i −0.942853 0.333210i \(-0.891868\pi\)
0.942853 0.333210i \(-0.108132\pi\)
\(608\) −76.9205 −0.126514
\(609\) 0 0
\(610\) −28.6546 + 17.4875i −0.0469748 + 0.0286681i
\(611\) 826.026i 1.35193i
\(612\) 0 0
\(613\) 27.7082i 0.0452010i −0.999745 0.0226005i \(-0.992805\pi\)
0.999745 0.0226005i \(-0.00719458\pi\)
\(614\) 28.8040i 0.0469120i
\(615\) 0 0
\(616\) −14.1156 −0.0229149
\(617\) −458.886 −0.743737 −0.371869 0.928285i \(-0.621283\pi\)
−0.371869 + 0.928285i \(0.621283\pi\)
\(618\) 0 0
\(619\) 60.9561 0.0984751 0.0492375 0.998787i \(-0.484321\pi\)
0.0492375 + 0.998787i \(0.484321\pi\)
\(620\) 110.114 67.2010i 0.177603 0.108389i
\(621\) 0 0
\(622\) 52.3165i 0.0841101i
\(623\) 679.693 1.09100
\(624\) 0 0
\(625\) −363.655 508.311i −0.581848 0.813298i
\(626\) 42.6636i 0.0681527i
\(627\) 0 0
\(628\) 467.770i 0.744856i
\(629\) 270.718i 0.430394i
\(630\) 0 0
\(631\) −590.614 −0.935997 −0.467999 0.883729i \(-0.655025\pi\)
−0.467999 + 0.883729i \(0.655025\pi\)
\(632\) 47.7846 0.0756085
\(633\) 0 0
\(634\) −23.7524 −0.0374643
\(635\) 395.429 + 647.939i 0.622722 + 1.02038i
\(636\) 0 0
\(637\) 751.225i 1.17932i
\(638\) −7.66573 −0.0120153
\(639\) 0 0
\(640\) 105.357 64.2982i 0.164621 0.100466i
\(641\) 278.929i 0.435147i 0.976044 + 0.217573i \(0.0698142\pi\)
−0.976044 + 0.217573i \(0.930186\pi\)
\(642\) 0 0
\(643\) 740.066i 1.15096i −0.817816 0.575479i \(-0.804816\pi\)
0.817816 0.575479i \(-0.195184\pi\)
\(644\) 1693.22i 2.62922i
\(645\) 0 0
\(646\) −21.0271 −0.0325497
\(647\) 71.8283 0.111017 0.0555087 0.998458i \(-0.482322\pi\)
0.0555087 + 0.998458i \(0.482322\pi\)
\(648\) 0 0
\(649\) 72.5513 0.111789
\(650\) 29.6273 + 15.2327i 0.0455805 + 0.0234350i
\(651\) 0 0
\(652\) 363.939i 0.558188i
\(653\) −488.472 −0.748043 −0.374021 0.927420i \(-0.622021\pi\)
−0.374021 + 0.927420i \(0.622021\pi\)
\(654\) 0 0
\(655\) −408.214 668.889i −0.623227 1.02120i
\(656\) 904.505i 1.37882i
\(657\) 0 0
\(658\) 59.3857i 0.0902518i
\(659\) 437.294i 0.663573i 0.943355 + 0.331786i \(0.107651\pi\)
−0.943355 + 0.331786i \(0.892349\pi\)
\(660\) 0 0
\(661\) −952.484 −1.44097 −0.720487 0.693468i \(-0.756082\pi\)
−0.720487 + 0.693468i \(0.756082\pi\)
\(662\) 35.0465 0.0529403
\(663\) 0 0
\(664\) −45.3640 −0.0683193
\(665\) −439.553 720.240i −0.660982 1.08307i
\(666\) 0 0
\(667\) 1841.23i 2.76047i
\(668\) 655.256 0.980922
\(669\) 0 0
\(670\) −15.1822 24.8771i −0.0226600 0.0371301i
\(671\) 123.799i 0.184500i
\(672\) 0 0
\(673\) 855.797i 1.27162i −0.771847 0.635808i \(-0.780667\pi\)
0.771847 0.635808i \(-0.219333\pi\)
\(674\) 24.4796i 0.0363199i
\(675\) 0 0
\(676\) 78.7487 0.116492
\(677\) 1038.97 1.53467 0.767333 0.641249i \(-0.221583\pi\)
0.767333 + 0.641249i \(0.221583\pi\)
\(678\) 0 0
\(679\) 1609.62 2.37057
\(680\) 43.2690 26.4065i 0.0636309 0.0388331i
\(681\) 0 0
\(682\) 1.12163i 0.00164462i
\(683\) 1308.84 1.91632 0.958158 0.286238i \(-0.0924049\pi\)
0.958158 + 0.286238i \(0.0924049\pi\)
\(684\) 0 0
\(685\) −322.469 + 196.798i −0.470757 + 0.287297i
\(686\) 5.61208i 0.00818087i
\(687\) 0 0
\(688\) 545.420i 0.792762i
\(689\) 350.719i 0.509026i
\(690\) 0 0
\(691\) −318.933 −0.461553 −0.230776 0.973007i \(-0.574127\pi\)
−0.230776 + 0.973007i \(0.574127\pi\)
\(692\) 899.660 1.30009
\(693\) 0 0
\(694\) 10.4750 0.0150937
\(695\) −407.981 + 248.985i −0.587023 + 0.358252i
\(696\) 0 0
\(697\) 744.698i 1.06843i
\(698\) −0.166417 −0.000238420
\(699\) 0 0
\(700\) 903.434 + 464.495i 1.29062 + 0.663565i
\(701\) 823.878i 1.17529i 0.809119 + 0.587644i \(0.199945\pi\)
−0.809119 + 0.587644i \(0.800055\pi\)
\(702\) 0 0
\(703\) 343.008i 0.487921i
\(704\) 112.856i 0.160307i
\(705\) 0 0
\(706\) 14.4702 0.0204960
\(707\) 974.774 1.37875
\(708\) 0 0
\(709\) 1062.07 1.49798 0.748989 0.662583i \(-0.230540\pi\)
0.748989 + 0.662583i \(0.230540\pi\)
\(710\) 23.0412 + 37.7548i 0.0324524 + 0.0531757i
\(711\) 0 0
\(712\) 51.7369i 0.0726642i
\(713\) 269.405 0.377848
\(714\) 0 0
\(715\) 104.871 64.0011i 0.146672 0.0895120i
\(716\) 1394.78i 1.94802i
\(717\) 0 0
\(718\) 10.4768i 0.0145916i
\(719\) 325.811i 0.453144i −0.973994 0.226572i \(-0.927248\pi\)
0.973994 0.226572i \(-0.0727519\pi\)
\(720\) 0 0
\(721\) −973.385 −1.35005
\(722\) −8.37404 −0.0115984
\(723\) 0 0
\(724\) −1015.95 −1.40324
\(725\) 982.411 + 505.101i 1.35505 + 0.696691i
\(726\) 0 0
\(727\) 45.3290i 0.0623507i 0.999514 + 0.0311754i \(0.00992504\pi\)
−0.999514 + 0.0311754i \(0.990075\pi\)
\(728\) −108.422 −0.148931
\(729\) 0 0
\(730\) 18.9173 + 30.9975i 0.0259142 + 0.0424623i
\(731\) 449.055i 0.614303i
\(732\) 0 0
\(733\) 618.232i 0.843427i 0.906729 + 0.421714i \(0.138571\pi\)
−0.906729 + 0.421714i \(0.861429\pi\)
\(734\) 46.4999i 0.0633514i
\(735\) 0 0
\(736\) 193.402 0.262775
\(737\) −107.479 −0.145834
\(738\) 0 0
\(739\) −62.7472 −0.0849082 −0.0424541 0.999098i \(-0.513518\pi\)
−0.0424541 + 0.999098i \(0.513518\pi\)
\(740\) 215.126 + 352.501i 0.290711 + 0.476352i
\(741\) 0 0
\(742\) 25.2143i 0.0339815i
\(743\) −273.724 −0.368404 −0.184202 0.982888i \(-0.558970\pi\)
−0.184202 + 0.982888i \(0.558970\pi\)
\(744\) 0 0
\(745\) 125.728 + 206.015i 0.168763 + 0.276530i
\(746\) 10.1930i 0.0136635i
\(747\) 0 0
\(748\) 93.3598i 0.124813i
\(749\) 614.828i 0.820865i
\(750\) 0 0
\(751\) 414.271 0.551626 0.275813 0.961211i \(-0.411053\pi\)
0.275813 + 0.961211i \(0.411053\pi\)
\(752\) 955.248 1.27028
\(753\) 0 0
\(754\) −58.8805 −0.0780908
\(755\) 97.4389 59.4656i 0.129058 0.0787624i
\(756\) 0 0
\(757\) 93.2727i 0.123214i 0.998100 + 0.0616068i \(0.0196225\pi\)
−0.998100 + 0.0616068i \(0.980378\pi\)
\(758\) −16.9774 −0.0223976
\(759\) 0 0
\(760\) −54.8233 + 33.4579i −0.0721359 + 0.0440236i
\(761\) 257.174i 0.337942i 0.985621 + 0.168971i \(0.0540444\pi\)
−0.985621 + 0.168971i \(0.945956\pi\)
\(762\) 0 0
\(763\) 823.265i 1.07898i
\(764\) 1070.79i 1.40156i
\(765\) 0 0
\(766\) −30.2381 −0.0394753
\(767\) 557.266 0.726553
\(768\) 0 0
\(769\) −409.863 −0.532982 −0.266491 0.963837i \(-0.585864\pi\)
−0.266491 + 0.963837i \(0.585864\pi\)
\(770\) −7.53948 + 4.60125i −0.00979154 + 0.00597564i
\(771\) 0 0
\(772\) 1225.36i 1.58726i
\(773\) −27.9346 −0.0361379 −0.0180690 0.999837i \(-0.505752\pi\)
−0.0180690 + 0.999837i \(0.505752\pi\)
\(774\) 0 0
\(775\) 73.9053 143.744i 0.0953616 0.185476i
\(776\) 122.521i 0.157888i
\(777\) 0 0
\(778\) 1.14205i 0.00146793i
\(779\) 943.556i 1.21124i
\(780\) 0 0
\(781\) 163.116 0.208855
\(782\) 52.8688 0.0676072
\(783\) 0 0
\(784\) −868.745 −1.10809
\(785\) −305.317 500.284i −0.388938 0.637305i
\(786\) 0 0
\(787\) 1015.24i 1.29002i 0.764176 + 0.645008i \(0.223146\pi\)
−0.764176 + 0.645008i \(0.776854\pi\)
\(788\) 249.279 0.316343
\(789\) 0 0
\(790\) 25.5229 15.5763i 0.0323075 0.0197168i
\(791\) 1259.03i 1.59170i
\(792\) 0 0
\(793\) 950.903i 1.19912i
\(794\) 25.3910i 0.0319786i
\(795\) 0 0
\(796\) −297.757 −0.374066
\(797\) −505.204 −0.633882 −0.316941 0.948445i \(-0.602656\pi\)
−0.316941 + 0.948445i \(0.602656\pi\)
\(798\) 0 0
\(799\) 786.475 0.984324
\(800\) 53.0555 103.192i 0.0663194 0.128990i
\(801\) 0 0
\(802\) 32.0482i 0.0399604i
\(803\) 133.922 0.166777
\(804\) 0 0
\(805\) 1105.17 + 1810.91i 1.37289 + 2.24958i
\(806\) 8.61526i 0.0106889i
\(807\) 0 0
\(808\) 74.1979i 0.0918291i
\(809\) 326.016i 0.402986i 0.979490 + 0.201493i \(0.0645794\pi\)
−0.979490 + 0.201493i \(0.935421\pi\)
\(810\) 0 0
\(811\) −176.933 −0.218167 −0.109083 0.994033i \(-0.534792\pi\)
−0.109083 + 0.994033i \(0.534792\pi\)
\(812\) −1795.46 −2.21115
\(813\) 0 0
\(814\) −3.59061 −0.00441107
\(815\) 237.545 + 389.236i 0.291467 + 0.477590i
\(816\) 0 0
\(817\) 568.968i 0.696411i
\(818\) 49.5659 0.0605940
\(819\) 0 0
\(820\) 591.776 + 969.668i 0.721678 + 1.18252i
\(821\) 226.653i 0.276069i −0.990427 0.138035i \(-0.955922\pi\)
0.990427 0.138035i \(-0.0440785\pi\)
\(822\) 0 0
\(823\) 18.2804i 0.0222119i −0.999938 0.0111059i \(-0.996465\pi\)
0.999938 0.0111059i \(-0.00353520\pi\)
\(824\) 74.0922i 0.0899177i
\(825\) 0 0
\(826\) −40.0637 −0.0485032
\(827\) −1046.88 −1.26588 −0.632940 0.774201i \(-0.718152\pi\)
−0.632940 + 0.774201i \(0.718152\pi\)
\(828\) 0 0
\(829\) 1083.19 1.30662 0.653309 0.757091i \(-0.273380\pi\)
0.653309 + 0.757091i \(0.273380\pi\)
\(830\) −24.2300 + 14.7873i −0.0291928 + 0.0178160i
\(831\) 0 0
\(832\) 866.850i 1.04189i
\(833\) −715.255 −0.858650
\(834\) 0 0
\(835\) 700.802 427.690i 0.839284 0.512204i
\(836\) 118.290i 0.141495i
\(837\) 0 0
\(838\) 5.92930i 0.00707553i
\(839\) 1285.11i 1.53172i 0.643010 + 0.765858i \(0.277686\pi\)
−0.643010 + 0.765858i \(0.722314\pi\)
\(840\) 0 0
\(841\) −1111.41 −1.32154
\(842\) −59.9922 −0.0712496
\(843\) 0 0
\(844\) −652.615 −0.773241
\(845\) 84.2224 51.3998i 0.0996715 0.0608282i
\(846\) 0 0
\(847\) 1199.50i 1.41618i
\(848\) 405.584 0.478283
\(849\) 0 0
\(850\) 14.5034 28.2087i 0.0170628 0.0331868i
\(851\) 862.430i 1.01343i
\(852\) 0 0
\(853\) 193.821i 0.227223i −0.993525 0.113611i \(-0.963758\pi\)
0.993525 0.113611i \(-0.0362419\pi\)
\(854\) 68.3635i 0.0800510i
\(855\) 0 0
\(856\) 46.7995 0.0546723
\(857\) 30.1485 0.0351792 0.0175896 0.999845i \(-0.494401\pi\)
0.0175896 + 0.999845i \(0.494401\pi\)
\(858\) 0 0
\(859\) −773.804 −0.900820 −0.450410 0.892822i \(-0.648722\pi\)
−0.450410 + 0.892822i \(0.648722\pi\)
\(860\) −356.843 584.714i −0.414934 0.679900i
\(861\) 0 0
\(862\) 33.4485i 0.0388034i
\(863\) −421.375 −0.488267 −0.244134 0.969742i \(-0.578504\pi\)
−0.244134 + 0.969742i \(0.578504\pi\)
\(864\) 0 0
\(865\) 962.195 587.215i 1.11236 0.678861i
\(866\) 15.9585i 0.0184279i
\(867\) 0 0
\(868\) 262.707i 0.302658i
\(869\) 110.269i 0.126892i
\(870\) 0 0
\(871\) −825.548 −0.947817
\(872\) −62.6654 −0.0718640
\(873\) 0 0
\(874\) −66.9865 −0.0766436
\(875\) 1269.41 92.8960i 1.45076 0.106167i
\(876\) 0 0
\(877\) 893.177i 1.01845i −0.860635 0.509223i \(-0.829933\pi\)
0.860635 0.509223i \(-0.170067\pi\)
\(878\) −31.7263 −0.0361348
\(879\) 0 0
\(880\) −74.0133 121.276i −0.0841060 0.137814i
\(881\) 718.024i 0.815011i −0.913203 0.407505i \(-0.866399\pi\)
0.913203 0.407505i \(-0.133601\pi\)
\(882\) 0 0
\(883\) 274.425i 0.310788i −0.987853 0.155394i \(-0.950335\pi\)
0.987853 0.155394i \(-0.0496646\pi\)
\(884\) 717.096i 0.811195i
\(885\) 0 0
\(886\) −34.6535 −0.0391123
\(887\) −239.686 −0.270221 −0.135110 0.990831i \(-0.543139\pi\)
−0.135110 + 0.990831i \(0.543139\pi\)
\(888\) 0 0
\(889\) −1545.84 −1.73885
\(890\) −16.8646 27.6340i −0.0189490 0.0310494i
\(891\) 0 0
\(892\) 71.7196i 0.0804032i
\(893\) −996.490 −1.11589
\(894\) 0 0
\(895\) −910.384 1491.73i −1.01719 1.66674i
\(896\) 251.359i 0.280535i
\(897\) 0 0
\(898\) 15.0110i 0.0167160i
\(899\) 285.673i 0.317767i
\(900\) 0 0
\(901\) 333.926 0.370617
\(902\) −9.87716 −0.0109503
\(903\) 0 0
\(904\) 95.8350 0.106012
\(905\) −1086.57 + 663.116i −1.20062 + 0.732725i
\(906\) 0 0
\(907\) 209.096i 0.230535i 0.993334 + 0.115268i \(0.0367726\pi\)
−0.993334 + 0.115268i \(0.963227\pi\)
\(908\) −127.992 −0.140960
\(909\) 0 0
\(910\) −57.9107 + 35.3421i −0.0636382 + 0.0388375i
\(911\) 1576.52i 1.73054i −0.501304 0.865271i \(-0.667146\pi\)
0.501304 0.865271i \(-0.332854\pi\)
\(912\) 0 0
\(913\) 104.684i 0.114659i
\(914\) 15.0108i 0.0164232i
\(915\) 0 0
\(916\) 641.108 0.699899
\(917\) 1595.82 1.74026
\(918\) 0 0
\(919\) −1192.75 −1.29788 −0.648939 0.760841i \(-0.724787\pi\)
−0.648939 + 0.760841i \(0.724787\pi\)
\(920\) 137.843 84.1237i 0.149829 0.0914388i
\(921\) 0 0
\(922\) 25.3505i 0.0274951i
\(923\) 1252.89 1.35741
\(924\) 0 0
\(925\) 460.159 + 236.588i 0.497470 + 0.255771i
\(926\) 77.1828i 0.0833508i
\(927\) 0 0
\(928\) 205.081i 0.220992i
\(929\) 1350.47i 1.45368i 0.686809 + 0.726838i \(0.259011\pi\)
−0.686809 + 0.726838i \(0.740989\pi\)
\(930\) 0 0
\(931\) 906.252 0.973418
\(932\) −1377.45 −1.47795
\(933\) 0 0
\(934\) 41.5027 0.0444354
\(935\) −60.9366 99.8492i −0.0651729 0.106791i
\(936\) 0 0
\(937\) 559.923i 0.597570i 0.954320 + 0.298785i \(0.0965813\pi\)
−0.954320 + 0.298785i \(0.903419\pi\)
\(938\) 59.3513 0.0632744
\(939\) 0 0
\(940\) 1024.07 624.974i 1.08943 0.664866i
\(941\) 1172.79i 1.24632i −0.782093 0.623161i \(-0.785848\pi\)
0.782093 0.623161i \(-0.214152\pi\)
\(942\) 0 0
\(943\) 2372.40i 2.51580i
\(944\) 644.444i 0.682674i
\(945\) 0 0
\(946\) 5.95596 0.00629594
\(947\) 490.369 0.517813 0.258906 0.965902i \(-0.416638\pi\)
0.258906 + 0.965902i \(0.416638\pi\)
\(948\) 0 0
\(949\) 1028.65 1.08393
\(950\) −18.3762 + 35.7414i −0.0193434 + 0.0376225i
\(951\) 0 0
\(952\) 103.230i 0.108435i
\(953\) −607.867 −0.637846 −0.318923 0.947781i \(-0.603321\pi\)
−0.318923 + 0.947781i \(0.603321\pi\)
\(954\) 0 0
\(955\) −698.914 1145.22i −0.731847 1.19919i
\(956\) 432.621i 0.452532i
\(957\) 0 0
\(958\) 21.1186i 0.0220445i
\(959\) 769.339i 0.802230i
\(960\) 0 0
\(961\) −919.201 −0.956505
\(962\) −27.5795 −0.0286689
\(963\) 0 0
\(964\) −872.111 −0.904680
\(965\) −799.802 1310.53i −0.828810 1.35807i
\(966\) 0 0
\(967\) 107.415i 0.111081i −0.998456 0.0555405i \(-0.982312\pi\)
0.998456 0.0555405i \(-0.0176882\pi\)
\(968\) −91.3038 −0.0943221
\(969\) 0 0
\(970\) −39.9381 65.4415i −0.0411733 0.0674655i
\(971\) 351.974i 0.362486i 0.983438 + 0.181243i \(0.0580120\pi\)
−0.983438 + 0.181243i \(0.941988\pi\)
\(972\) 0 0
\(973\) 973.352i 1.00036i
\(974\) 10.3222i 0.0105977i
\(975\) 0 0
\(976\) 1099.66 1.12670
\(977\) 385.733 0.394814 0.197407 0.980322i \(-0.436748\pi\)
0.197407 + 0.980322i \(0.436748\pi\)
\(978\) 0 0
\(979\) −119.390 −0.121951
\(980\) −931.332 + 568.379i −0.950339 + 0.579979i
\(981\) 0 0
\(982\) 58.9808i 0.0600619i
\(983\) 49.1559 0.0500060 0.0250030 0.999687i \(-0.492040\pi\)
0.0250030 + 0.999687i \(0.492040\pi\)
\(984\) 0 0
\(985\) 266.606 162.706i 0.270666 0.165184i
\(986\) 56.0612i 0.0568572i
\(987\) 0 0
\(988\) 908.585i 0.919620i
\(989\) 1430.56i 1.44647i
\(990\) 0 0
\(991\) 775.701 0.782746 0.391373 0.920232i \(-0.372000\pi\)
0.391373 + 0.920232i \(0.372000\pi\)
\(992\) 30.0069 0.0302489
\(993\) 0 0
\(994\) −90.0746 −0.0906183
\(995\) −318.454 + 194.348i −0.320054 + 0.195325i
\(996\) 0 0
\(997\) 725.889i 0.728073i 0.931385 + 0.364037i \(0.118602\pi\)
−0.931385 + 0.364037i \(0.881398\pi\)
\(998\) 55.2778 0.0553885
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.b.404.14 yes 24
3.2 odd 2 inner 405.3.d.b.404.11 24
5.4 even 2 inner 405.3.d.b.404.12 yes 24
9.2 odd 6 405.3.h.k.134.14 48
9.4 even 3 405.3.h.k.269.12 48
9.5 odd 6 405.3.h.k.269.13 48
9.7 even 3 405.3.h.k.134.11 48
15.14 odd 2 inner 405.3.d.b.404.13 yes 24
45.4 even 6 405.3.h.k.269.14 48
45.14 odd 6 405.3.h.k.269.11 48
45.29 odd 6 405.3.h.k.134.12 48
45.34 even 6 405.3.h.k.134.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.11 24 3.2 odd 2 inner
405.3.d.b.404.12 yes 24 5.4 even 2 inner
405.3.d.b.404.13 yes 24 15.14 odd 2 inner
405.3.d.b.404.14 yes 24 1.1 even 1 trivial
405.3.h.k.134.11 48 9.7 even 3
405.3.h.k.134.12 48 45.29 odd 6
405.3.h.k.134.13 48 45.34 even 6
405.3.h.k.134.14 48 9.2 odd 6
405.3.h.k.269.11 48 45.14 odd 6
405.3.h.k.269.12 48 9.4 even 3
405.3.h.k.269.13 48 9.5 odd 6
405.3.h.k.269.14 48 45.4 even 6