Properties

Label 405.3.g.f.82.5
Level $405$
Weight $3$
Character 405.82
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(82,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 256x^{12} + 15630x^{8} + 235936x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.5
Root \(-0.417936 + 0.417936i\) of defining polynomial
Character \(\chi\) \(=\) 405.82
Dual form 405.3.g.f.163.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.417936 + 0.417936i) q^{2} -3.65066i q^{4} +(-0.0756586 - 4.99943i) q^{5} +(7.04922 + 7.04922i) q^{7} +(3.19748 - 3.19748i) q^{8} +(2.05782 - 2.12106i) q^{10} +15.2860 q^{11} +(-9.18886 + 9.18886i) q^{13} +5.89224i q^{14} -11.9300 q^{16} +(5.30588 + 5.30588i) q^{17} -32.8227i q^{19} +(-18.2512 + 0.276204i) q^{20} +(6.38857 + 6.38857i) q^{22} +(24.9765 - 24.9765i) q^{23} +(-24.9886 + 0.756499i) q^{25} -7.68071 q^{26} +(25.7343 - 25.7343i) q^{28} -36.3319i q^{29} -1.39975 q^{31} +(-17.7759 - 17.7759i) q^{32} +4.43503i q^{34} +(34.7087 - 35.7754i) q^{35} +(15.9479 + 15.9479i) q^{37} +(13.7178 - 13.7178i) q^{38} +(-16.2275 - 15.7437i) q^{40} +10.2902 q^{41} +(-36.7295 + 36.7295i) q^{43} -55.8040i q^{44} +20.8771 q^{46} +(-8.44960 - 8.44960i) q^{47} +50.3829i q^{49} +(-10.7598 - 10.1274i) q^{50} +(33.5454 + 33.5454i) q^{52} +(-42.9031 + 42.9031i) q^{53} +(-1.15652 - 76.4213i) q^{55} +45.0795 q^{56} +(15.1844 - 15.1844i) q^{58} +0.115635i q^{59} +4.25557 q^{61} +(-0.585006 - 0.585006i) q^{62} +32.8615i q^{64} +(46.6343 + 45.2438i) q^{65} +(42.8151 + 42.8151i) q^{67} +(19.3700 - 19.3700i) q^{68} +(29.4578 - 0.445798i) q^{70} +64.5971 q^{71} +(12.7587 - 12.7587i) q^{73} +13.3304i q^{74} -119.825 q^{76} +(107.754 + 107.754i) q^{77} +13.6288i q^{79} +(0.902603 + 59.6429i) q^{80} +(4.30062 + 4.30062i) q^{82} +(-22.4863 + 22.4863i) q^{83} +(26.1249 - 26.9278i) q^{85} -30.7011 q^{86} +(48.8768 - 48.8768i) q^{88} -68.7586i q^{89} -129.549 q^{91} +(-91.1806 - 91.1806i) q^{92} -7.06278i q^{94} +(-164.095 + 2.48332i) q^{95} +(-10.6904 - 10.6904i) q^{97} +(-21.0568 + 21.0568i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{7} - 56 q^{10} - 44 q^{13} - 32 q^{16} + 32 q^{22} - 92 q^{25} + 176 q^{28} + 320 q^{31} + 4 q^{37} - 528 q^{40} + 256 q^{43} - 16 q^{46} - 308 q^{52} - 364 q^{55} + 492 q^{58} + 8 q^{61} + 88 q^{67}+ \cdots + 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.417936 + 0.417936i 0.208968 + 0.208968i 0.803829 0.594861i \(-0.202793\pi\)
−0.594861 + 0.803829i \(0.702793\pi\)
\(3\) 0 0
\(4\) 3.65066i 0.912665i
\(5\) −0.0756586 4.99943i −0.0151317 0.999886i
\(6\) 0 0
\(7\) 7.04922 + 7.04922i 1.00703 + 1.00703i 0.999975 + 0.00705568i \(0.00224591\pi\)
0.00705568 + 0.999975i \(0.497754\pi\)
\(8\) 3.19748 3.19748i 0.399685 0.399685i
\(9\) 0 0
\(10\) 2.05782 2.12106i 0.205782 0.212106i
\(11\) 15.2860 1.38964 0.694819 0.719185i \(-0.255485\pi\)
0.694819 + 0.719185i \(0.255485\pi\)
\(12\) 0 0
\(13\) −9.18886 + 9.18886i −0.706836 + 0.706836i −0.965869 0.259033i \(-0.916596\pi\)
0.259033 + 0.965869i \(0.416596\pi\)
\(14\) 5.89224i 0.420874i
\(15\) 0 0
\(16\) −11.9300 −0.745622
\(17\) 5.30588 + 5.30588i 0.312111 + 0.312111i 0.845727 0.533616i \(-0.179167\pi\)
−0.533616 + 0.845727i \(0.679167\pi\)
\(18\) 0 0
\(19\) 32.8227i 1.72751i −0.503910 0.863756i \(-0.668106\pi\)
0.503910 0.863756i \(-0.331894\pi\)
\(20\) −18.2512 + 0.276204i −0.912560 + 0.0138102i
\(21\) 0 0
\(22\) 6.38857 + 6.38857i 0.290390 + 0.290390i
\(23\) 24.9765 24.9765i 1.08593 1.08593i 0.0899910 0.995943i \(-0.471316\pi\)
0.995943 0.0899910i \(-0.0286838\pi\)
\(24\) 0 0
\(25\) −24.9886 + 0.756499i −0.999542 + 0.0302600i
\(26\) −7.68071 −0.295412
\(27\) 0 0
\(28\) 25.7343 25.7343i 0.919082 0.919082i
\(29\) 36.3319i 1.25283i −0.779492 0.626413i \(-0.784523\pi\)
0.779492 0.626413i \(-0.215477\pi\)
\(30\) 0 0
\(31\) −1.39975 −0.0451532 −0.0225766 0.999745i \(-0.507187\pi\)
−0.0225766 + 0.999745i \(0.507187\pi\)
\(32\) −17.7759 17.7759i −0.555496 0.555496i
\(33\) 0 0
\(34\) 4.43503i 0.130442i
\(35\) 34.7087 35.7754i 0.991677 1.02215i
\(36\) 0 0
\(37\) 15.9479 + 15.9479i 0.431025 + 0.431025i 0.888977 0.457952i \(-0.151417\pi\)
−0.457952 + 0.888977i \(0.651417\pi\)
\(38\) 13.7178 13.7178i 0.360994 0.360994i
\(39\) 0 0
\(40\) −16.2275 15.7437i −0.405688 0.393592i
\(41\) 10.2902 0.250979 0.125490 0.992095i \(-0.459950\pi\)
0.125490 + 0.992095i \(0.459950\pi\)
\(42\) 0 0
\(43\) −36.7295 + 36.7295i −0.854173 + 0.854173i −0.990644 0.136471i \(-0.956424\pi\)
0.136471 + 0.990644i \(0.456424\pi\)
\(44\) 55.8040i 1.26827i
\(45\) 0 0
\(46\) 20.8771 0.453850
\(47\) −8.44960 8.44960i −0.179779 0.179779i 0.611481 0.791259i \(-0.290574\pi\)
−0.791259 + 0.611481i \(0.790574\pi\)
\(48\) 0 0
\(49\) 50.3829i 1.02822i
\(50\) −10.7598 10.1274i −0.215195 0.202549i
\(51\) 0 0
\(52\) 33.5454 + 33.5454i 0.645104 + 0.645104i
\(53\) −42.9031 + 42.9031i −0.809493 + 0.809493i −0.984557 0.175064i \(-0.943987\pi\)
0.175064 + 0.984557i \(0.443987\pi\)
\(54\) 0 0
\(55\) −1.15652 76.4213i −0.0210276 1.38948i
\(56\) 45.0795 0.804991
\(57\) 0 0
\(58\) 15.1844 15.1844i 0.261800 0.261800i
\(59\) 0.115635i 0.00195991i 1.00000 0.000979955i \(0.000311929\pi\)
−1.00000 0.000979955i \(0.999688\pi\)
\(60\) 0 0
\(61\) 4.25557 0.0697634 0.0348817 0.999391i \(-0.488895\pi\)
0.0348817 + 0.999391i \(0.488895\pi\)
\(62\) −0.585006 0.585006i −0.00943557 0.00943557i
\(63\) 0 0
\(64\) 32.8615i 0.513460i
\(65\) 46.6343 + 45.2438i 0.717450 + 0.696059i
\(66\) 0 0
\(67\) 42.8151 + 42.8151i 0.639032 + 0.639032i 0.950317 0.311285i \(-0.100759\pi\)
−0.311285 + 0.950317i \(0.600759\pi\)
\(68\) 19.3700 19.3700i 0.284852 0.284852i
\(69\) 0 0
\(70\) 29.4578 0.445798i 0.420826 0.00636855i
\(71\) 64.5971 0.909819 0.454910 0.890538i \(-0.349672\pi\)
0.454910 + 0.890538i \(0.349672\pi\)
\(72\) 0 0
\(73\) 12.7587 12.7587i 0.174776 0.174776i −0.614298 0.789074i \(-0.710561\pi\)
0.789074 + 0.614298i \(0.210561\pi\)
\(74\) 13.3304i 0.180141i
\(75\) 0 0
\(76\) −119.825 −1.57664
\(77\) 107.754 + 107.754i 1.39941 + 1.39941i
\(78\) 0 0
\(79\) 13.6288i 0.172516i 0.996273 + 0.0862582i \(0.0274910\pi\)
−0.996273 + 0.0862582i \(0.972509\pi\)
\(80\) 0.902603 + 59.6429i 0.0112825 + 0.745537i
\(81\) 0 0
\(82\) 4.30062 + 4.30062i 0.0524466 + 0.0524466i
\(83\) −22.4863 + 22.4863i −0.270920 + 0.270920i −0.829470 0.558551i \(-0.811358\pi\)
0.558551 + 0.829470i \(0.311358\pi\)
\(84\) 0 0
\(85\) 26.1249 26.9278i 0.307352 0.316798i
\(86\) −30.7011 −0.356989
\(87\) 0 0
\(88\) 48.8768 48.8768i 0.555418 0.555418i
\(89\) 68.7586i 0.772569i −0.922380 0.386284i \(-0.873758\pi\)
0.922380 0.386284i \(-0.126242\pi\)
\(90\) 0 0
\(91\) −129.549 −1.42361
\(92\) −91.1806 91.1806i −0.991093 0.991093i
\(93\) 0 0
\(94\) 7.06278i 0.0751360i
\(95\) −164.095 + 2.48332i −1.72731 + 0.0261402i
\(96\) 0 0
\(97\) −10.6904 10.6904i −0.110210 0.110210i 0.649851 0.760061i \(-0.274831\pi\)
−0.760061 + 0.649851i \(0.774831\pi\)
\(98\) −21.0568 + 21.0568i −0.214865 + 0.214865i
\(99\) 0 0
\(100\) 2.76172 + 91.2247i 0.0276172 + 0.912247i
\(101\) −103.322 −1.02299 −0.511497 0.859285i \(-0.670909\pi\)
−0.511497 + 0.859285i \(0.670909\pi\)
\(102\) 0 0
\(103\) 98.8239 98.8239i 0.959456 0.959456i −0.0397539 0.999210i \(-0.512657\pi\)
0.999210 + 0.0397539i \(0.0126574\pi\)
\(104\) 58.7625i 0.565024i
\(105\) 0 0
\(106\) −35.8615 −0.338316
\(107\) 3.49410 + 3.49410i 0.0326551 + 0.0326551i 0.723246 0.690591i \(-0.242649\pi\)
−0.690591 + 0.723246i \(0.742649\pi\)
\(108\) 0 0
\(109\) 196.002i 1.79818i 0.437760 + 0.899092i \(0.355772\pi\)
−0.437760 + 0.899092i \(0.644228\pi\)
\(110\) 31.4558 32.4225i 0.285962 0.294750i
\(111\) 0 0
\(112\) −84.0968 84.0968i −0.750864 0.750864i
\(113\) 85.6607 85.6607i 0.758059 0.758059i −0.217910 0.975969i \(-0.569924\pi\)
0.975969 + 0.217910i \(0.0699238\pi\)
\(114\) 0 0
\(115\) −126.758 122.978i −1.10224 1.06938i
\(116\) −132.636 −1.14341
\(117\) 0 0
\(118\) −0.0483278 + 0.0483278i −0.000409558 + 0.000409558i
\(119\) 74.8046i 0.628610i
\(120\) 0 0
\(121\) 112.662 0.931093
\(122\) 1.77855 + 1.77855i 0.0145783 + 0.0145783i
\(123\) 0 0
\(124\) 5.11001i 0.0412098i
\(125\) 5.67266 + 124.871i 0.0453813 + 0.998970i
\(126\) 0 0
\(127\) −24.3656 24.3656i −0.191855 0.191855i 0.604642 0.796497i \(-0.293316\pi\)
−0.796497 + 0.604642i \(0.793316\pi\)
\(128\) −84.8375 + 84.8375i −0.662793 + 0.662793i
\(129\) 0 0
\(130\) 0.581111 + 38.3991i 0.00447009 + 0.295378i
\(131\) −85.5580 −0.653115 −0.326557 0.945177i \(-0.605889\pi\)
−0.326557 + 0.945177i \(0.605889\pi\)
\(132\) 0 0
\(133\) 231.375 231.375i 1.73966 1.73966i
\(134\) 35.7880i 0.267074i
\(135\) 0 0
\(136\) 33.9309 0.249492
\(137\) 174.192 + 174.192i 1.27147 + 1.27147i 0.945315 + 0.326159i \(0.105755\pi\)
0.326159 + 0.945315i \(0.394245\pi\)
\(138\) 0 0
\(139\) 149.643i 1.07657i 0.842764 + 0.538283i \(0.180927\pi\)
−0.842764 + 0.538283i \(0.819073\pi\)
\(140\) −130.604 126.710i −0.932884 0.905069i
\(141\) 0 0
\(142\) 26.9974 + 26.9974i 0.190123 + 0.190123i
\(143\) −140.461 + 140.461i −0.982246 + 0.982246i
\(144\) 0 0
\(145\) −181.639 + 2.74882i −1.25268 + 0.0189574i
\(146\) 10.6646 0.0730452
\(147\) 0 0
\(148\) 58.2205 58.2205i 0.393382 0.393382i
\(149\) 241.428i 1.62032i 0.586208 + 0.810160i \(0.300620\pi\)
−0.586208 + 0.810160i \(0.699380\pi\)
\(150\) 0 0
\(151\) 43.2507 0.286429 0.143214 0.989692i \(-0.454256\pi\)
0.143214 + 0.989692i \(0.454256\pi\)
\(152\) −104.950 104.950i −0.690461 0.690461i
\(153\) 0 0
\(154\) 90.0688i 0.584862i
\(155\) 0.105903 + 6.99795i 0.000683246 + 0.0451481i
\(156\) 0 0
\(157\) 70.8404 + 70.8404i 0.451213 + 0.451213i 0.895757 0.444544i \(-0.146634\pi\)
−0.444544 + 0.895757i \(0.646634\pi\)
\(158\) −5.69596 + 5.69596i −0.0360504 + 0.0360504i
\(159\) 0 0
\(160\) −87.5244 + 90.2141i −0.547027 + 0.563838i
\(161\) 352.129 2.18714
\(162\) 0 0
\(163\) −22.8092 + 22.8092i −0.139934 + 0.139934i −0.773603 0.633670i \(-0.781548\pi\)
0.633670 + 0.773603i \(0.281548\pi\)
\(164\) 37.5658i 0.229060i
\(165\) 0 0
\(166\) −18.7957 −0.113227
\(167\) 115.961 + 115.961i 0.694374 + 0.694374i 0.963191 0.268817i \(-0.0866326\pi\)
−0.268817 + 0.963191i \(0.586633\pi\)
\(168\) 0 0
\(169\) 0.129597i 0.000766844i
\(170\) 22.1726 0.335548i 0.130427 0.00197381i
\(171\) 0 0
\(172\) 134.087 + 134.087i 0.779574 + 0.779574i
\(173\) −110.903 + 110.903i −0.641056 + 0.641056i −0.950815 0.309759i \(-0.899752\pi\)
0.309759 + 0.950815i \(0.399752\pi\)
\(174\) 0 0
\(175\) −181.482 170.817i −1.03704 0.976097i
\(176\) −182.361 −1.03614
\(177\) 0 0
\(178\) 28.7367 28.7367i 0.161442 0.161442i
\(179\) 141.760i 0.791958i 0.918260 + 0.395979i \(0.129595\pi\)
−0.918260 + 0.395979i \(0.870405\pi\)
\(180\) 0 0
\(181\) −125.175 −0.691573 −0.345786 0.938313i \(-0.612388\pi\)
−0.345786 + 0.938313i \(0.612388\pi\)
\(182\) −54.1430 54.1430i −0.297489 0.297489i
\(183\) 0 0
\(184\) 159.724i 0.868064i
\(185\) 78.5240 80.9372i 0.424454 0.437498i
\(186\) 0 0
\(187\) 81.1058 + 81.1058i 0.433721 + 0.433721i
\(188\) −30.8466 + 30.8466i −0.164078 + 0.164078i
\(189\) 0 0
\(190\) −69.6190 67.5432i −0.366416 0.355491i
\(191\) 135.259 0.708160 0.354080 0.935215i \(-0.384794\pi\)
0.354080 + 0.935215i \(0.384794\pi\)
\(192\) 0 0
\(193\) 50.2370 50.2370i 0.260296 0.260296i −0.564879 0.825174i \(-0.691077\pi\)
0.825174 + 0.564879i \(0.191077\pi\)
\(194\) 8.93579i 0.0460608i
\(195\) 0 0
\(196\) 183.931 0.938422
\(197\) −244.942 244.942i −1.24336 1.24336i −0.958599 0.284761i \(-0.908086\pi\)
−0.284761 0.958599i \(-0.591914\pi\)
\(198\) 0 0
\(199\) 87.9006i 0.441711i −0.975306 0.220856i \(-0.929115\pi\)
0.975306 0.220856i \(-0.0708850\pi\)
\(200\) −77.4816 + 82.3194i −0.387408 + 0.411597i
\(201\) 0 0
\(202\) −43.1821 43.1821i −0.213773 0.213773i
\(203\) 256.112 256.112i 1.26163 1.26163i
\(204\) 0 0
\(205\) −0.778538 51.4449i −0.00379775 0.250951i
\(206\) 82.6041 0.400991
\(207\) 0 0
\(208\) 109.623 109.623i 0.527032 0.527032i
\(209\) 501.729i 2.40062i
\(210\) 0 0
\(211\) 19.1156 0.0905950 0.0452975 0.998974i \(-0.485576\pi\)
0.0452975 + 0.998974i \(0.485576\pi\)
\(212\) 156.625 + 156.625i 0.738796 + 0.738796i
\(213\) 0 0
\(214\) 2.92061i 0.0136477i
\(215\) 186.405 + 180.847i 0.867001 + 0.841150i
\(216\) 0 0
\(217\) −9.86714 9.86714i −0.0454707 0.0454707i
\(218\) −81.9162 + 81.9162i −0.375762 + 0.375762i
\(219\) 0 0
\(220\) −278.988 + 4.22205i −1.26813 + 0.0191912i
\(221\) −97.5100 −0.441222
\(222\) 0 0
\(223\) −275.150 + 275.150i −1.23386 + 1.23386i −0.271388 + 0.962470i \(0.587483\pi\)
−0.962470 + 0.271388i \(0.912517\pi\)
\(224\) 250.612i 1.11880i
\(225\) 0 0
\(226\) 71.6013 0.316820
\(227\) −3.37865 3.37865i −0.0148839 0.0148839i 0.699626 0.714510i \(-0.253350\pi\)
−0.714510 + 0.699626i \(0.753350\pi\)
\(228\) 0 0
\(229\) 290.400i 1.26812i 0.773283 + 0.634061i \(0.218613\pi\)
−0.773283 + 0.634061i \(0.781387\pi\)
\(230\) −1.57953 104.374i −0.00686753 0.453798i
\(231\) 0 0
\(232\) −116.171 116.171i −0.500736 0.500736i
\(233\) 41.5335 41.5335i 0.178255 0.178255i −0.612340 0.790595i \(-0.709771\pi\)
0.790595 + 0.612340i \(0.209771\pi\)
\(234\) 0 0
\(235\) −41.6039 + 42.8825i −0.177038 + 0.182479i
\(236\) 0.422143 0.00178874
\(237\) 0 0
\(238\) −31.2635 + 31.2635i −0.131359 + 0.131359i
\(239\) 353.502i 1.47909i 0.673108 + 0.739544i \(0.264959\pi\)
−0.673108 + 0.739544i \(0.735041\pi\)
\(240\) 0 0
\(241\) −336.159 −1.39485 −0.697425 0.716658i \(-0.745671\pi\)
−0.697425 + 0.716658i \(0.745671\pi\)
\(242\) 47.0856 + 47.0856i 0.194569 + 0.194569i
\(243\) 0 0
\(244\) 15.5356i 0.0636706i
\(245\) 251.886 3.81190i 1.02810 0.0155588i
\(246\) 0 0
\(247\) 301.604 + 301.604i 1.22107 + 1.22107i
\(248\) −4.47568 + 4.47568i −0.0180471 + 0.0180471i
\(249\) 0 0
\(250\) −49.8173 + 54.5589i −0.199269 + 0.218236i
\(251\) −284.670 −1.13414 −0.567071 0.823669i \(-0.691923\pi\)
−0.567071 + 0.823669i \(0.691923\pi\)
\(252\) 0 0
\(253\) 381.791 381.791i 1.50905 1.50905i
\(254\) 20.3665i 0.0801832i
\(255\) 0 0
\(256\) 60.5326 0.236456
\(257\) −233.124 233.124i −0.907098 0.907098i 0.0889390 0.996037i \(-0.471652\pi\)
−0.996037 + 0.0889390i \(0.971652\pi\)
\(258\) 0 0
\(259\) 224.841i 0.868112i
\(260\) 165.170 170.246i 0.635269 0.654792i
\(261\) 0 0
\(262\) −35.7577 35.7577i −0.136480 0.136480i
\(263\) 27.0122 27.0122i 0.102708 0.102708i −0.653885 0.756594i \(-0.726862\pi\)
0.756594 + 0.653885i \(0.226862\pi\)
\(264\) 0 0
\(265\) 217.737 + 211.245i 0.821650 + 0.797152i
\(266\) 193.399 0.727065
\(267\) 0 0
\(268\) 156.304 156.304i 0.583222 0.583222i
\(269\) 371.565i 1.38128i −0.723198 0.690641i \(-0.757329\pi\)
0.723198 0.690641i \(-0.242671\pi\)
\(270\) 0 0
\(271\) 301.604 1.11293 0.556464 0.830872i \(-0.312158\pi\)
0.556464 + 0.830872i \(0.312158\pi\)
\(272\) −63.2989 63.2989i −0.232717 0.232717i
\(273\) 0 0
\(274\) 145.602i 0.531394i
\(275\) −381.975 + 11.5639i −1.38900 + 0.0420504i
\(276\) 0 0
\(277\) 115.928 + 115.928i 0.418513 + 0.418513i 0.884691 0.466178i \(-0.154369\pi\)
−0.466178 + 0.884691i \(0.654369\pi\)
\(278\) −62.5410 + 62.5410i −0.224968 + 0.224968i
\(279\) 0 0
\(280\) −3.41065 225.372i −0.0121809 0.804899i
\(281\) 175.645 0.625070 0.312535 0.949906i \(-0.398822\pi\)
0.312535 + 0.949906i \(0.398822\pi\)
\(282\) 0 0
\(283\) 73.2061 73.2061i 0.258679 0.258679i −0.565838 0.824517i \(-0.691447\pi\)
0.824517 + 0.565838i \(0.191447\pi\)
\(284\) 235.822i 0.830360i
\(285\) 0 0
\(286\) −117.407 −0.410515
\(287\) 72.5375 + 72.5375i 0.252744 + 0.252744i
\(288\) 0 0
\(289\) 232.695i 0.805174i
\(290\) −77.0622 74.7645i −0.265732 0.257809i
\(291\) 0 0
\(292\) −46.5775 46.5775i −0.159512 0.159512i
\(293\) 391.391 391.391i 1.33580 1.33580i 0.435724 0.900080i \(-0.356492\pi\)
0.900080 0.435724i \(-0.143508\pi\)
\(294\) 0 0
\(295\) 0.578107 0.00874875i 0.00195968 2.96568e-5i
\(296\) 101.987 0.344549
\(297\) 0 0
\(298\) −100.901 + 100.901i −0.338595 + 0.338595i
\(299\) 459.011i 1.53515i
\(300\) 0 0
\(301\) −517.828 −1.72036
\(302\) 18.0760 + 18.0760i 0.0598544 + 0.0598544i
\(303\) 0 0
\(304\) 391.574i 1.28807i
\(305\) −0.321970 21.2754i −0.00105564 0.0697554i
\(306\) 0 0
\(307\) 156.225 + 156.225i 0.508875 + 0.508875i 0.914181 0.405306i \(-0.132835\pi\)
−0.405306 + 0.914181i \(0.632835\pi\)
\(308\) 393.375 393.375i 1.27719 1.27719i
\(309\) 0 0
\(310\) −2.88043 + 2.96895i −0.00929172 + 0.00957727i
\(311\) 67.9519 0.218495 0.109247 0.994015i \(-0.465156\pi\)
0.109247 + 0.994015i \(0.465156\pi\)
\(312\) 0 0
\(313\) 132.201 132.201i 0.422368 0.422368i −0.463650 0.886018i \(-0.653461\pi\)
0.886018 + 0.463650i \(0.153461\pi\)
\(314\) 59.2134i 0.188578i
\(315\) 0 0
\(316\) 49.7541 0.157450
\(317\) −304.297 304.297i −0.959927 0.959927i 0.0393008 0.999227i \(-0.487487\pi\)
−0.999227 + 0.0393008i \(0.987487\pi\)
\(318\) 0 0
\(319\) 555.370i 1.74097i
\(320\) 164.289 2.48625i 0.513402 0.00776954i
\(321\) 0 0
\(322\) 147.167 + 147.167i 0.457041 + 0.457041i
\(323\) 174.154 174.154i 0.539175 0.539175i
\(324\) 0 0
\(325\) 222.665 236.568i 0.685123 0.727901i
\(326\) −19.0655 −0.0584832
\(327\) 0 0
\(328\) 32.9026 32.9026i 0.100313 0.100313i
\(329\) 119.126i 0.362086i
\(330\) 0 0
\(331\) −324.790 −0.981240 −0.490620 0.871374i \(-0.663230\pi\)
−0.490620 + 0.871374i \(0.663230\pi\)
\(332\) 82.0900 + 82.0900i 0.247259 + 0.247259i
\(333\) 0 0
\(334\) 96.9281i 0.290204i
\(335\) 210.812 217.291i 0.629289 0.648629i
\(336\) 0 0
\(337\) −110.297 110.297i −0.327291 0.327291i 0.524265 0.851555i \(-0.324340\pi\)
−0.851555 + 0.524265i \(0.824340\pi\)
\(338\) −0.0541631 + 0.0541631i −0.000160246 + 0.000160246i
\(339\) 0 0
\(340\) −98.3043 95.3733i −0.289130 0.280510i
\(341\) −21.3966 −0.0627466
\(342\) 0 0
\(343\) −9.74822 + 9.74822i −0.0284205 + 0.0284205i
\(344\) 234.884i 0.682801i
\(345\) 0 0
\(346\) −92.7004 −0.267920
\(347\) 294.595 + 294.595i 0.848977 + 0.848977i 0.990006 0.141028i \(-0.0450408\pi\)
−0.141028 + 0.990006i \(0.545041\pi\)
\(348\) 0 0
\(349\) 226.876i 0.650075i 0.945701 + 0.325038i \(0.105377\pi\)
−0.945701 + 0.325038i \(0.894623\pi\)
\(350\) −4.45747 147.238i −0.0127356 0.420681i
\(351\) 0 0
\(352\) −271.722 271.722i −0.771939 0.771939i
\(353\) 106.849 106.849i 0.302688 0.302688i −0.539377 0.842065i \(-0.681340\pi\)
0.842065 + 0.539377i \(0.181340\pi\)
\(354\) 0 0
\(355\) −4.88733 322.949i −0.0137671 0.909715i
\(356\) −251.014 −0.705096
\(357\) 0 0
\(358\) −59.2467 + 59.2467i −0.165494 + 0.165494i
\(359\) 24.9262i 0.0694324i −0.999397 0.0347162i \(-0.988947\pi\)
0.999397 0.0347162i \(-0.0110527\pi\)
\(360\) 0 0
\(361\) −716.332 −1.98430
\(362\) −52.3150 52.3150i −0.144516 0.144516i
\(363\) 0 0
\(364\) 472.938i 1.29928i
\(365\) −64.7513 62.8207i −0.177401 0.172111i
\(366\) 0 0
\(367\) 24.9623 + 24.9623i 0.0680172 + 0.0680172i 0.740297 0.672280i \(-0.234685\pi\)
−0.672280 + 0.740297i \(0.734685\pi\)
\(368\) −297.968 + 297.968i −0.809696 + 0.809696i
\(369\) 0 0
\(370\) 66.6445 1.00856i 0.180120 0.00272584i
\(371\) −604.867 −1.63037
\(372\) 0 0
\(373\) −431.058 + 431.058i −1.15565 + 1.15565i −0.170251 + 0.985401i \(0.554458\pi\)
−0.985401 + 0.170251i \(0.945542\pi\)
\(374\) 67.7940i 0.181267i
\(375\) 0 0
\(376\) −54.0349 −0.143710
\(377\) 333.849 + 333.849i 0.885541 + 0.885541i
\(378\) 0 0
\(379\) 227.751i 0.600925i −0.953794 0.300463i \(-0.902859\pi\)
0.953794 0.300463i \(-0.0971411\pi\)
\(380\) 9.06576 + 599.055i 0.0238573 + 1.57646i
\(381\) 0 0
\(382\) 56.5294 + 56.5294i 0.147983 + 0.147983i
\(383\) −315.603 + 315.603i −0.824029 + 0.824029i −0.986683 0.162654i \(-0.947995\pi\)
0.162654 + 0.986683i \(0.447995\pi\)
\(384\) 0 0
\(385\) 530.558 546.863i 1.37807 1.42042i
\(386\) 41.9917 0.108787
\(387\) 0 0
\(388\) −39.0270 + 39.0270i −0.100585 + 0.100585i
\(389\) 7.14102i 0.0183574i 0.999958 + 0.00917868i \(0.00292171\pi\)
−0.999958 + 0.00917868i \(0.997078\pi\)
\(390\) 0 0
\(391\) 265.044 0.677863
\(392\) 161.098 + 161.098i 0.410965 + 0.410965i
\(393\) 0 0
\(394\) 204.740i 0.519644i
\(395\) 68.1362 1.03114i 0.172497 0.00261047i
\(396\) 0 0
\(397\) 266.344 + 266.344i 0.670891 + 0.670891i 0.957921 0.287031i \(-0.0926682\pi\)
−0.287031 + 0.957921i \(0.592668\pi\)
\(398\) 36.7368 36.7368i 0.0923035 0.0923035i
\(399\) 0 0
\(400\) 298.112 9.02500i 0.745281 0.0225625i
\(401\) 314.543 0.784398 0.392199 0.919880i \(-0.371715\pi\)
0.392199 + 0.919880i \(0.371715\pi\)
\(402\) 0 0
\(403\) 12.8621 12.8621i 0.0319159 0.0319159i
\(404\) 377.195i 0.933650i
\(405\) 0 0
\(406\) 214.076 0.527282
\(407\) 243.780 + 243.780i 0.598969 + 0.598969i
\(408\) 0 0
\(409\) 307.573i 0.752011i −0.926617 0.376006i \(-0.877297\pi\)
0.926617 0.376006i \(-0.122703\pi\)
\(410\) 21.1753 21.8260i 0.0516470 0.0532342i
\(411\) 0 0
\(412\) −360.773 360.773i −0.875661 0.875661i
\(413\) −0.815133 + 0.815133i −0.00197369 + 0.00197369i
\(414\) 0 0
\(415\) 114.120 + 110.718i 0.274988 + 0.266789i
\(416\) 326.680 0.785289
\(417\) 0 0
\(418\) 209.690 209.690i 0.501652 0.501652i
\(419\) 302.942i 0.723012i −0.932370 0.361506i \(-0.882263\pi\)
0.932370 0.361506i \(-0.117737\pi\)
\(420\) 0 0
\(421\) 510.098 1.21163 0.605817 0.795604i \(-0.292846\pi\)
0.605817 + 0.795604i \(0.292846\pi\)
\(422\) 7.98907 + 7.98907i 0.0189314 + 0.0189314i
\(423\) 0 0
\(424\) 274.364i 0.647085i
\(425\) −136.600 128.572i −0.321412 0.302523i
\(426\) 0 0
\(427\) 29.9984 + 29.9984i 0.0702539 + 0.0702539i
\(428\) 12.7558 12.7558i 0.0298032 0.0298032i
\(429\) 0 0
\(430\) 2.32280 + 153.488i 0.00540186 + 0.356949i
\(431\) −499.696 −1.15939 −0.579693 0.814835i \(-0.696828\pi\)
−0.579693 + 0.814835i \(0.696828\pi\)
\(432\) 0 0
\(433\) −449.536 + 449.536i −1.03819 + 1.03819i −0.0389487 + 0.999241i \(0.512401\pi\)
−0.999241 + 0.0389487i \(0.987599\pi\)
\(434\) 8.24766i 0.0190038i
\(435\) 0 0
\(436\) 715.537 1.64114
\(437\) −819.796 819.796i −1.87596 1.87596i
\(438\) 0 0
\(439\) 570.377i 1.29926i −0.760249 0.649632i \(-0.774923\pi\)
0.760249 0.649632i \(-0.225077\pi\)
\(440\) −248.054 240.658i −0.563759 0.546950i
\(441\) 0 0
\(442\) −40.7529 40.7529i −0.0922012 0.0922012i
\(443\) −610.181 + 610.181i −1.37738 + 1.37738i −0.528371 + 0.849014i \(0.677197\pi\)
−0.849014 + 0.528371i \(0.822803\pi\)
\(444\) 0 0
\(445\) −343.754 + 5.20218i −0.772480 + 0.0116903i
\(446\) −229.990 −0.515673
\(447\) 0 0
\(448\) −231.648 + 231.648i −0.517070 + 0.517070i
\(449\) 36.3143i 0.0808781i −0.999182 0.0404390i \(-0.987124\pi\)
0.999182 0.0404390i \(-0.0128757\pi\)
\(450\) 0 0
\(451\) 157.295 0.348770
\(452\) −312.718 312.718i −0.691854 0.691854i
\(453\) 0 0
\(454\) 2.82412i 0.00622053i
\(455\) 9.80146 + 647.669i 0.0215417 + 1.42345i
\(456\) 0 0
\(457\) −143.824 143.824i −0.314714 0.314714i 0.532019 0.846733i \(-0.321434\pi\)
−0.846733 + 0.532019i \(0.821434\pi\)
\(458\) −121.368 + 121.368i −0.264997 + 0.264997i
\(459\) 0 0
\(460\) −448.952 + 462.749i −0.975983 + 1.00598i
\(461\) 245.025 0.531508 0.265754 0.964041i \(-0.414379\pi\)
0.265754 + 0.964041i \(0.414379\pi\)
\(462\) 0 0
\(463\) 147.086 147.086i 0.317680 0.317680i −0.530195 0.847876i \(-0.677881\pi\)
0.847876 + 0.530195i \(0.177881\pi\)
\(464\) 433.438i 0.934134i
\(465\) 0 0
\(466\) 34.7166 0.0744992
\(467\) −563.699 563.699i −1.20706 1.20706i −0.971974 0.235090i \(-0.924461\pi\)
−0.235090 0.971974i \(-0.575539\pi\)
\(468\) 0 0
\(469\) 603.626i 1.28705i
\(470\) −35.3099 + 0.534360i −0.0751274 + 0.00113694i
\(471\) 0 0
\(472\) 0.369740 + 0.369740i 0.000783347 + 0.000783347i
\(473\) −561.447 + 561.447i −1.18699 + 1.18699i
\(474\) 0 0
\(475\) 24.8304 + 820.193i 0.0522745 + 1.72672i
\(476\) 273.086 0.573710
\(477\) 0 0
\(478\) −147.741 + 147.741i −0.309082 + 0.309082i
\(479\) 196.141i 0.409480i −0.978816 0.204740i \(-0.934365\pi\)
0.978816 0.204740i \(-0.0656348\pi\)
\(480\) 0 0
\(481\) −293.087 −0.609328
\(482\) −140.493 140.493i −0.291479 0.291479i
\(483\) 0 0
\(484\) 411.292i 0.849776i
\(485\) −52.6370 + 54.2546i −0.108530 + 0.111865i
\(486\) 0 0
\(487\) 381.697 + 381.697i 0.783771 + 0.783771i 0.980465 0.196694i \(-0.0630205\pi\)
−0.196694 + 0.980465i \(0.563021\pi\)
\(488\) 13.6071 13.6071i 0.0278834 0.0278834i
\(489\) 0 0
\(490\) 106.865 + 103.679i 0.218092 + 0.211589i
\(491\) 200.579 0.408512 0.204256 0.978917i \(-0.434522\pi\)
0.204256 + 0.978917i \(0.434522\pi\)
\(492\) 0 0
\(493\) 192.773 192.773i 0.391020 0.391020i
\(494\) 252.102i 0.510327i
\(495\) 0 0
\(496\) 16.6990 0.0336673
\(497\) 455.359 + 455.359i 0.916216 + 0.916216i
\(498\) 0 0
\(499\) 365.151i 0.731766i −0.930661 0.365883i \(-0.880767\pi\)
0.930661 0.365883i \(-0.119233\pi\)
\(500\) 455.862 20.7090i 0.911725 0.0414179i
\(501\) 0 0
\(502\) −118.974 118.974i −0.236999 0.236999i
\(503\) −14.5648 + 14.5648i −0.0289558 + 0.0289558i −0.721436 0.692481i \(-0.756518\pi\)
0.692481 + 0.721436i \(0.256518\pi\)
\(504\) 0 0
\(505\) 7.81722 + 516.552i 0.0154796 + 1.02288i
\(506\) 319.128 0.630688
\(507\) 0 0
\(508\) −88.9507 + 88.9507i −0.175100 + 0.175100i
\(509\) 194.591i 0.382301i 0.981561 + 0.191150i \(0.0612218\pi\)
−0.981561 + 0.191150i \(0.938778\pi\)
\(510\) 0 0
\(511\) 179.877 0.352010
\(512\) 364.649 + 364.649i 0.712205 + 0.712205i
\(513\) 0 0
\(514\) 194.862i 0.379109i
\(515\) −501.540 486.586i −0.973864 0.944828i
\(516\) 0 0
\(517\) −129.161 129.161i −0.249827 0.249827i
\(518\) −93.9690 + 93.9690i −0.181407 + 0.181407i
\(519\) 0 0
\(520\) 293.779 4.44588i 0.564959 0.00854978i
\(521\) −381.214 −0.731697 −0.365848 0.930674i \(-0.619221\pi\)
−0.365848 + 0.930674i \(0.619221\pi\)
\(522\) 0 0
\(523\) −367.754 + 367.754i −0.703162 + 0.703162i −0.965088 0.261926i \(-0.915642\pi\)
0.261926 + 0.965088i \(0.415642\pi\)
\(524\) 312.343i 0.596075i
\(525\) 0 0
\(526\) 22.5787 0.0429254
\(527\) −7.42691 7.42691i −0.0140928 0.0140928i
\(528\) 0 0
\(529\) 718.648i 1.35850i
\(530\) 2.71323 + 179.287i 0.00511930 + 0.338277i
\(531\) 0 0
\(532\) −844.670 844.670i −1.58772 1.58772i
\(533\) −94.5548 + 94.5548i −0.177401 + 0.177401i
\(534\) 0 0
\(535\) 17.2041 17.7328i 0.0321572 0.0331455i
\(536\) 273.801 0.510824
\(537\) 0 0
\(538\) 155.290 155.290i 0.288643 0.288643i
\(539\) 770.154i 1.42886i
\(540\) 0 0
\(541\) −378.213 −0.699100 −0.349550 0.936918i \(-0.613665\pi\)
−0.349550 + 0.936918i \(0.613665\pi\)
\(542\) 126.051 + 126.051i 0.232566 + 0.232566i
\(543\) 0 0
\(544\) 188.634i 0.346753i
\(545\) 979.898 14.8292i 1.79798 0.0272096i
\(546\) 0 0
\(547\) 574.894 + 574.894i 1.05099 + 1.05099i 0.998628 + 0.0523664i \(0.0166764\pi\)
0.0523664 + 0.998628i \(0.483324\pi\)
\(548\) 635.915 635.915i 1.16043 1.16043i
\(549\) 0 0
\(550\) −164.474 154.808i −0.299044 0.281469i
\(551\) −1192.51 −2.16427
\(552\) 0 0
\(553\) −96.0723 + 96.0723i −0.173729 + 0.173729i
\(554\) 96.9010i 0.174912i
\(555\) 0 0
\(556\) 546.295 0.982544
\(557\) 201.989 + 201.989i 0.362637 + 0.362637i 0.864783 0.502146i \(-0.167456\pi\)
−0.502146 + 0.864783i \(0.667456\pi\)
\(558\) 0 0
\(559\) 675.004i 1.20752i
\(560\) −414.073 + 426.799i −0.739417 + 0.762140i
\(561\) 0 0
\(562\) 73.4081 + 73.4081i 0.130619 + 0.130619i
\(563\) −527.292 + 527.292i −0.936576 + 0.936576i −0.998105 0.0615292i \(-0.980402\pi\)
0.0615292 + 0.998105i \(0.480402\pi\)
\(564\) 0 0
\(565\) −434.735 421.773i −0.769443 0.746502i
\(566\) 61.1909 0.108111
\(567\) 0 0
\(568\) 206.548 206.548i 0.363641 0.363641i
\(569\) 394.275i 0.692927i −0.938063 0.346463i \(-0.887382\pi\)
0.938063 0.346463i \(-0.112618\pi\)
\(570\) 0 0
\(571\) 13.1614 0.0230498 0.0115249 0.999934i \(-0.496331\pi\)
0.0115249 + 0.999934i \(0.496331\pi\)
\(572\) 512.776 + 512.776i 0.896461 + 0.896461i
\(573\) 0 0
\(574\) 60.6320i 0.105631i
\(575\) −605.231 + 643.021i −1.05258 + 1.11830i
\(576\) 0 0
\(577\) 375.907 + 375.907i 0.651485 + 0.651485i 0.953350 0.301866i \(-0.0976094\pi\)
−0.301866 + 0.953350i \(0.597609\pi\)
\(578\) 97.2516 97.2516i 0.168255 0.168255i
\(579\) 0 0
\(580\) 10.0350 + 663.102i 0.0173017 + 1.14328i
\(581\) −317.022 −0.545649
\(582\) 0 0
\(583\) −655.818 + 655.818i −1.12490 + 1.12490i
\(584\) 81.5912i 0.139711i
\(585\) 0 0
\(586\) 327.152 0.558280
\(587\) 636.233 + 636.233i 1.08387 + 1.08387i 0.996144 + 0.0877277i \(0.0279605\pi\)
0.0877277 + 0.996144i \(0.472039\pi\)
\(588\) 0 0
\(589\) 45.9436i 0.0780028i
\(590\) 0.245268 + 0.237955i 0.000415708 + 0.000403314i
\(591\) 0 0
\(592\) −190.258 190.258i −0.321382 0.321382i
\(593\) 695.567 695.567i 1.17296 1.17296i 0.191463 0.981500i \(-0.438677\pi\)
0.981500 0.191463i \(-0.0613233\pi\)
\(594\) 0 0
\(595\) 373.980 5.65961i 0.628538 0.00951195i
\(596\) 881.371 1.47881
\(597\) 0 0
\(598\) −191.837 + 191.837i −0.320798 + 0.320798i
\(599\) 869.925i 1.45230i −0.687538 0.726148i \(-0.741309\pi\)
0.687538 0.726148i \(-0.258691\pi\)
\(600\) 0 0
\(601\) −17.3041 −0.0287921 −0.0143961 0.999896i \(-0.504583\pi\)
−0.0143961 + 0.999896i \(0.504583\pi\)
\(602\) −216.419 216.419i −0.359499 0.359499i
\(603\) 0 0
\(604\) 157.894i 0.261413i
\(605\) −8.52387 563.247i −0.0140890 0.930987i
\(606\) 0 0
\(607\) −816.896 816.896i −1.34579 1.34579i −0.890176 0.455616i \(-0.849419\pi\)
−0.455616 0.890176i \(-0.650581\pi\)
\(608\) −583.453 + 583.453i −0.959627 + 0.959627i
\(609\) 0 0
\(610\) 8.75718 9.02631i 0.0143560 0.0147972i
\(611\) 155.285 0.254148
\(612\) 0 0
\(613\) −345.194 + 345.194i −0.563122 + 0.563122i −0.930193 0.367071i \(-0.880361\pi\)
0.367071 + 0.930193i \(0.380361\pi\)
\(614\) 130.584i 0.212677i
\(615\) 0 0
\(616\) 689.086 1.11865
\(617\) −290.255 290.255i −0.470429 0.470429i 0.431624 0.902053i \(-0.357941\pi\)
−0.902053 + 0.431624i \(0.857941\pi\)
\(618\) 0 0
\(619\) 1069.79i 1.72825i 0.503277 + 0.864125i \(0.332127\pi\)
−0.503277 + 0.864125i \(0.667873\pi\)
\(620\) 25.5471 0.386616i 0.0412051 0.000623575i
\(621\) 0 0
\(622\) 28.3995 + 28.3995i 0.0456584 + 0.0456584i
\(623\) 484.694 484.694i 0.778001 0.778001i
\(624\) 0 0
\(625\) 623.855 37.8076i 0.998169 0.0604922i
\(626\) 110.503 0.176523
\(627\) 0 0
\(628\) 258.614 258.614i 0.411806 0.411806i
\(629\) 169.236i 0.269055i
\(630\) 0 0
\(631\) 629.240 0.997211 0.498606 0.866829i \(-0.333846\pi\)
0.498606 + 0.866829i \(0.333846\pi\)
\(632\) 43.5778 + 43.5778i 0.0689523 + 0.0689523i
\(633\) 0 0
\(634\) 254.353i 0.401188i
\(635\) −119.971 + 123.658i −0.188930 + 0.194737i
\(636\) 0 0
\(637\) −462.961 462.961i −0.726784 0.726784i
\(638\) 232.109 232.109i 0.363807 0.363807i
\(639\) 0 0
\(640\) 430.558 + 417.720i 0.672746 + 0.652688i
\(641\) −767.625 −1.19754 −0.598771 0.800920i \(-0.704344\pi\)
−0.598771 + 0.800920i \(0.704344\pi\)
\(642\) 0 0
\(643\) −573.042 + 573.042i −0.891200 + 0.891200i −0.994636 0.103436i \(-0.967016\pi\)
0.103436 + 0.994636i \(0.467016\pi\)
\(644\) 1285.50i 1.99612i
\(645\) 0 0
\(646\) 145.570 0.225340
\(647\) −294.799 294.799i −0.455641 0.455641i 0.441581 0.897221i \(-0.354418\pi\)
−0.897221 + 0.441581i \(0.854418\pi\)
\(648\) 0 0
\(649\) 1.76759i 0.00272356i
\(650\) 191.930 5.81045i 0.295276 0.00893915i
\(651\) 0 0
\(652\) 83.2685 + 83.2685i 0.127712 + 0.127712i
\(653\) 631.887 631.887i 0.967667 0.967667i −0.0318263 0.999493i \(-0.510132\pi\)
0.999493 + 0.0318263i \(0.0101323\pi\)
\(654\) 0 0
\(655\) 6.47320 + 427.741i 0.00988274 + 0.653040i
\(656\) −122.761 −0.187136
\(657\) 0 0
\(658\) 49.7871 49.7871i 0.0756642 0.0756642i
\(659\) 302.347i 0.458796i −0.973333 0.229398i \(-0.926324\pi\)
0.973333 0.229398i \(-0.0736758\pi\)
\(660\) 0 0
\(661\) −530.910 −0.803192 −0.401596 0.915817i \(-0.631544\pi\)
−0.401596 + 0.915817i \(0.631544\pi\)
\(662\) −135.741 135.741i −0.205047 0.205047i
\(663\) 0 0
\(664\) 143.799i 0.216565i
\(665\) −1174.25 1139.23i −1.76578 1.71313i
\(666\) 0 0
\(667\) −907.443 907.443i −1.36048 1.36048i
\(668\) 423.332 423.332i 0.633731 0.633731i
\(669\) 0 0
\(670\) 178.919 2.70767i 0.267044 0.00404129i
\(671\) 65.0507 0.0969458
\(672\) 0 0
\(673\) −251.666 + 251.666i −0.373947 + 0.373947i −0.868912 0.494966i \(-0.835181\pi\)
0.494966 + 0.868912i \(0.335181\pi\)
\(674\) 92.1941i 0.136787i
\(675\) 0 0
\(676\) 0.473113 0.000699872
\(677\) −97.3766 97.3766i −0.143835 0.143835i 0.631522 0.775358i \(-0.282430\pi\)
−0.775358 + 0.631522i \(0.782430\pi\)
\(678\) 0 0
\(679\) 150.718i 0.221970i
\(680\) −2.56717 169.635i −0.00377524 0.249464i
\(681\) 0 0
\(682\) −8.94240 8.94240i −0.0131120 0.0131120i
\(683\) 58.2071 58.2071i 0.0852226 0.0852226i −0.663210 0.748433i \(-0.730807\pi\)
0.748433 + 0.663210i \(0.230807\pi\)
\(684\) 0 0
\(685\) 857.681 884.039i 1.25209 1.29057i
\(686\) −8.14825 −0.0118779
\(687\) 0 0
\(688\) 438.181 438.181i 0.636891 0.636891i
\(689\) 788.462i 1.14436i
\(690\) 0 0
\(691\) −122.157 −0.176783 −0.0883915 0.996086i \(-0.528173\pi\)
−0.0883915 + 0.996086i \(0.528173\pi\)
\(692\) 404.868 + 404.868i 0.585070 + 0.585070i
\(693\) 0 0
\(694\) 246.244i 0.354818i
\(695\) 748.128 11.3218i 1.07644 0.0162903i
\(696\) 0 0
\(697\) 54.5983 + 54.5983i 0.0783333 + 0.0783333i
\(698\) −94.8197 + 94.8197i −0.135845 + 0.135845i
\(699\) 0 0
\(700\) −623.595 + 662.531i −0.890849 + 0.946472i
\(701\) 663.953 0.947151 0.473576 0.880753i \(-0.342963\pi\)
0.473576 + 0.880753i \(0.342963\pi\)
\(702\) 0 0
\(703\) 523.455 523.455i 0.744602 0.744602i
\(704\) 502.321i 0.713524i
\(705\) 0 0
\(706\) 89.3119 0.126504
\(707\) −728.341 728.341i −1.03019 1.03019i
\(708\) 0 0
\(709\) 964.553i 1.36044i −0.733007 0.680221i \(-0.761884\pi\)
0.733007 0.680221i \(-0.238116\pi\)
\(710\) 132.929 137.014i 0.187224 0.192978i
\(711\) 0 0
\(712\) −219.855 219.855i −0.308784 0.308784i
\(713\) −34.9608 + 34.9608i −0.0490334 + 0.0490334i
\(714\) 0 0
\(715\) 712.852 + 691.598i 0.996996 + 0.967270i
\(716\) 517.519 0.722792
\(717\) 0 0
\(718\) 10.4176 10.4176i 0.0145091 0.0145091i
\(719\) 171.152i 0.238042i 0.992892 + 0.119021i \(0.0379756\pi\)
−0.992892 + 0.119021i \(0.962024\pi\)
\(720\) 0 0
\(721\) 1393.26 1.93240
\(722\) −299.381 299.381i −0.414655 0.414655i
\(723\) 0 0
\(724\) 456.970i 0.631174i
\(725\) 27.4851 + 907.882i 0.0379104 + 1.25225i
\(726\) 0 0
\(727\) −536.540 536.540i −0.738019 0.738019i 0.234175 0.972194i \(-0.424761\pi\)
−0.972194 + 0.234175i \(0.924761\pi\)
\(728\) −414.229 + 414.229i −0.568996 + 0.568996i
\(729\) 0 0
\(730\) −0.806868 53.3169i −0.00110530 0.0730368i
\(731\) −389.764 −0.533193
\(732\) 0 0
\(733\) −384.894 + 384.894i −0.525094 + 0.525094i −0.919105 0.394012i \(-0.871087\pi\)
0.394012 + 0.919105i \(0.371087\pi\)
\(734\) 20.8653i 0.0284268i
\(735\) 0 0
\(736\) −887.958 −1.20646
\(737\) 654.473 + 654.473i 0.888023 + 0.888023i
\(738\) 0 0
\(739\) 900.167i 1.21809i −0.793136 0.609044i \(-0.791553\pi\)
0.793136 0.609044i \(-0.208447\pi\)
\(740\) −295.474 286.664i −0.399289 0.387384i
\(741\) 0 0
\(742\) −252.795 252.795i −0.340695 0.340695i
\(743\) −109.710 + 109.710i −0.147658 + 0.147658i −0.777071 0.629413i \(-0.783295\pi\)
0.629413 + 0.777071i \(0.283295\pi\)
\(744\) 0 0
\(745\) 1207.00 18.2661i 1.62014 0.0245182i
\(746\) −360.309 −0.482988
\(747\) 0 0
\(748\) 296.090 296.090i 0.395842 0.395842i
\(749\) 49.2613i 0.0657694i
\(750\) 0 0
\(751\) −73.6090 −0.0980147 −0.0490074 0.998798i \(-0.515606\pi\)
−0.0490074 + 0.998798i \(0.515606\pi\)
\(752\) 100.803 + 100.803i 0.134047 + 0.134047i
\(753\) 0 0
\(754\) 279.055i 0.370099i
\(755\) −3.27229 216.229i −0.00433416 0.286396i
\(756\) 0 0
\(757\) −562.868 562.868i −0.743551 0.743551i 0.229708 0.973260i \(-0.426223\pi\)
−0.973260 + 0.229708i \(0.926223\pi\)
\(758\) 95.1852 95.1852i 0.125574 0.125574i
\(759\) 0 0
\(760\) −516.750 + 532.631i −0.679934 + 0.700830i
\(761\) 1444.65 1.89836 0.949182 0.314728i \(-0.101913\pi\)
0.949182 + 0.314728i \(0.101913\pi\)
\(762\) 0 0
\(763\) −1381.66 + 1381.66i −1.81083 + 1.81083i
\(764\) 493.783i 0.646313i
\(765\) 0 0
\(766\) −263.804 −0.344391
\(767\) −1.06255 1.06255i −0.00138533 0.00138533i
\(768\) 0 0
\(769\) 1062.29i 1.38139i 0.723144 + 0.690697i \(0.242696\pi\)
−0.723144 + 0.690697i \(0.757304\pi\)
\(770\) 450.293 6.81448i 0.584796 0.00884997i
\(771\) 0 0
\(772\) −183.398 183.398i −0.237563 0.237563i
\(773\) 772.859 772.859i 0.999818 0.999818i −0.000181879 1.00000i \(-0.500058\pi\)
1.00000 0.000181879i \(5.78938e-5\pi\)
\(774\) 0 0
\(775\) 34.9777 1.05891i 0.0451326 0.00136634i
\(776\) −68.3647 −0.0880988
\(777\) 0 0
\(778\) −2.98448 + 2.98448i −0.00383610 + 0.00383610i
\(779\) 337.751i 0.433570i
\(780\) 0 0
\(781\) 987.433 1.26432
\(782\) 110.772 + 110.772i 0.141652 + 0.141652i
\(783\) 0 0
\(784\) 601.065i 0.766665i
\(785\) 348.802 359.521i 0.444333 0.457989i
\(786\) 0 0
\(787\) −311.022 311.022i −0.395199 0.395199i 0.481337 0.876536i \(-0.340151\pi\)
−0.876536 + 0.481337i \(0.840151\pi\)
\(788\) −894.199 + 894.199i −1.13477 + 1.13477i
\(789\) 0 0
\(790\) 28.9075 + 28.0456i 0.0365918 + 0.0355007i
\(791\) 1207.68 1.52678
\(792\) 0 0
\(793\) −39.1038 + 39.1038i −0.0493112 + 0.0493112i
\(794\) 222.629i 0.280389i
\(795\) 0 0
\(796\) −320.895 −0.403135
\(797\) 166.738 + 166.738i 0.209207 + 0.209207i 0.803931 0.594723i \(-0.202738\pi\)
−0.594723 + 0.803931i \(0.702738\pi\)
\(798\) 0 0
\(799\) 89.6652i 0.112222i
\(800\) 457.641 + 430.746i 0.572051 + 0.538433i
\(801\) 0 0
\(802\) 131.459 + 131.459i 0.163914 + 0.163914i
\(803\) 195.029 195.029i 0.242876 0.242876i
\(804\) 0 0
\(805\) −26.6416 1760.44i −0.0330951 2.18689i
\(806\) 10.7511 0.0133388
\(807\) 0 0
\(808\) −330.371 + 330.371i −0.408875 + 0.408875i
\(809\) 522.911i 0.646367i −0.946336 0.323184i \(-0.895247\pi\)
0.946336 0.323184i \(-0.104753\pi\)
\(810\) 0 0
\(811\) −1339.90 −1.65215 −0.826076 0.563558i \(-0.809432\pi\)
−0.826076 + 0.563558i \(0.809432\pi\)
\(812\) −934.976 934.976i −1.15145 1.15145i
\(813\) 0 0
\(814\) 203.769i 0.250331i
\(815\) 115.758 + 112.307i 0.142035 + 0.137800i
\(816\) 0 0
\(817\) 1205.56 + 1205.56i 1.47559 + 1.47559i
\(818\) 128.546 128.546i 0.157146 0.157146i
\(819\) 0 0
\(820\) −187.808 + 2.84218i −0.229034 + 0.00346607i
\(821\) 1191.75 1.45158 0.725789 0.687917i \(-0.241475\pi\)
0.725789 + 0.687917i \(0.241475\pi\)
\(822\) 0 0
\(823\) −146.323 + 146.323i −0.177792 + 0.177792i −0.790393 0.612600i \(-0.790124\pi\)
0.612600 + 0.790393i \(0.290124\pi\)
\(824\) 631.976i 0.766961i
\(825\) 0 0
\(826\) −0.681347 −0.000824875
\(827\) −245.326 245.326i −0.296645 0.296645i 0.543053 0.839698i \(-0.317268\pi\)
−0.839698 + 0.543053i \(0.817268\pi\)
\(828\) 0 0
\(829\) 469.286i 0.566087i 0.959107 + 0.283044i \(0.0913441\pi\)
−0.959107 + 0.283044i \(0.908656\pi\)
\(830\) 1.42206 + 93.9677i 0.00171332 + 0.113214i
\(831\) 0 0
\(832\) −301.960 301.960i −0.362932 0.362932i
\(833\) −267.326 + 267.326i −0.320919 + 0.320919i
\(834\) 0 0
\(835\) 570.963 588.510i 0.683788 0.704802i
\(836\) −1831.64 −2.19096
\(837\) 0 0
\(838\) 126.610 126.610i 0.151086 0.151086i
\(839\) 0.354307i 0.000422297i −1.00000 0.000211148i \(-0.999933\pi\)
1.00000 0.000211148i \(-6.72106e-5\pi\)
\(840\) 0 0
\(841\) −479.009 −0.569571
\(842\) 213.188 + 213.188i 0.253193 + 0.253193i
\(843\) 0 0
\(844\) 69.7844i 0.0826829i
\(845\) 0.647909 0.00980510i 0.000766756 1.16037e-5i
\(846\) 0 0
\(847\) 794.181 + 794.181i 0.937640 + 0.937640i
\(848\) 511.833 511.833i 0.603576 0.603576i
\(849\) 0 0
\(850\) −3.35510 110.825i −0.00394718 0.130382i
\(851\) 796.647 0.936130
\(852\) 0 0
\(853\) 340.358 340.358i 0.399012 0.399012i −0.478872 0.877885i \(-0.658954\pi\)
0.877885 + 0.478872i \(0.158954\pi\)
\(854\) 25.0748i 0.0293616i
\(855\) 0 0
\(856\) 22.3446 0.0261035
\(857\) 540.094 + 540.094i 0.630215 + 0.630215i 0.948122 0.317907i \(-0.102980\pi\)
−0.317907 + 0.948122i \(0.602980\pi\)
\(858\) 0 0
\(859\) 1231.06i 1.43314i −0.697517 0.716568i \(-0.745712\pi\)
0.697517 0.716568i \(-0.254288\pi\)
\(860\) 660.212 680.502i 0.767689 0.791281i
\(861\) 0 0
\(862\) −208.841 208.841i −0.242274 0.242274i
\(863\) −448.174 + 448.174i −0.519321 + 0.519321i −0.917366 0.398045i \(-0.869689\pi\)
0.398045 + 0.917366i \(0.369689\pi\)
\(864\) 0 0
\(865\) 562.841 + 546.059i 0.650683 + 0.631283i
\(866\) −375.754 −0.433897
\(867\) 0 0
\(868\) −36.0216 + 36.0216i −0.0414995 + 0.0414995i
\(869\) 208.330i 0.239735i
\(870\) 0 0
\(871\) −786.845 −0.903381
\(872\) 626.713 + 626.713i 0.718708 + 0.718708i
\(873\) 0 0
\(874\) 685.244i 0.784032i
\(875\) −840.256 + 920.232i −0.960293 + 1.05169i
\(876\) 0 0
\(877\) 1161.34 + 1161.34i 1.32421 + 1.32421i 0.910329 + 0.413886i \(0.135829\pi\)
0.413886 + 0.910329i \(0.364171\pi\)
\(878\) 238.381 238.381i 0.271504 0.271504i
\(879\) 0 0
\(880\) 13.7972 + 911.703i 0.0156786 + 1.03603i
\(881\) −503.847 −0.571904 −0.285952 0.958244i \(-0.592310\pi\)
−0.285952 + 0.958244i \(0.592310\pi\)
\(882\) 0 0
\(883\) −125.515 + 125.515i −0.142147 + 0.142147i −0.774599 0.632453i \(-0.782048\pi\)
0.632453 + 0.774599i \(0.282048\pi\)
\(884\) 355.976i 0.402688i
\(885\) 0 0
\(886\) −510.033 −0.575658
\(887\) −795.852 795.852i −0.897240 0.897240i 0.0979510 0.995191i \(-0.468771\pi\)
−0.995191 + 0.0979510i \(0.968771\pi\)
\(888\) 0 0
\(889\) 343.517i 0.386409i
\(890\) −145.841 141.493i −0.163866 0.158981i
\(891\) 0 0
\(892\) 1004.48 + 1004.48i 1.12610 + 1.12610i
\(893\) −277.339 + 277.339i −0.310570 + 0.310570i
\(894\) 0 0
\(895\) 708.721 10.7254i 0.791867 0.0119837i
\(896\) −1196.08 −1.33491
\(897\) 0 0
\(898\) 15.1770 15.1770i 0.0169009 0.0169009i
\(899\) 50.8556i 0.0565691i
\(900\) 0 0
\(901\) −455.278 −0.505303
\(902\) 65.7394 + 65.7394i 0.0728818 + 0.0728818i
\(903\) 0 0
\(904\) 547.797i 0.605970i
\(905\) 9.47054 + 625.802i 0.0104647 + 0.691494i
\(906\) 0 0
\(907\) 160.363 + 160.363i 0.176806 + 0.176806i 0.789962 0.613156i \(-0.210100\pi\)
−0.613156 + 0.789962i \(0.710100\pi\)
\(908\) −12.3343 + 12.3343i −0.0135841 + 0.0135841i
\(909\) 0 0
\(910\) −266.587 + 274.780i −0.292953 + 0.301956i
\(911\) 845.063 0.927621 0.463810 0.885934i \(-0.346482\pi\)
0.463810 + 0.885934i \(0.346482\pi\)
\(912\) 0 0
\(913\) −343.727 + 343.727i −0.376480 + 0.376480i
\(914\) 120.219i 0.131530i
\(915\) 0 0
\(916\) 1060.15 1.15737
\(917\) −603.117 603.117i −0.657706 0.657706i
\(918\) 0 0
\(919\) 316.538i 0.344438i 0.985059 + 0.172219i \(0.0550936\pi\)
−0.985059 + 0.172219i \(0.944906\pi\)
\(920\) −798.527 + 12.0845i −0.867964 + 0.0131353i
\(921\) 0 0
\(922\) 102.405 + 102.405i 0.111068 + 0.111068i
\(923\) −593.574 + 593.574i −0.643092 + 0.643092i
\(924\) 0 0
\(925\) −410.580 386.451i −0.443871 0.417785i
\(926\) 122.945 0.132770
\(927\) 0 0
\(928\) −645.832 + 645.832i −0.695940 + 0.695940i
\(929\) 548.992i 0.590949i −0.955351 0.295475i \(-0.904522\pi\)
0.955351 0.295475i \(-0.0954777\pi\)
\(930\) 0 0
\(931\) 1653.70 1.77627
\(932\) −151.625 151.625i −0.162687 0.162687i
\(933\) 0 0
\(934\) 471.180i 0.504475i
\(935\) 399.346 411.619i 0.427108 0.440234i
\(936\) 0 0
\(937\) −331.821 331.821i −0.354131 0.354131i 0.507513 0.861644i \(-0.330565\pi\)
−0.861644 + 0.507513i \(0.830565\pi\)
\(938\) −252.277 + 252.277i −0.268952 + 0.268952i
\(939\) 0 0
\(940\) 156.549 + 151.882i 0.166542 + 0.161576i
\(941\) −1077.94 −1.14553 −0.572765 0.819720i \(-0.694129\pi\)
−0.572765 + 0.819720i \(0.694129\pi\)
\(942\) 0 0
\(943\) 257.012 257.012i 0.272547 0.272547i
\(944\) 1.37952i 0.00146135i
\(945\) 0 0
\(946\) −469.297 −0.496086
\(947\) 287.398 + 287.398i 0.303483 + 0.303483i 0.842375 0.538892i \(-0.181157\pi\)
−0.538892 + 0.842375i \(0.681157\pi\)
\(948\) 0 0
\(949\) 234.475i 0.247076i
\(950\) −332.410 + 353.165i −0.349905 + 0.371753i
\(951\) 0 0
\(952\) 239.186 + 239.186i 0.251246 + 0.251246i
\(953\) −318.146 + 318.146i −0.333837 + 0.333837i −0.854042 0.520205i \(-0.825856\pi\)
0.520205 + 0.854042i \(0.325856\pi\)
\(954\) 0 0
\(955\) −10.2335 676.215i −0.0107157 0.708079i
\(956\) 1290.52 1.34991
\(957\) 0 0
\(958\) 81.9742 81.9742i 0.0855681 0.0855681i
\(959\) 2455.83i 2.56083i
\(960\) 0 0
\(961\) −959.041 −0.997961
\(962\) −122.491 122.491i −0.127330 0.127330i
\(963\) 0 0
\(964\) 1227.20i 1.27303i
\(965\) −254.957 247.356i −0.264204 0.256327i
\(966\) 0 0
\(967\) 971.848 + 971.848i 1.00501 + 1.00501i 0.999987 + 0.00502589i \(0.00159980\pi\)
0.00502589 + 0.999987i \(0.498400\pi\)
\(968\) 360.236 360.236i 0.372144 0.372144i
\(969\) 0 0
\(970\) −44.6738 + 0.676069i −0.0460555 + 0.000696978i
\(971\) −137.755 −0.141869 −0.0709347 0.997481i \(-0.522598\pi\)
−0.0709347 + 0.997481i \(0.522598\pi\)
\(972\) 0 0
\(973\) −1054.86 + 1054.86i −1.08414 + 1.08414i
\(974\) 319.049i 0.327566i
\(975\) 0 0
\(976\) −50.7687 −0.0520171
\(977\) 237.000 + 237.000i 0.242579 + 0.242579i 0.817916 0.575337i \(-0.195129\pi\)
−0.575337 + 0.817916i \(0.695129\pi\)
\(978\) 0 0
\(979\) 1051.05i 1.07359i
\(980\) −13.9159 919.548i −0.0141999 0.938315i
\(981\) 0 0
\(982\) 83.8293 + 83.8293i 0.0853659 + 0.0853659i
\(983\) −609.523 + 609.523i −0.620064 + 0.620064i −0.945548 0.325484i \(-0.894473\pi\)
0.325484 + 0.945548i \(0.394473\pi\)
\(984\) 0 0
\(985\) −1206.04 + 1243.10i −1.22440 + 1.26203i
\(986\) 161.133 0.163421
\(987\) 0 0
\(988\) 1101.05 1101.05i 1.11443 1.11443i
\(989\) 1834.74i 1.85515i
\(990\) 0 0
\(991\) 745.194 0.751962 0.375981 0.926627i \(-0.377306\pi\)
0.375981 + 0.926627i \(0.377306\pi\)
\(992\) 24.8818 + 24.8818i 0.0250825 + 0.0250825i
\(993\) 0 0
\(994\) 380.622i 0.382919i
\(995\) −439.453 + 6.65043i −0.441661 + 0.00668385i
\(996\) 0 0
\(997\) −439.058 439.058i −0.440379 0.440379i 0.451761 0.892139i \(-0.350796\pi\)
−0.892139 + 0.451761i \(0.850796\pi\)
\(998\) 152.610 152.610i 0.152916 0.152916i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.f.82.5 yes 16
3.2 odd 2 inner 405.3.g.f.82.4 16
5.3 odd 4 inner 405.3.g.f.163.5 yes 16
9.2 odd 6 405.3.l.m.352.2 16
9.4 even 3 405.3.l.m.217.2 16
9.5 odd 6 405.3.l.j.217.3 16
9.7 even 3 405.3.l.j.352.3 16
15.8 even 4 inner 405.3.g.f.163.4 yes 16
45.13 odd 12 405.3.l.j.298.3 16
45.23 even 12 405.3.l.m.298.2 16
45.38 even 12 405.3.l.j.28.3 16
45.43 odd 12 405.3.l.m.28.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.f.82.4 16 3.2 odd 2 inner
405.3.g.f.82.5 yes 16 1.1 even 1 trivial
405.3.g.f.163.4 yes 16 15.8 even 4 inner
405.3.g.f.163.5 yes 16 5.3 odd 4 inner
405.3.l.j.28.3 16 45.38 even 12
405.3.l.j.217.3 16 9.5 odd 6
405.3.l.j.298.3 16 45.13 odd 12
405.3.l.j.352.3 16 9.7 even 3
405.3.l.m.28.2 16 45.43 odd 12
405.3.l.m.217.2 16 9.4 even 3
405.3.l.m.298.2 16 45.23 even 12
405.3.l.m.352.2 16 9.2 odd 6