Properties

Label 405.2.p.a.199.9
Level $405$
Weight $2$
Character 405.199
Analytic conductor $3.234$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(19,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.p (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 199.9
Character \(\chi\) \(=\) 405.199
Dual form 405.2.p.a.289.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.133405 + 0.158986i) q^{2} +(0.339817 - 1.92720i) q^{4} +(0.452543 + 2.18980i) q^{5} +(2.83580 - 0.500029i) q^{7} +(0.711201 - 0.410612i) q^{8} +(-0.287775 + 0.364077i) q^{10} +(-1.38169 - 0.502894i) q^{11} +(1.55650 - 1.85496i) q^{13} +(0.457807 + 0.384146i) q^{14} +(-3.51766 - 1.28032i) q^{16} +(1.21975 + 0.704220i) q^{17} +(2.34516 + 4.06194i) q^{19} +(4.37395 - 0.128009i) q^{20} +(-0.104371 - 0.286757i) q^{22} +(2.36796 + 0.417535i) q^{23} +(-4.59041 + 1.98195i) q^{25} +0.502557 q^{26} -5.63507i q^{28} +(6.73596 - 5.65214i) q^{29} +(1.00865 - 5.72033i) q^{31} +(-0.827470 - 2.27346i) q^{32} +(0.0507589 + 0.287868i) q^{34} +(2.37828 + 5.98355i) q^{35} +(7.57034 + 4.37074i) q^{37} +(-0.332934 + 0.914728i) q^{38} +(1.22101 + 1.37157i) q^{40} +(-8.32538 - 6.98582i) q^{41} +(-2.63439 + 7.23793i) q^{43} +(-1.43870 + 2.49190i) q^{44} +(0.249515 + 0.432172i) q^{46} +(-6.68918 + 1.17948i) q^{47} +(1.21391 - 0.441827i) q^{49} +(-0.927484 - 0.465407i) q^{50} +(-3.04596 - 3.63003i) q^{52} +5.43934i q^{53} +(0.475961 - 3.25320i) q^{55} +(1.81151 - 1.52004i) q^{56} +(1.79722 + 0.316898i) q^{58} +(-6.83272 + 2.48691i) q^{59} +(-1.03952 - 5.89541i) q^{61} +(1.04401 - 0.602759i) q^{62} +(-3.49236 + 6.04894i) q^{64} +(4.76637 + 2.56897i) q^{65} +(-4.95280 + 5.90251i) q^{67} +(1.77166 - 2.11138i) q^{68} +(-0.634024 + 1.17635i) q^{70} +(-4.51802 + 7.82544i) q^{71} +(-10.8910 + 6.28791i) q^{73} +(0.315035 + 1.78665i) q^{74} +(8.62507 - 3.13927i) q^{76} +(-4.16966 - 0.735224i) q^{77} +(-1.14861 + 0.963795i) q^{79} +(1.21176 - 8.28236i) q^{80} -2.25556i q^{82} +(-7.46590 - 8.89751i) q^{83} +(-0.990112 + 2.98968i) q^{85} +(-1.50217 + 0.546744i) q^{86} +(-1.18915 + 0.209680i) q^{88} +(5.96766 + 10.3363i) q^{89} +(3.48639 - 6.03861i) q^{91} +(1.60934 - 4.42164i) q^{92} +(-1.07989 - 0.906134i) q^{94} +(-7.83353 + 6.97362i) q^{95} +(1.92260 - 5.28231i) q^{97} +(0.232185 + 0.134052i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} + 9 q^{5} - 3 q^{10} + 6 q^{11} + 18 q^{14} - 24 q^{16} - 6 q^{19} + 57 q^{20} + 3 q^{25} - 48 q^{26} + 30 q^{29} - 30 q^{31} - 24 q^{34} + 12 q^{35} - 9 q^{40} + 12 q^{41} - 78 q^{44} - 6 q^{46}+ \cdots - 87 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.133405 + 0.158986i 0.0943314 + 0.112420i 0.811145 0.584845i \(-0.198845\pi\)
−0.716814 + 0.697265i \(0.754400\pi\)
\(3\) 0 0
\(4\) 0.339817 1.92720i 0.169908 0.963598i
\(5\) 0.452543 + 2.18980i 0.202383 + 0.979306i
\(6\) 0 0
\(7\) 2.83580 0.500029i 1.07183 0.188993i 0.390232 0.920717i \(-0.372395\pi\)
0.681602 + 0.731724i \(0.261284\pi\)
\(8\) 0.711201 0.410612i 0.251448 0.145173i
\(9\) 0 0
\(10\) −0.287775 + 0.364077i −0.0910023 + 0.115131i
\(11\) −1.38169 0.502894i −0.416595 0.151628i 0.125214 0.992130i \(-0.460038\pi\)
−0.541809 + 0.840502i \(0.682260\pi\)
\(12\) 0 0
\(13\) 1.55650 1.85496i 0.431695 0.514474i −0.505715 0.862700i \(-0.668771\pi\)
0.937411 + 0.348226i \(0.113216\pi\)
\(14\) 0.457807 + 0.384146i 0.122354 + 0.102667i
\(15\) 0 0
\(16\) −3.51766 1.28032i −0.879415 0.320081i
\(17\) 1.21975 + 0.704220i 0.295832 + 0.170799i 0.640569 0.767901i \(-0.278699\pi\)
−0.344737 + 0.938699i \(0.612032\pi\)
\(18\) 0 0
\(19\) 2.34516 + 4.06194i 0.538017 + 0.931872i 0.999011 + 0.0444689i \(0.0141595\pi\)
−0.460994 + 0.887403i \(0.652507\pi\)
\(20\) 4.37395 0.128009i 0.978045 0.0286237i
\(21\) 0 0
\(22\) −0.104371 0.286757i −0.0222520 0.0611368i
\(23\) 2.36796 + 0.417535i 0.493753 + 0.0870620i 0.414980 0.909831i \(-0.363789\pi\)
0.0787733 + 0.996893i \(0.474900\pi\)
\(24\) 0 0
\(25\) −4.59041 + 1.98195i −0.918082 + 0.396390i
\(26\) 0.502557 0.0985595
\(27\) 0 0
\(28\) 5.63507i 1.06493i
\(29\) 6.73596 5.65214i 1.25084 1.04958i 0.254240 0.967141i \(-0.418175\pi\)
0.996596 0.0824353i \(-0.0262698\pi\)
\(30\) 0 0
\(31\) 1.00865 5.72033i 0.181159 1.02740i −0.749634 0.661853i \(-0.769770\pi\)
0.930792 0.365549i \(-0.119119\pi\)
\(32\) −0.827470 2.27346i −0.146277 0.401894i
\(33\) 0 0
\(34\) 0.0507589 + 0.287868i 0.00870509 + 0.0493690i
\(35\) 2.37828 + 5.98355i 0.402003 + 1.01140i
\(36\) 0 0
\(37\) 7.57034 + 4.37074i 1.24456 + 0.718545i 0.970019 0.243031i \(-0.0781417\pi\)
0.274538 + 0.961576i \(0.411475\pi\)
\(38\) −0.332934 + 0.914728i −0.0540090 + 0.148388i
\(39\) 0 0
\(40\) 1.22101 + 1.37157i 0.193058 + 0.216864i
\(41\) −8.32538 6.98582i −1.30021 1.09100i −0.990110 0.140297i \(-0.955194\pi\)
−0.310096 0.950705i \(-0.600361\pi\)
\(42\) 0 0
\(43\) −2.63439 + 7.23793i −0.401741 + 1.10377i 0.559684 + 0.828706i \(0.310923\pi\)
−0.961425 + 0.275068i \(0.911300\pi\)
\(44\) −1.43870 + 2.49190i −0.216892 + 0.375667i
\(45\) 0 0
\(46\) 0.249515 + 0.432172i 0.0367889 + 0.0637203i
\(47\) −6.68918 + 1.17948i −0.975717 + 0.172045i −0.638702 0.769454i \(-0.720528\pi\)
−0.337015 + 0.941499i \(0.609417\pi\)
\(48\) 0 0
\(49\) 1.21391 0.441827i 0.173416 0.0631181i
\(50\) −0.927484 0.465407i −0.131166 0.0658185i
\(51\) 0 0
\(52\) −3.04596 3.63003i −0.422398 0.503394i
\(53\) 5.43934i 0.747151i 0.927600 + 0.373575i \(0.121868\pi\)
−0.927600 + 0.373575i \(0.878132\pi\)
\(54\) 0 0
\(55\) 0.475961 3.25320i 0.0641786 0.438661i
\(56\) 1.81151 1.52004i 0.242073 0.203123i
\(57\) 0 0
\(58\) 1.79722 + 0.316898i 0.235986 + 0.0416108i
\(59\) −6.83272 + 2.48691i −0.889545 + 0.323768i −0.746055 0.665884i \(-0.768055\pi\)
−0.143489 + 0.989652i \(0.545832\pi\)
\(60\) 0 0
\(61\) −1.03952 5.89541i −0.133097 0.754830i −0.976166 0.217025i \(-0.930365\pi\)
0.843069 0.537805i \(-0.180746\pi\)
\(62\) 1.04401 0.602759i 0.132589 0.0765504i
\(63\) 0 0
\(64\) −3.49236 + 6.04894i −0.436545 + 0.756118i
\(65\) 4.76637 + 2.56897i 0.591196 + 0.318641i
\(66\) 0 0
\(67\) −4.95280 + 5.90251i −0.605081 + 0.721107i −0.978429 0.206584i \(-0.933765\pi\)
0.373348 + 0.927691i \(0.378210\pi\)
\(68\) 1.77166 2.11138i 0.214845 0.256043i
\(69\) 0 0
\(70\) −0.634024 + 1.17635i −0.0757803 + 0.140600i
\(71\) −4.51802 + 7.82544i −0.536190 + 0.928708i 0.462915 + 0.886403i \(0.346804\pi\)
−0.999105 + 0.0423056i \(0.986530\pi\)
\(72\) 0 0
\(73\) −10.8910 + 6.28791i −1.27469 + 0.735944i −0.975867 0.218364i \(-0.929928\pi\)
−0.298825 + 0.954308i \(0.596595\pi\)
\(74\) 0.315035 + 1.78665i 0.0366221 + 0.207694i
\(75\) 0 0
\(76\) 8.62507 3.13927i 0.989364 0.360099i
\(77\) −4.16966 0.735224i −0.475177 0.0837865i
\(78\) 0 0
\(79\) −1.14861 + 0.963795i −0.129228 + 0.108435i −0.705111 0.709097i \(-0.749103\pi\)
0.575883 + 0.817532i \(0.304658\pi\)
\(80\) 1.21176 8.28236i 0.135478 0.925996i
\(81\) 0 0
\(82\) 2.25556i 0.249085i
\(83\) −7.46590 8.89751i −0.819489 0.976629i 0.180487 0.983577i \(-0.442233\pi\)
−0.999976 + 0.00694857i \(0.997788\pi\)
\(84\) 0 0
\(85\) −0.990112 + 2.98968i −0.107393 + 0.324277i
\(86\) −1.50217 + 0.546744i −0.161983 + 0.0589569i
\(87\) 0 0
\(88\) −1.18915 + 0.209680i −0.126764 + 0.0223519i
\(89\) 5.96766 + 10.3363i 0.632571 + 1.09564i 0.987024 + 0.160571i \(0.0513336\pi\)
−0.354454 + 0.935074i \(0.615333\pi\)
\(90\) 0 0
\(91\) 3.48639 6.03861i 0.365473 0.633018i
\(92\) 1.60934 4.42164i 0.167786 0.460987i
\(93\) 0 0
\(94\) −1.07989 0.906134i −0.111382 0.0934606i
\(95\) −7.83353 + 6.97362i −0.803703 + 0.715478i
\(96\) 0 0
\(97\) 1.92260 5.28231i 0.195211 0.536337i −0.803010 0.595966i \(-0.796769\pi\)
0.998221 + 0.0596285i \(0.0189916\pi\)
\(98\) 0.232185 + 0.134052i 0.0234543 + 0.0135413i
\(99\) 0 0
\(100\) 2.25971 + 9.52012i 0.225971 + 0.952012i
\(101\) −1.86284 10.5647i −0.185360 1.05123i −0.925492 0.378766i \(-0.876348\pi\)
0.740133 0.672461i \(-0.234763\pi\)
\(102\) 0 0
\(103\) 0.183395 + 0.503873i 0.0180704 + 0.0496480i 0.948400 0.317077i \(-0.102701\pi\)
−0.930329 + 0.366725i \(0.880479\pi\)
\(104\) 0.345313 1.95837i 0.0338608 0.192034i
\(105\) 0 0
\(106\) −0.864777 + 0.725634i −0.0839945 + 0.0704798i
\(107\) 2.82482i 0.273086i −0.990634 0.136543i \(-0.956401\pi\)
0.990634 0.136543i \(-0.0435992\pi\)
\(108\) 0 0
\(109\) −0.479801 −0.0459566 −0.0229783 0.999736i \(-0.507315\pi\)
−0.0229783 + 0.999736i \(0.507315\pi\)
\(110\) 0.580707 0.358321i 0.0553682 0.0341646i
\(111\) 0 0
\(112\) −10.6156 1.87182i −1.00308 0.176870i
\(113\) −1.45557 3.99915i −0.136928 0.376208i 0.852209 0.523202i \(-0.175263\pi\)
−0.989137 + 0.146994i \(0.953040\pi\)
\(114\) 0 0
\(115\) 0.157286 + 5.37430i 0.0146670 + 0.501156i
\(116\) −8.60380 14.9022i −0.798843 1.38364i
\(117\) 0 0
\(118\) −1.30690 0.754539i −0.120310 0.0694609i
\(119\) 3.81109 + 1.38712i 0.349362 + 0.127157i
\(120\) 0 0
\(121\) −6.77033 5.68098i −0.615484 0.516453i
\(122\) 0.798608 0.951744i 0.0723026 0.0861669i
\(123\) 0 0
\(124\) −10.6814 3.88773i −0.959222 0.349128i
\(125\) −6.41742 9.15514i −0.573992 0.818861i
\(126\) 0 0
\(127\) −10.4667 + 6.04293i −0.928765 + 0.536223i −0.886421 0.462880i \(-0.846816\pi\)
−0.0423444 + 0.999103i \(0.513483\pi\)
\(128\) −6.19280 + 1.09196i −0.547371 + 0.0965164i
\(129\) 0 0
\(130\) 0.227428 + 1.10050i 0.0199468 + 0.0965200i
\(131\) −0.0451328 + 0.255961i −0.00394327 + 0.0223634i −0.986716 0.162455i \(-0.948059\pi\)
0.982773 + 0.184819i \(0.0591698\pi\)
\(132\) 0 0
\(133\) 8.68150 + 10.3462i 0.752781 + 0.897130i
\(134\) −1.59914 −0.138145
\(135\) 0 0
\(136\) 1.15665 0.0991816
\(137\) 12.0038 + 14.3056i 1.02555 + 1.22221i 0.974703 + 0.223503i \(0.0717491\pi\)
0.0508517 + 0.998706i \(0.483806\pi\)
\(138\) 0 0
\(139\) −1.20743 + 6.84769i −0.102413 + 0.580813i 0.889809 + 0.456333i \(0.150837\pi\)
−0.992222 + 0.124480i \(0.960274\pi\)
\(140\) 12.3397 2.55011i 1.04289 0.215524i
\(141\) 0 0
\(142\) −1.84686 + 0.325651i −0.154985 + 0.0273280i
\(143\) −3.08345 + 1.78023i −0.257851 + 0.148870i
\(144\) 0 0
\(145\) 15.4253 + 12.1925i 1.28101 + 1.01254i
\(146\) −2.45259 0.892671i −0.202978 0.0738780i
\(147\) 0 0
\(148\) 10.9958 13.1043i 0.903850 1.07717i
\(149\) 6.29367 + 5.28102i 0.515598 + 0.432638i 0.863094 0.505044i \(-0.168524\pi\)
−0.347496 + 0.937681i \(0.612968\pi\)
\(150\) 0 0
\(151\) 8.32039 + 3.02837i 0.677103 + 0.246445i 0.657603 0.753364i \(-0.271570\pi\)
0.0195001 + 0.999810i \(0.493793\pi\)
\(152\) 3.33576 + 1.92590i 0.270566 + 0.156211i
\(153\) 0 0
\(154\) −0.439363 0.760998i −0.0354049 0.0613230i
\(155\) 12.9828 0.379958i 1.04280 0.0305190i
\(156\) 0 0
\(157\) −2.12942 5.85053i −0.169946 0.466923i 0.825256 0.564758i \(-0.191031\pi\)
−0.995203 + 0.0978347i \(0.968808\pi\)
\(158\) −0.306459 0.0540370i −0.0243806 0.00429895i
\(159\) 0 0
\(160\) 4.60394 2.84083i 0.363973 0.224587i
\(161\) 6.92384 0.545675
\(162\) 0 0
\(163\) 20.6617i 1.61835i −0.587569 0.809174i \(-0.699915\pi\)
0.587569 0.809174i \(-0.300085\pi\)
\(164\) −16.2922 + 13.6707i −1.27220 + 1.06751i
\(165\) 0 0
\(166\) 0.418590 2.37394i 0.0324889 0.184254i
\(167\) 2.14444 + 5.89179i 0.165942 + 0.455921i 0.994594 0.103843i \(-0.0331140\pi\)
−0.828652 + 0.559764i \(0.810892\pi\)
\(168\) 0 0
\(169\) 1.23923 + 7.02800i 0.0953251 + 0.540615i
\(170\) −0.607402 + 0.241424i −0.0465856 + 0.0185164i
\(171\) 0 0
\(172\) 13.0537 + 7.53656i 0.995336 + 0.574657i
\(173\) −1.35761 + 3.72999i −0.103217 + 0.283586i −0.980542 0.196311i \(-0.937104\pi\)
0.877325 + 0.479897i \(0.159326\pi\)
\(174\) 0 0
\(175\) −12.0265 + 7.91576i −0.909116 + 0.598376i
\(176\) 4.21645 + 3.53802i 0.317827 + 0.266688i
\(177\) 0 0
\(178\) −0.847207 + 2.32768i −0.0635008 + 0.174467i
\(179\) 7.02005 12.1591i 0.524703 0.908813i −0.474883 0.880049i \(-0.657510\pi\)
0.999586 0.0287637i \(-0.00915704\pi\)
\(180\) 0 0
\(181\) −3.31514 5.74198i −0.246412 0.426798i 0.716116 0.697982i \(-0.245918\pi\)
−0.962528 + 0.271183i \(0.912585\pi\)
\(182\) 1.42515 0.251293i 0.105639 0.0186271i
\(183\) 0 0
\(184\) 1.85554 0.675361i 0.136792 0.0497883i
\(185\) −6.14512 + 18.5555i −0.451799 + 1.36422i
\(186\) 0 0
\(187\) −1.33116 1.58642i −0.0973441 0.116010i
\(188\) 13.2922i 0.969431i
\(189\) 0 0
\(190\) −2.15373 0.315104i −0.156248 0.0228600i
\(191\) −7.50310 + 6.29585i −0.542905 + 0.455552i −0.872530 0.488560i \(-0.837522\pi\)
0.329625 + 0.944112i \(0.393078\pi\)
\(192\) 0 0
\(193\) 19.1316 + 3.37342i 1.37712 + 0.242824i 0.812710 0.582668i \(-0.197991\pi\)
0.564414 + 0.825492i \(0.309102\pi\)
\(194\) 1.09630 0.399019i 0.0787094 0.0286479i
\(195\) 0 0
\(196\) −0.438980 2.48958i −0.0313557 0.177827i
\(197\) 5.60720 3.23732i 0.399497 0.230649i −0.286770 0.957999i \(-0.592582\pi\)
0.686267 + 0.727350i \(0.259248\pi\)
\(198\) 0 0
\(199\) 8.61414 14.9201i 0.610640 1.05766i −0.380493 0.924784i \(-0.624246\pi\)
0.991133 0.132875i \(-0.0424210\pi\)
\(200\) −2.45089 + 3.29444i −0.173304 + 0.232952i
\(201\) 0 0
\(202\) 1.43112 1.70555i 0.100693 0.120002i
\(203\) 16.2756 19.3965i 1.14233 1.36137i
\(204\) 0 0
\(205\) 11.5299 21.3923i 0.805286 1.49410i
\(206\) −0.0556428 + 0.0963761i −0.00387681 + 0.00671484i
\(207\) 0 0
\(208\) −7.85019 + 4.53231i −0.544313 + 0.314259i
\(209\) −1.19756 6.79170i −0.0828369 0.469792i
\(210\) 0 0
\(211\) −18.9632 + 6.90203i −1.30548 + 0.475156i −0.898777 0.438405i \(-0.855543\pi\)
−0.406702 + 0.913561i \(0.633321\pi\)
\(212\) 10.4827 + 1.84838i 0.719953 + 0.126947i
\(213\) 0 0
\(214\) 0.449106 0.376845i 0.0307003 0.0257606i
\(215\) −17.0418 2.49331i −1.16224 0.170042i
\(216\) 0 0
\(217\) 16.7261i 1.13544i
\(218\) −0.0640078 0.0762815i −0.00433515 0.00516644i
\(219\) 0 0
\(220\) −6.10781 2.02276i −0.411789 0.136375i
\(221\) 3.20484 1.16647i 0.215581 0.0784649i
\(222\) 0 0
\(223\) −9.20020 + 1.62224i −0.616091 + 0.108633i −0.472980 0.881073i \(-0.656822\pi\)
−0.143111 + 0.989707i \(0.545711\pi\)
\(224\) −3.48334 6.03332i −0.232740 0.403118i
\(225\) 0 0
\(226\) 0.441627 0.764920i 0.0293766 0.0508817i
\(227\) 2.68962 7.38967i 0.178516 0.490470i −0.817870 0.575403i \(-0.804845\pi\)
0.996387 + 0.0849329i \(0.0270676\pi\)
\(228\) 0 0
\(229\) 12.7733 + 10.7181i 0.844086 + 0.708272i 0.958479 0.285163i \(-0.0920478\pi\)
−0.114393 + 0.993436i \(0.536492\pi\)
\(230\) −0.833453 + 0.741963i −0.0549563 + 0.0489236i
\(231\) 0 0
\(232\) 2.46978 6.78568i 0.162149 0.445502i
\(233\) 25.8565 + 14.9283i 1.69391 + 0.977982i 0.951302 + 0.308262i \(0.0997473\pi\)
0.742613 + 0.669720i \(0.233586\pi\)
\(234\) 0 0
\(235\) −5.60996 14.1142i −0.365954 0.920707i
\(236\) 2.47089 + 14.0131i 0.160841 + 0.912174i
\(237\) 0 0
\(238\) 0.287885 + 0.790957i 0.0186608 + 0.0512701i
\(239\) 4.19886 23.8129i 0.271602 1.54033i −0.477952 0.878386i \(-0.658621\pi\)
0.749554 0.661943i \(-0.230268\pi\)
\(240\) 0 0
\(241\) 11.3477 9.52183i 0.730968 0.613355i −0.199427 0.979913i \(-0.563908\pi\)
0.930395 + 0.366558i \(0.119464\pi\)
\(242\) 1.83425i 0.117910i
\(243\) 0 0
\(244\) −11.7149 −0.749967
\(245\) 1.51686 + 2.45827i 0.0969084 + 0.157053i
\(246\) 0 0
\(247\) 11.1850 + 1.97221i 0.711683 + 0.125489i
\(248\) −1.63149 4.48247i −0.103599 0.284637i
\(249\) 0 0
\(250\) 0.599421 2.24162i 0.0379107 0.141772i
\(251\) −3.98405 6.90057i −0.251471 0.435560i 0.712460 0.701712i \(-0.247581\pi\)
−0.963931 + 0.266152i \(0.914248\pi\)
\(252\) 0 0
\(253\) −3.06181 1.76773i −0.192494 0.111137i
\(254\) −2.35704 0.857892i −0.147894 0.0538289i
\(255\) 0 0
\(256\) 9.70145 + 8.14048i 0.606341 + 0.508780i
\(257\) −13.0075 + 15.5017i −0.811386 + 0.966972i −0.999886 0.0151015i \(-0.995193\pi\)
0.188500 + 0.982073i \(0.439637\pi\)
\(258\) 0 0
\(259\) 23.6535 + 8.60917i 1.46976 + 0.534948i
\(260\) 6.57060 8.31276i 0.407491 0.515536i
\(261\) 0 0
\(262\) −0.0467150 + 0.0269709i −0.00288606 + 0.00166627i
\(263\) −21.4662 + 3.78508i −1.32367 + 0.233398i −0.790421 0.612563i \(-0.790138\pi\)
−0.533244 + 0.845961i \(0.679027\pi\)
\(264\) 0 0
\(265\) −11.9110 + 2.46153i −0.731690 + 0.151211i
\(266\) −0.486745 + 2.76047i −0.0298442 + 0.169255i
\(267\) 0 0
\(268\) 9.69226 + 11.5508i 0.592049 + 0.705577i
\(269\) 4.34109 0.264681 0.132341 0.991204i \(-0.457751\pi\)
0.132341 + 0.991204i \(0.457751\pi\)
\(270\) 0 0
\(271\) −13.1672 −0.799852 −0.399926 0.916547i \(-0.630964\pi\)
−0.399926 + 0.916547i \(0.630964\pi\)
\(272\) −3.38902 4.03888i −0.205490 0.244893i
\(273\) 0 0
\(274\) −0.673017 + 3.81687i −0.0406584 + 0.230585i
\(275\) 7.33923 0.429952i 0.442572 0.0259271i
\(276\) 0 0
\(277\) −0.500044 + 0.0881712i −0.0300447 + 0.00529770i −0.188650 0.982044i \(-0.560411\pi\)
0.158606 + 0.987342i \(0.449300\pi\)
\(278\) −1.24976 + 0.721550i −0.0749557 + 0.0432757i
\(279\) 0 0
\(280\) 4.14835 + 3.27895i 0.247912 + 0.195955i
\(281\) 0.459552 + 0.167263i 0.0274146 + 0.00997809i 0.355691 0.934604i \(-0.384246\pi\)
−0.328276 + 0.944582i \(0.606468\pi\)
\(282\) 0 0
\(283\) 2.70977 3.22938i 0.161079 0.191967i −0.679468 0.733705i \(-0.737789\pi\)
0.840547 + 0.541739i \(0.182234\pi\)
\(284\) 13.5459 + 11.3663i 0.803799 + 0.674467i
\(285\) 0 0
\(286\) −0.694377 0.252733i −0.0410594 0.0149444i
\(287\) −27.1023 15.6475i −1.59980 0.923642i
\(288\) 0 0
\(289\) −7.50815 13.0045i −0.441656 0.764970i
\(290\) 0.119376 + 4.07895i 0.00700998 + 0.239524i
\(291\) 0 0
\(292\) 8.41710 + 23.1258i 0.492573 + 1.35333i
\(293\) 22.7756 + 4.01595i 1.33056 + 0.234614i 0.793315 0.608811i \(-0.208353\pi\)
0.537247 + 0.843425i \(0.319464\pi\)
\(294\) 0 0
\(295\) −8.53792 13.8368i −0.497097 0.805612i
\(296\) 7.17872 0.417254
\(297\) 0 0
\(298\) 1.70512i 0.0987747i
\(299\) 4.46024 3.74258i 0.257942 0.216439i
\(300\) 0 0
\(301\) −3.85144 + 21.8426i −0.221994 + 1.25899i
\(302\) 0.628511 + 1.72682i 0.0361668 + 0.0993674i
\(303\) 0 0
\(304\) −3.04888 17.2911i −0.174865 0.991711i
\(305\) 12.4393 4.94426i 0.712273 0.283107i
\(306\) 0 0
\(307\) −2.88589 1.66617i −0.164706 0.0950932i 0.415381 0.909648i \(-0.363648\pi\)
−0.580087 + 0.814554i \(0.696982\pi\)
\(308\) −2.83384 + 7.78592i −0.161473 + 0.443644i
\(309\) 0 0
\(310\) 1.79238 + 2.01339i 0.101800 + 0.114353i
\(311\) 8.46844 + 7.10587i 0.480201 + 0.402937i 0.850499 0.525976i \(-0.176300\pi\)
−0.370298 + 0.928913i \(0.620744\pi\)
\(312\) 0 0
\(313\) −3.19684 + 8.78326i −0.180696 + 0.496459i −0.996662 0.0816417i \(-0.973984\pi\)
0.815965 + 0.578101i \(0.196206\pi\)
\(314\) 0.646076 1.11904i 0.0364602 0.0631509i
\(315\) 0 0
\(316\) 1.46711 + 2.54110i 0.0825312 + 0.142948i
\(317\) 26.8303 4.73090i 1.50694 0.265714i 0.641654 0.766994i \(-0.278248\pi\)
0.865285 + 0.501280i \(0.167137\pi\)
\(318\) 0 0
\(319\) −12.1494 + 4.42203i −0.680238 + 0.247586i
\(320\) −14.8264 4.91015i −0.828820 0.274486i
\(321\) 0 0
\(322\) 0.923674 + 1.10079i 0.0514743 + 0.0613447i
\(323\) 6.60604i 0.367570i
\(324\) 0 0
\(325\) −3.46852 + 11.6000i −0.192399 + 0.643450i
\(326\) 3.28491 2.75637i 0.181934 0.152661i
\(327\) 0 0
\(328\) −8.78948 1.54982i −0.485318 0.0855746i
\(329\) −18.3794 + 6.68956i −1.01329 + 0.368808i
\(330\) 0 0
\(331\) 4.40921 + 25.0059i 0.242352 + 1.37445i 0.826562 + 0.562845i \(0.190293\pi\)
−0.584210 + 0.811602i \(0.698596\pi\)
\(332\) −19.6843 + 11.3647i −1.08032 + 0.623721i
\(333\) 0 0
\(334\) −0.650632 + 1.12693i −0.0356010 + 0.0616628i
\(335\) −15.1667 8.17448i −0.828643 0.446619i
\(336\) 0 0
\(337\) 3.09214 3.68507i 0.168440 0.200739i −0.675221 0.737616i \(-0.735952\pi\)
0.843661 + 0.536877i \(0.180396\pi\)
\(338\) −0.952032 + 1.13459i −0.0517837 + 0.0617134i
\(339\) 0 0
\(340\) 5.42525 + 2.92409i 0.294226 + 0.158581i
\(341\) −4.27036 + 7.39648i −0.231253 + 0.400542i
\(342\) 0 0
\(343\) −14.2349 + 8.21851i −0.768611 + 0.443758i
\(344\) 1.09840 + 6.22934i 0.0592218 + 0.335863i
\(345\) 0 0
\(346\) −0.774126 + 0.281759i −0.0416173 + 0.0151474i
\(347\) −23.4852 4.14108i −1.26075 0.222305i −0.496964 0.867771i \(-0.665552\pi\)
−0.763789 + 0.645466i \(0.776663\pi\)
\(348\) 0 0
\(349\) 10.1403 8.50874i 0.542799 0.455462i −0.329695 0.944087i \(-0.606946\pi\)
0.872494 + 0.488625i \(0.162501\pi\)
\(350\) −2.86288 0.856035i −0.153027 0.0457570i
\(351\) 0 0
\(352\) 3.55734i 0.189607i
\(353\) −12.6452 15.0700i −0.673036 0.802093i 0.316158 0.948707i \(-0.397607\pi\)
−0.989194 + 0.146614i \(0.953163\pi\)
\(354\) 0 0
\(355\) −19.1807 6.35219i −1.01801 0.337139i
\(356\) 21.9480 7.98841i 1.16324 0.423385i
\(357\) 0 0
\(358\) 2.86963 0.505993i 0.151665 0.0267425i
\(359\) −5.85683 10.1443i −0.309112 0.535397i 0.669057 0.743211i \(-0.266698\pi\)
−0.978168 + 0.207814i \(0.933365\pi\)
\(360\) 0 0
\(361\) −1.49955 + 2.59729i −0.0789236 + 0.136700i
\(362\) 0.470638 1.29307i 0.0247362 0.0679621i
\(363\) 0 0
\(364\) −10.4529 8.77098i −0.547878 0.459724i
\(365\) −18.6979 21.0035i −0.978691 1.09937i
\(366\) 0 0
\(367\) −8.09527 + 22.2416i −0.422569 + 1.16100i 0.527662 + 0.849455i \(0.323069\pi\)
−0.950231 + 0.311546i \(0.899153\pi\)
\(368\) −7.79509 4.50050i −0.406347 0.234605i
\(369\) 0 0
\(370\) −3.76984 + 1.49840i −0.195985 + 0.0778980i
\(371\) 2.71983 + 15.4249i 0.141206 + 0.800821i
\(372\) 0 0
\(373\) −7.08072 19.4541i −0.366626 1.00730i −0.976636 0.214902i \(-0.931057\pi\)
0.610010 0.792394i \(-0.291166\pi\)
\(374\) 0.0746341 0.423271i 0.00385924 0.0218868i
\(375\) 0 0
\(376\) −4.27304 + 3.58551i −0.220365 + 0.184908i
\(377\) 21.2925i 1.09662i
\(378\) 0 0
\(379\) 14.1618 0.727442 0.363721 0.931508i \(-0.381506\pi\)
0.363721 + 0.931508i \(0.381506\pi\)
\(380\) 10.7776 + 17.4665i 0.552878 + 0.896012i
\(381\) 0 0
\(382\) −2.00190 0.352989i −0.102426 0.0180605i
\(383\) −6.96733 19.1426i −0.356014 0.978140i −0.980399 0.197023i \(-0.936873\pi\)
0.624385 0.781117i \(-0.285350\pi\)
\(384\) 0 0
\(385\) −0.276959 9.46343i −0.0141151 0.482301i
\(386\) 2.01592 + 3.49168i 0.102608 + 0.177722i
\(387\) 0 0
\(388\) −9.52672 5.50025i −0.483646 0.279233i
\(389\) −10.7321 3.90618i −0.544141 0.198051i 0.0553005 0.998470i \(-0.482388\pi\)
−0.599441 + 0.800419i \(0.704611\pi\)
\(390\) 0 0
\(391\) 2.59427 + 2.17685i 0.131198 + 0.110088i
\(392\) 0.681914 0.812674i 0.0344419 0.0410462i
\(393\) 0 0
\(394\) 1.26271 + 0.459590i 0.0636146 + 0.0231538i
\(395\) −2.63031 2.07905i −0.132345 0.104609i
\(396\) 0 0
\(397\) −2.93301 + 1.69337i −0.147204 + 0.0849880i −0.571793 0.820398i \(-0.693752\pi\)
0.424589 + 0.905386i \(0.360419\pi\)
\(398\) 3.52125 0.620891i 0.176504 0.0311225i
\(399\) 0 0
\(400\) 18.6850 1.09462i 0.934252 0.0547310i
\(401\) −3.73348 + 21.1736i −0.186441 + 1.05736i 0.737649 + 0.675184i \(0.235936\pi\)
−0.924090 + 0.382175i \(0.875175\pi\)
\(402\) 0 0
\(403\) −9.04105 10.7747i −0.450367 0.536726i
\(404\) −20.9933 −1.04445
\(405\) 0 0
\(406\) 5.25502 0.260802
\(407\) −8.26184 9.84608i −0.409524 0.488052i
\(408\) 0 0
\(409\) 2.13010 12.0804i 0.105327 0.597338i −0.885762 0.464139i \(-0.846364\pi\)
0.991089 0.133199i \(-0.0425250\pi\)
\(410\) 4.93921 1.02074i 0.243930 0.0504105i
\(411\) 0 0
\(412\) 1.03338 0.182213i 0.0509111 0.00897700i
\(413\) −18.1327 + 10.4689i −0.892254 + 0.515143i
\(414\) 0 0
\(415\) 16.1051 20.3753i 0.790568 1.00018i
\(416\) −5.50513 2.00370i −0.269911 0.0982397i
\(417\) 0 0
\(418\) 0.920022 1.09644i 0.0449998 0.0536286i
\(419\) 23.2229 + 19.4864i 1.13451 + 0.951971i 0.999246 0.0388381i \(-0.0123657\pi\)
0.135269 + 0.990809i \(0.456810\pi\)
\(420\) 0 0
\(421\) −8.53967 3.10819i −0.416198 0.151484i 0.125429 0.992103i \(-0.459969\pi\)
−0.541627 + 0.840619i \(0.682191\pi\)
\(422\) −3.62710 2.09411i −0.176565 0.101940i
\(423\) 0 0
\(424\) 2.23346 + 3.86847i 0.108466 + 0.187869i
\(425\) −6.99486 0.815184i −0.339301 0.0395423i
\(426\) 0 0
\(427\) −5.89575 16.1984i −0.285315 0.783897i
\(428\) −5.44399 0.959922i −0.263145 0.0463996i
\(429\) 0 0
\(430\) −1.87705 3.04201i −0.0905195 0.146699i
\(431\) 17.7056 0.852847 0.426424 0.904524i \(-0.359773\pi\)
0.426424 + 0.904524i \(0.359773\pi\)
\(432\) 0 0
\(433\) 6.74677i 0.324229i −0.986772 0.162114i \(-0.948169\pi\)
0.986772 0.162114i \(-0.0518314\pi\)
\(434\) 2.65921 2.23134i 0.127646 0.107108i
\(435\) 0 0
\(436\) −0.163045 + 0.924672i −0.00780842 + 0.0442837i
\(437\) 3.85724 + 10.5977i 0.184517 + 0.506956i
\(438\) 0 0
\(439\) 0.774036 + 4.38977i 0.0369427 + 0.209512i 0.997692 0.0679067i \(-0.0216320\pi\)
−0.960749 + 0.277419i \(0.910521\pi\)
\(440\) −0.997298 2.50911i −0.0475443 0.119617i
\(441\) 0 0
\(442\) 0.612991 + 0.353911i 0.0291570 + 0.0168338i
\(443\) 2.74386 7.53869i 0.130365 0.358174i −0.857287 0.514838i \(-0.827852\pi\)
0.987652 + 0.156665i \(0.0500742\pi\)
\(444\) 0 0
\(445\) −19.9337 + 17.7456i −0.944950 + 0.841221i
\(446\) −1.48526 1.24628i −0.0703293 0.0590133i
\(447\) 0 0
\(448\) −6.87900 + 18.8999i −0.325002 + 0.892936i
\(449\) −2.62606 + 4.54847i −0.123931 + 0.214655i −0.921315 0.388818i \(-0.872884\pi\)
0.797383 + 0.603473i \(0.206217\pi\)
\(450\) 0 0
\(451\) 7.98996 + 13.8390i 0.376232 + 0.651654i
\(452\) −8.20177 + 1.44619i −0.385779 + 0.0680232i
\(453\) 0 0
\(454\) 1.53366 0.558206i 0.0719782 0.0261979i
\(455\) 14.8011 + 4.90176i 0.693884 + 0.229798i
\(456\) 0 0
\(457\) −1.94777 2.32127i −0.0911130 0.108584i 0.718562 0.695463i \(-0.244801\pi\)
−0.809675 + 0.586879i \(0.800356\pi\)
\(458\) 3.46062i 0.161704i
\(459\) 0 0
\(460\) 10.4108 + 1.52316i 0.485405 + 0.0710175i
\(461\) 2.25112 1.88892i 0.104845 0.0879757i −0.588858 0.808236i \(-0.700422\pi\)
0.693703 + 0.720261i \(0.255978\pi\)
\(462\) 0 0
\(463\) 18.1798 + 3.20559i 0.844886 + 0.148976i 0.579304 0.815112i \(-0.303325\pi\)
0.265583 + 0.964088i \(0.414436\pi\)
\(464\) −30.9314 + 11.2581i −1.43595 + 0.522644i
\(465\) 0 0
\(466\) 1.07600 + 6.10231i 0.0498448 + 0.282684i
\(467\) 18.7117 10.8032i 0.865875 0.499913i −9.99457e−5 1.00000i \(-0.500032\pi\)
0.865975 + 0.500087i \(0.166698\pi\)
\(468\) 0 0
\(469\) −11.0937 + 19.2149i −0.512261 + 0.887263i
\(470\) 1.49555 2.77480i 0.0689847 0.127992i
\(471\) 0 0
\(472\) −3.83828 + 4.57429i −0.176671 + 0.210549i
\(473\) 7.27982 8.67575i 0.334726 0.398911i
\(474\) 0 0
\(475\) −18.8158 13.9980i −0.863328 0.642270i
\(476\) 3.96833 6.87335i 0.181888 0.315040i
\(477\) 0 0
\(478\) 4.34606 2.50920i 0.198784 0.114768i
\(479\) −0.173381 0.983295i −0.00792200 0.0449279i 0.980591 0.196067i \(-0.0628170\pi\)
−0.988513 + 0.151139i \(0.951706\pi\)
\(480\) 0 0
\(481\) 19.8908 7.23966i 0.906942 0.330100i
\(482\) 3.02767 + 0.533859i 0.137906 + 0.0243166i
\(483\) 0 0
\(484\) −13.2490 + 11.1173i −0.602229 + 0.505330i
\(485\) 12.4372 + 1.81964i 0.564746 + 0.0826255i
\(486\) 0 0
\(487\) 18.3516i 0.831589i 0.909459 + 0.415794i \(0.136496\pi\)
−0.909459 + 0.415794i \(0.863504\pi\)
\(488\) −3.16003 3.76598i −0.143048 0.170478i
\(489\) 0 0
\(490\) −0.188473 + 0.569103i −0.00851436 + 0.0257094i
\(491\) 10.2329 3.72447i 0.461805 0.168083i −0.100632 0.994924i \(-0.532086\pi\)
0.562436 + 0.826841i \(0.309864\pi\)
\(492\) 0 0
\(493\) 12.1965 2.15057i 0.549303 0.0968570i
\(494\) 1.17858 + 2.04135i 0.0530266 + 0.0918449i
\(495\) 0 0
\(496\) −10.8720 + 18.8308i −0.488165 + 0.845527i
\(497\) −8.89927 + 24.4505i −0.399187 + 1.09676i
\(498\) 0 0
\(499\) −22.2753 18.6912i −0.997180 0.836733i −0.0105884 0.999944i \(-0.503370\pi\)
−0.986591 + 0.163211i \(0.947815\pi\)
\(500\) −19.8245 + 9.25657i −0.886579 + 0.413966i
\(501\) 0 0
\(502\) 0.565600 1.55397i 0.0252440 0.0693573i
\(503\) 16.5027 + 9.52781i 0.735817 + 0.424824i 0.820546 0.571580i \(-0.193669\pi\)
−0.0847294 + 0.996404i \(0.527003\pi\)
\(504\) 0 0
\(505\) 22.2915 8.86022i 0.991960 0.394275i
\(506\) −0.127415 0.722607i −0.00566429 0.0321238i
\(507\) 0 0
\(508\) 8.08916 + 22.2248i 0.358898 + 0.986065i
\(509\) 6.00851 34.0759i 0.266322 1.51039i −0.498921 0.866648i \(-0.666270\pi\)
0.765243 0.643741i \(-0.222619\pi\)
\(510\) 0 0
\(511\) −27.7405 + 23.2771i −1.22717 + 1.02972i
\(512\) 15.2050i 0.671974i
\(513\) 0 0
\(514\) −4.19981 −0.185246
\(515\) −1.02038 + 0.629621i −0.0449635 + 0.0277444i
\(516\) 0 0
\(517\) 9.83552 + 1.73427i 0.432566 + 0.0762730i
\(518\) 1.78676 + 4.90907i 0.0785055 + 0.215692i
\(519\) 0 0
\(520\) 4.44470 0.130080i 0.194913 0.00570437i
\(521\) 10.0641 + 17.4315i 0.440915 + 0.763686i 0.997758 0.0669313i \(-0.0213208\pi\)
−0.556843 + 0.830618i \(0.687988\pi\)
\(522\) 0 0
\(523\) −15.9232 9.19327i −0.696274 0.401994i 0.109684 0.993966i \(-0.465016\pi\)
−0.805958 + 0.591973i \(0.798349\pi\)
\(524\) 0.477950 + 0.173960i 0.0208793 + 0.00759946i
\(525\) 0 0
\(526\) −3.46547 2.90788i −0.151102 0.126789i
\(527\) 5.25867 6.26704i 0.229071 0.272996i
\(528\) 0 0
\(529\) −16.1800 5.88905i −0.703480 0.256046i
\(530\) −1.98034 1.56530i −0.0860204 0.0679925i
\(531\) 0 0
\(532\) 22.8893 13.2151i 0.992377 0.572949i
\(533\) −25.9169 + 4.56985i −1.12259 + 0.197942i
\(534\) 0 0
\(535\) 6.18579 1.27835i 0.267435 0.0552680i
\(536\) −1.09879 + 6.23155i −0.0474605 + 0.269162i
\(537\) 0 0
\(538\) 0.579122 + 0.690171i 0.0249677 + 0.0297554i
\(539\) −1.89944 −0.0818146
\(540\) 0 0
\(541\) 4.17044 0.179301 0.0896506 0.995973i \(-0.471425\pi\)
0.0896506 + 0.995973i \(0.471425\pi\)
\(542\) −1.75657 2.09340i −0.0754512 0.0899192i
\(543\) 0 0
\(544\) 0.591711 3.35576i 0.0253694 0.143877i
\(545\) −0.217131 1.05067i −0.00930085 0.0450056i
\(546\) 0 0
\(547\) 23.2507 4.09973i 0.994128 0.175292i 0.347158 0.937807i \(-0.387147\pi\)
0.646970 + 0.762515i \(0.276036\pi\)
\(548\) 31.6488 18.2724i 1.35197 0.780560i
\(549\) 0 0
\(550\) 1.04744 + 1.10947i 0.0446632 + 0.0473081i
\(551\) 38.7555 + 14.1059i 1.65104 + 0.600930i
\(552\) 0 0
\(553\) −2.77530 + 3.30747i −0.118018 + 0.140648i
\(554\) −0.0807262 0.0677373i −0.00342973 0.00287788i
\(555\) 0 0
\(556\) 12.7865 + 4.65392i 0.542270 + 0.197370i
\(557\) 23.3763 + 13.4963i 0.990484 + 0.571856i 0.905419 0.424519i \(-0.139557\pi\)
0.0850648 + 0.996375i \(0.472890\pi\)
\(558\) 0 0
\(559\) 9.32567 + 16.1525i 0.394434 + 0.683179i
\(560\) −0.705114 24.0931i −0.0297965 1.01812i
\(561\) 0 0
\(562\) 0.0347140 + 0.0953759i 0.00146432 + 0.00402319i
\(563\) −13.8182 2.43652i −0.582366 0.102687i −0.125299 0.992119i \(-0.539989\pi\)
−0.457067 + 0.889432i \(0.651100\pi\)
\(564\) 0 0
\(565\) 8.09860 4.99718i 0.340711 0.210233i
\(566\) 0.874921 0.0367757
\(567\) 0 0
\(568\) 7.42061i 0.311362i
\(569\) 17.5672 14.7406i 0.736454 0.617958i −0.195429 0.980718i \(-0.562610\pi\)
0.931883 + 0.362760i \(0.118165\pi\)
\(570\) 0 0
\(571\) 0.200726 1.13838i 0.00840013 0.0476395i −0.980320 0.197417i \(-0.936745\pi\)
0.988720 + 0.149778i \(0.0478558\pi\)
\(572\) 2.38305 + 6.54736i 0.0996401 + 0.273759i
\(573\) 0 0
\(574\) −1.12784 6.39632i −0.0470753 0.266977i
\(575\) −11.6974 + 2.77652i −0.487817 + 0.115789i
\(576\) 0 0
\(577\) −22.9770 13.2658i −0.956544 0.552261i −0.0614366 0.998111i \(-0.519568\pi\)
−0.895108 + 0.445850i \(0.852902\pi\)
\(578\) 1.06590 2.92855i 0.0443358 0.121812i
\(579\) 0 0
\(580\) 28.7392 25.5844i 1.19333 1.06234i
\(581\) −25.6208 21.4984i −1.06293 0.891906i
\(582\) 0 0
\(583\) 2.73541 7.51548i 0.113289 0.311259i
\(584\) −5.16378 + 8.94393i −0.213679 + 0.370102i
\(585\) 0 0
\(586\) 2.39989 + 4.15673i 0.0991385 + 0.171713i
\(587\) 31.2941 5.51799i 1.29165 0.227752i 0.514728 0.857354i \(-0.327893\pi\)
0.776918 + 0.629602i \(0.216782\pi\)
\(588\) 0 0
\(589\) 25.6011 9.31802i 1.05487 0.383942i
\(590\) 1.06086 3.20330i 0.0436748 0.131878i
\(591\) 0 0
\(592\) −21.0339 25.0673i −0.864489 1.03026i
\(593\) 10.3324i 0.424303i 0.977237 + 0.212151i \(0.0680470\pi\)
−0.977237 + 0.212151i \(0.931953\pi\)
\(594\) 0 0
\(595\) −1.31284 + 8.97324i −0.0538210 + 0.367867i
\(596\) 12.3163 10.3346i 0.504494 0.423320i
\(597\) 0 0
\(598\) 1.19003 + 0.209835i 0.0486641 + 0.00858079i
\(599\) −30.6411 + 11.1524i −1.25196 + 0.455677i −0.881064 0.472997i \(-0.843172\pi\)
−0.370897 + 0.928674i \(0.620950\pi\)
\(600\) 0 0
\(601\) −4.69496 26.6264i −0.191511 1.08611i −0.917300 0.398197i \(-0.869636\pi\)
0.725789 0.687918i \(-0.241475\pi\)
\(602\) −3.98646 + 2.30159i −0.162476 + 0.0938056i
\(603\) 0 0
\(604\) 8.66368 15.0059i 0.352520 0.610583i
\(605\) 9.37632 17.3965i 0.381202 0.707269i
\(606\) 0 0
\(607\) −4.08135 + 4.86396i −0.165657 + 0.197422i −0.842486 0.538718i \(-0.818909\pi\)
0.676830 + 0.736140i \(0.263353\pi\)
\(608\) 7.29408 8.69275i 0.295814 0.352537i
\(609\) 0 0
\(610\) 2.44553 + 1.31808i 0.0990166 + 0.0533677i
\(611\) −8.22381 + 14.2440i −0.332700 + 0.576253i
\(612\) 0 0
\(613\) 33.0811 19.0994i 1.33613 0.771416i 0.349900 0.936787i \(-0.386216\pi\)
0.986231 + 0.165371i \(0.0528823\pi\)
\(614\) −0.120094 0.681089i −0.00484661 0.0274865i
\(615\) 0 0
\(616\) −3.26736 + 1.18922i −0.131646 + 0.0479151i
\(617\) 16.9692 + 2.99213i 0.683155 + 0.120459i 0.504446 0.863443i \(-0.331697\pi\)
0.178709 + 0.983902i \(0.442808\pi\)
\(618\) 0 0
\(619\) 3.05553 2.56390i 0.122812 0.103052i −0.579313 0.815105i \(-0.696679\pi\)
0.702125 + 0.712053i \(0.252235\pi\)
\(620\) 3.67952 25.1495i 0.147773 1.01003i
\(621\) 0 0
\(622\) 2.29432i 0.0919937i
\(623\) 22.0916 + 26.3277i 0.885080 + 1.05480i
\(624\) 0 0
\(625\) 17.1437 18.1959i 0.685750 0.727838i
\(626\) −1.82289 + 0.663476i −0.0728571 + 0.0265178i
\(627\) 0 0
\(628\) −11.9987 + 2.11570i −0.478802 + 0.0844257i
\(629\) 6.15593 + 10.6624i 0.245453 + 0.425137i
\(630\) 0 0
\(631\) −3.17235 + 5.49468i −0.126289 + 0.218740i −0.922236 0.386627i \(-0.873640\pi\)
0.795947 + 0.605367i \(0.206973\pi\)
\(632\) −0.421144 + 1.15708i −0.0167522 + 0.0460263i
\(633\) 0 0
\(634\) 4.33143 + 3.63450i 0.172023 + 0.144345i
\(635\) −17.9694 20.1852i −0.713093 0.801023i
\(636\) 0 0
\(637\) 1.06988 2.93946i 0.0423900 0.116466i
\(638\) −2.32383 1.34166i −0.0920014 0.0531170i
\(639\) 0 0
\(640\) −5.19367 13.0668i −0.205298 0.516511i
\(641\) −5.63430 31.9537i −0.222542 1.26210i −0.867329 0.497734i \(-0.834165\pi\)
0.644788 0.764362i \(-0.276946\pi\)
\(642\) 0 0
\(643\) −5.98189 16.4351i −0.235903 0.648137i −0.999995 0.00303079i \(-0.999035\pi\)
0.764093 0.645106i \(-0.223187\pi\)
\(644\) 2.35284 13.3436i 0.0927148 0.525812i
\(645\) 0 0
\(646\) −1.05026 + 0.881277i −0.0413221 + 0.0346734i
\(647\) 3.69757i 0.145367i 0.997355 + 0.0726833i \(0.0231562\pi\)
−0.997355 + 0.0726833i \(0.976844\pi\)
\(648\) 0 0
\(649\) 10.6913 0.419672
\(650\) −2.30694 + 0.996043i −0.0904857 + 0.0390680i
\(651\) 0 0
\(652\) −39.8191 7.02118i −1.55944 0.274971i
\(653\) 9.02248 + 24.7891i 0.353077 + 0.970071i 0.981376 + 0.192099i \(0.0615293\pi\)
−0.628299 + 0.777972i \(0.716248\pi\)
\(654\) 0 0
\(655\) −0.580927 + 0.0170015i −0.0226987 + 0.000664305i
\(656\) 20.3417 + 35.2329i 0.794211 + 1.37561i
\(657\) 0 0
\(658\) −3.51545 2.02964i −0.137046 0.0791238i
\(659\) 14.2209 + 5.17599i 0.553968 + 0.201628i 0.603809 0.797129i \(-0.293649\pi\)
−0.0498407 + 0.998757i \(0.515871\pi\)
\(660\) 0 0
\(661\) 14.8757 + 12.4822i 0.578598 + 0.485501i 0.884486 0.466566i \(-0.154509\pi\)
−0.305889 + 0.952067i \(0.598953\pi\)
\(662\) −3.38736 + 4.03690i −0.131654 + 0.156899i
\(663\) 0 0
\(664\) −8.96318 3.26233i −0.347839 0.126603i
\(665\) −18.7273 + 23.6928i −0.726215 + 0.918768i
\(666\) 0 0
\(667\) 18.3104 10.5715i 0.708983 0.409332i
\(668\) 12.0834 2.13062i 0.467519 0.0824363i
\(669\) 0 0
\(670\) −0.723680 3.50179i −0.0279582 0.135286i
\(671\) −1.52847 + 8.66839i −0.0590060 + 0.334640i
\(672\) 0 0
\(673\) 15.8772 + 18.9217i 0.612021 + 0.729378i 0.979677 0.200584i \(-0.0642839\pi\)
−0.367656 + 0.929962i \(0.619839\pi\)
\(674\) 0.998381 0.0384562
\(675\) 0 0
\(676\) 13.9654 0.537133
\(677\) 6.58819 + 7.85150i 0.253205 + 0.301758i 0.877641 0.479318i \(-0.159116\pi\)
−0.624437 + 0.781075i \(0.714671\pi\)
\(678\) 0 0
\(679\) 2.81082 15.9410i 0.107869 0.611758i
\(680\) 0.523431 + 2.53282i 0.0200727 + 0.0971291i
\(681\) 0 0
\(682\) −1.74562 + 0.307800i −0.0668432 + 0.0117863i
\(683\) −12.1386 + 7.00820i −0.464469 + 0.268161i −0.713921 0.700226i \(-0.753083\pi\)
0.249453 + 0.968387i \(0.419749\pi\)
\(684\) 0 0
\(685\) −25.8941 + 32.7598i −0.989362 + 1.25169i
\(686\) −3.20562 1.16675i −0.122391 0.0445468i
\(687\) 0 0
\(688\) 18.5338 22.0877i 0.706594 0.842086i
\(689\) 10.0898 + 8.46633i 0.384390 + 0.322542i
\(690\) 0 0
\(691\) −15.6160 5.68375i −0.594060 0.216220i 0.0274543 0.999623i \(-0.491260\pi\)
−0.621514 + 0.783403i \(0.713482\pi\)
\(692\) 6.72709 + 3.88389i 0.255725 + 0.147643i
\(693\) 0 0
\(694\) −2.47467 4.28625i −0.0939372 0.162704i
\(695\) −15.5414 + 0.454840i −0.589521 + 0.0172531i
\(696\) 0 0
\(697\) −5.23528 14.3838i −0.198301 0.544826i
\(698\) 2.70553 + 0.477058i 0.102406 + 0.0180569i
\(699\) 0 0
\(700\) 11.1684 + 25.8673i 0.422127 + 0.977692i
\(701\) −23.2471 −0.878029 −0.439015 0.898480i \(-0.644672\pi\)
−0.439015 + 0.898480i \(0.644672\pi\)
\(702\) 0 0
\(703\) 41.0003i 1.54636i
\(704\) 7.86733 6.60147i 0.296511 0.248802i
\(705\) 0 0
\(706\) 0.708977 4.02081i 0.0266827 0.151325i
\(707\) −10.5653 29.0280i −0.397349 1.09171i
\(708\) 0 0
\(709\) 0.376750 + 2.13666i 0.0141492 + 0.0802438i 0.991065 0.133382i \(-0.0425837\pi\)
−0.976916 + 0.213626i \(0.931473\pi\)
\(710\) −1.54889 3.89687i −0.0581288 0.146247i
\(711\) 0 0
\(712\) 8.48841 + 4.90079i 0.318117 + 0.183665i
\(713\) 4.77688 13.1244i 0.178895 0.491511i
\(714\) 0 0
\(715\) −5.29373 5.94649i −0.197974 0.222386i
\(716\) −21.0474 17.6609i −0.786579 0.660018i
\(717\) 0 0
\(718\) 0.831472 2.28445i 0.0310303 0.0852550i
\(719\) −2.14999 + 3.72389i −0.0801810 + 0.138878i −0.903328 0.428951i \(-0.858883\pi\)
0.823147 + 0.567829i \(0.192217\pi\)
\(720\) 0 0
\(721\) 0.772022 + 1.33718i 0.0287516 + 0.0497992i
\(722\) −0.612979 + 0.108085i −0.0228127 + 0.00402250i
\(723\) 0 0
\(724\) −12.1925 + 4.43770i −0.453130 + 0.164926i
\(725\) −19.7186 + 39.2960i −0.732329 + 1.45942i
\(726\) 0 0
\(727\) 14.7760 + 17.6094i 0.548011 + 0.653095i 0.966964 0.254914i \(-0.0820470\pi\)
−0.418952 + 0.908008i \(0.637603\pi\)
\(728\) 5.72622i 0.212228i
\(729\) 0 0
\(730\) 0.844864 5.77465i 0.0312698 0.213729i
\(731\) −8.31038 + 6.97324i −0.307371 + 0.257915i
\(732\) 0 0
\(733\) 1.93062 + 0.340421i 0.0713092 + 0.0125737i 0.209189 0.977875i \(-0.432918\pi\)
−0.137880 + 0.990449i \(0.544029\pi\)
\(734\) −4.61603 + 1.68010i −0.170381 + 0.0620136i
\(735\) 0 0
\(736\) −1.01017 5.72894i −0.0372353 0.211172i
\(737\) 9.81157 5.66471i 0.361414 0.208662i
\(738\) 0 0
\(739\) 2.11839 3.66916i 0.0779263 0.134972i −0.824429 0.565966i \(-0.808503\pi\)
0.902355 + 0.430993i \(0.141837\pi\)
\(740\) 33.6718 + 18.1483i 1.23780 + 0.667145i
\(741\) 0 0
\(742\) −2.08950 + 2.49017i −0.0767080 + 0.0914170i
\(743\) −26.6003 + 31.7011i −0.975872 + 1.16300i 0.0107448 + 0.999942i \(0.496580\pi\)
−0.986617 + 0.163057i \(0.947865\pi\)
\(744\) 0 0
\(745\) −8.71620 + 16.1717i −0.319337 + 0.592487i
\(746\) 2.14832 3.72101i 0.0786557 0.136236i
\(747\) 0 0
\(748\) −3.50969 + 2.02632i −0.128327 + 0.0740895i
\(749\) −1.41249 8.01065i −0.0516114 0.292703i
\(750\) 0 0
\(751\) −16.4803 + 5.99834i −0.601375 + 0.218883i −0.624725 0.780845i \(-0.714789\pi\)
0.0233500 + 0.999727i \(0.492567\pi\)
\(752\) 25.0404 + 4.41529i 0.913129 + 0.161009i
\(753\) 0 0
\(754\) 3.38520 2.84052i 0.123282 0.103446i
\(755\) −2.86619 + 19.5904i −0.104311 + 0.712968i
\(756\) 0 0
\(757\) 31.2786i 1.13684i 0.822739 + 0.568420i \(0.192445\pi\)
−0.822739 + 0.568420i \(0.807555\pi\)
\(758\) 1.88925 + 2.25152i 0.0686206 + 0.0817789i
\(759\) 0 0
\(760\) −2.70776 + 8.17619i −0.0982207 + 0.296581i
\(761\) −12.3465 + 4.49377i −0.447561 + 0.162899i −0.555961 0.831208i \(-0.687650\pi\)
0.108400 + 0.994107i \(0.465427\pi\)
\(762\) 0 0
\(763\) −1.36062 + 0.239915i −0.0492579 + 0.00868549i
\(764\) 9.58366 + 16.5994i 0.346725 + 0.600545i
\(765\) 0 0
\(766\) 2.11392 3.66141i 0.0763790 0.132292i
\(767\) −6.02200 + 16.5453i −0.217442 + 0.597417i
\(768\) 0 0
\(769\) 36.6235 + 30.7307i 1.32068 + 1.10818i 0.986161 + 0.165788i \(0.0530166\pi\)
0.334514 + 0.942391i \(0.391428\pi\)
\(770\) 1.46760 1.30650i 0.0528887 0.0470829i
\(771\) 0 0
\(772\) 13.0025 35.7240i 0.467970 1.28574i
\(773\) −45.6728 26.3692i −1.64274 0.948434i −0.979855 0.199710i \(-0.936000\pi\)
−0.662881 0.748725i \(-0.730667\pi\)
\(774\) 0 0
\(775\) 6.70731 + 28.2578i 0.240934 + 1.01505i
\(776\) −0.801623 4.54623i −0.0287766 0.163200i
\(777\) 0 0
\(778\) −0.810692 2.22736i −0.0290647 0.0798546i
\(779\) 8.85162 50.2000i 0.317142 1.79860i
\(780\) 0 0
\(781\) 10.1779 8.54024i 0.364192 0.305594i
\(782\) 0.702854i 0.0251340i
\(783\) 0 0
\(784\) −4.83580 −0.172707
\(785\) 11.8478 7.31061i 0.422867 0.260927i
\(786\) 0 0
\(787\) 8.67001 + 1.52876i 0.309053 + 0.0544943i 0.326023 0.945362i \(-0.394291\pi\)
−0.0169709 + 0.999856i \(0.505402\pi\)
\(788\) −4.33353 11.9063i −0.154376 0.424144i
\(789\) 0 0
\(790\) −0.0203558 0.695537i −0.000724225 0.0247461i
\(791\) −6.12740 10.6130i −0.217865 0.377354i
\(792\) 0 0
\(793\) −12.5538 7.24793i −0.445798 0.257382i
\(794\) −0.660500 0.240402i −0.0234403 0.00853156i
\(795\) 0 0
\(796\) −25.8268 21.6712i −0.915406 0.768117i
\(797\) −5.59255 + 6.66494i −0.198098 + 0.236084i −0.855944 0.517068i \(-0.827023\pi\)
0.657846 + 0.753153i \(0.271468\pi\)
\(798\) 0 0
\(799\) −8.98971 3.27199i −0.318033 0.115755i
\(800\) 8.30431 + 8.79609i 0.293602 + 0.310989i
\(801\) 0 0
\(802\) −3.86436 + 2.23109i −0.136455 + 0.0787825i
\(803\) 18.2101 3.21093i 0.642620 0.113311i
\(804\) 0 0
\(805\) 3.13333 + 15.1618i 0.110436 + 0.534383i
\(806\) 0.506903 2.87479i 0.0178549 0.101260i
\(807\) 0 0
\(808\) −5.66285 6.74872i −0.199218 0.237419i
\(809\) 37.8226 1.32977 0.664886 0.746945i \(-0.268480\pi\)
0.664886 + 0.746945i \(0.268480\pi\)
\(810\) 0 0
\(811\) −0.322691 −0.0113312 −0.00566561 0.999984i \(-0.501803\pi\)
−0.00566561 + 0.999984i \(0.501803\pi\)
\(812\) −31.8502 37.9576i −1.11772 1.33205i
\(813\) 0 0
\(814\) 0.463216 2.62703i 0.0162357 0.0920773i
\(815\) 45.2449 9.35029i 1.58486 0.327526i
\(816\) 0 0
\(817\) −35.5781 + 6.27337i −1.24472 + 0.219478i
\(818\) 2.20478 1.27293i 0.0770883 0.0445069i
\(819\) 0 0
\(820\) −37.3090 29.4899i −1.30289 1.02983i
\(821\) 0.715925 + 0.260575i 0.0249859 + 0.00909414i 0.354483 0.935063i \(-0.384657\pi\)
−0.329497 + 0.944157i \(0.606879\pi\)
\(822\) 0 0
\(823\) −34.5795 + 41.2102i −1.20537 + 1.43650i −0.336332 + 0.941743i \(0.609187\pi\)
−0.869033 + 0.494755i \(0.835258\pi\)
\(824\) 0.337327 + 0.283051i 0.0117513 + 0.00986054i
\(825\) 0 0
\(826\) −4.08340 1.48624i −0.142080 0.0517128i
\(827\) 15.4598 + 8.92572i 0.537590 + 0.310378i 0.744102 0.668066i \(-0.232878\pi\)
−0.206512 + 0.978444i \(0.566211\pi\)
\(828\) 0 0
\(829\) 3.49405 + 6.05188i 0.121354 + 0.210190i 0.920302 0.391209i \(-0.127943\pi\)
−0.798948 + 0.601400i \(0.794610\pi\)
\(830\) 5.38787 0.157683i 0.187016 0.00547326i
\(831\) 0 0
\(832\) 5.78471 + 15.8934i 0.200549 + 0.551003i
\(833\) 1.79180 + 0.315943i 0.0620823 + 0.0109468i
\(834\) 0 0
\(835\) −11.9314 + 7.36217i −0.412902 + 0.254778i
\(836\) −13.4959 −0.466765
\(837\) 0 0
\(838\) 6.29168i 0.217343i
\(839\) −34.2020 + 28.6989i −1.18078 + 0.990795i −0.180810 + 0.983518i \(0.557872\pi\)
−0.999974 + 0.00727705i \(0.997684\pi\)
\(840\) 0 0
\(841\) 8.39066 47.5858i 0.289333 1.64089i
\(842\) −0.645076 1.77233i −0.0222308 0.0610786i
\(843\) 0 0
\(844\) 6.85757 + 38.8912i 0.236047 + 1.33869i
\(845\) −14.8291 + 5.89412i −0.510136 + 0.202764i
\(846\) 0 0
\(847\) −22.0400 12.7248i −0.757302 0.437229i
\(848\) 6.96412 19.1338i 0.239149 0.657056i
\(849\) 0 0
\(850\) −0.803545 1.22083i −0.0275614 0.0418742i
\(851\) 16.1013 + 13.5106i 0.551946 + 0.463138i
\(852\) 0 0
\(853\) 6.47405 17.7873i 0.221667 0.609026i −0.778151 0.628077i \(-0.783842\pi\)
0.999819 + 0.0190511i \(0.00606451\pi\)
\(854\) 1.78880 3.09829i 0.0612114 0.106021i
\(855\) 0 0
\(856\) −1.15991 2.00902i −0.0396448 0.0686668i
\(857\) −55.0204 + 9.70158i −1.87946 + 0.331400i −0.991665 0.128840i \(-0.958875\pi\)
−0.887795 + 0.460239i \(0.847764\pi\)
\(858\) 0 0
\(859\) 5.69311 2.07212i 0.194246 0.0706999i −0.243065 0.970010i \(-0.578153\pi\)
0.437312 + 0.899310i \(0.355931\pi\)
\(860\) −10.5962 + 31.9956i −0.361326 + 1.09104i
\(861\) 0 0
\(862\) 2.36201 + 2.81493i 0.0804503 + 0.0958769i
\(863\) 31.2067i 1.06229i −0.847281 0.531145i \(-0.821762\pi\)
0.847281 0.531145i \(-0.178238\pi\)
\(864\) 0 0
\(865\) −8.78229 1.28490i −0.298607 0.0436879i
\(866\) 1.07264 0.900051i 0.0364497 0.0305850i
\(867\) 0 0
\(868\) −32.2345 5.68381i −1.09411 0.192921i
\(869\) 2.07170 0.754038i 0.0702777 0.0255790i
\(870\) 0 0
\(871\) 3.23992 + 18.3745i 0.109781 + 0.622597i
\(872\) −0.341235 + 0.197012i −0.0115557 + 0.00667168i
\(873\) 0 0
\(874\) −1.17030 + 2.02703i −0.0395861 + 0.0685652i
\(875\) −22.7764 22.7533i −0.769983 0.769202i
\(876\) 0 0
\(877\) −0.574169 + 0.684268i −0.0193883 + 0.0231061i −0.775651 0.631161i \(-0.782579\pi\)
0.756263 + 0.654268i \(0.227023\pi\)
\(878\) −0.594651 + 0.708677i −0.0200685 + 0.0239167i
\(879\) 0 0
\(880\) −5.83942 + 10.8343i −0.196847 + 0.365223i
\(881\) 28.2154 48.8706i 0.950602 1.64649i 0.206476 0.978452i \(-0.433801\pi\)
0.744126 0.668039i \(-0.232866\pi\)
\(882\) 0 0
\(883\) 45.6611 26.3625i 1.53662 0.887168i 0.537586 0.843209i \(-0.319336\pi\)
0.999033 0.0439585i \(-0.0139969\pi\)
\(884\) −1.15895 6.57273i −0.0389797 0.221065i
\(885\) 0 0
\(886\) 1.56459 0.569463i 0.0525633 0.0191315i
\(887\) −51.5601 9.09144i −1.73122 0.305261i −0.782799 0.622275i \(-0.786208\pi\)
−0.948421 + 0.317015i \(0.897320\pi\)
\(888\) 0 0
\(889\) −26.6597 + 22.3702i −0.894139 + 0.750272i
\(890\) −5.48055 0.801835i −0.183708 0.0268776i
\(891\) 0 0
\(892\) 18.2819i 0.612122i
\(893\) −20.4782 24.4049i −0.685276 0.816680i
\(894\) 0 0
\(895\) 29.8028 + 9.86997i 0.996197 + 0.329917i
\(896\) −17.0156 + 6.19316i −0.568450 + 0.206899i
\(897\) 0 0
\(898\) −1.07347 + 0.189282i −0.0358221 + 0.00631641i
\(899\) −25.5379 44.2330i −0.851737 1.47525i
\(900\) 0 0
\(901\) −3.83049 + 6.63461i −0.127612 + 0.221031i
\(902\) −1.13431 + 3.11648i −0.0377682 + 0.103767i
\(903\) 0 0
\(904\) −2.67730 2.24652i −0.0890457 0.0747182i
\(905\) 11.0735 9.85796i 0.368097 0.327690i
\(906\) 0 0
\(907\) −6.80568 + 18.6984i −0.225979 + 0.620872i −0.999923 0.0123817i \(-0.996059\pi\)
0.773945 + 0.633253i \(0.218281\pi\)
\(908\) −13.3274 7.69456i −0.442284 0.255353i
\(909\) 0 0
\(910\) 1.19522 + 3.00707i 0.0396212 + 0.0996835i
\(911\) 2.63013 + 14.9162i 0.0871400 + 0.494195i 0.996874 + 0.0790044i \(0.0251741\pi\)
−0.909734 + 0.415191i \(0.863715\pi\)
\(912\) 0 0
\(913\) 5.84105 + 16.0482i 0.193311 + 0.531116i
\(914\) 0.109206 0.619336i 0.00361220 0.0204858i
\(915\) 0 0
\(916\) 24.9965 20.9746i 0.825907 0.693019i
\(917\) 0.748423i 0.0247151i
\(918\) 0 0
\(919\) 31.1704 1.02822 0.514109 0.857725i \(-0.328123\pi\)
0.514109 + 0.857725i \(0.328123\pi\)
\(920\) 2.31861 + 3.75762i 0.0764424 + 0.123885i
\(921\) 0 0
\(922\) 0.600621 + 0.105906i 0.0197804 + 0.00348782i
\(923\) 7.48361 + 20.5610i 0.246326 + 0.676775i
\(924\) 0 0
\(925\) −43.4136 5.05944i −1.42743 0.166353i
\(926\) 1.91563 + 3.31796i 0.0629514 + 0.109035i
\(927\) 0 0
\(928\) −18.4237 10.6369i −0.604788 0.349174i
\(929\) −9.60870 3.49728i −0.315251 0.114742i 0.179548 0.983749i \(-0.442536\pi\)
−0.494800 + 0.869007i \(0.664759\pi\)
\(930\) 0 0
\(931\) 4.64148 + 3.89467i 0.152118 + 0.127643i
\(932\) 37.5561 44.7577i 1.23019 1.46609i
\(933\) 0 0
\(934\) 4.21379 + 1.53369i 0.137879 + 0.0501840i
\(935\) 2.87152 3.63289i 0.0939088 0.118808i
\(936\) 0 0
\(937\) −0.758718 + 0.438046i −0.0247862 + 0.0143103i −0.512342 0.858782i \(-0.671222\pi\)
0.487556 + 0.873092i \(0.337889\pi\)
\(938\) −4.53485 + 0.799617i −0.148068 + 0.0261084i
\(939\) 0 0
\(940\) −29.1071 + 6.01527i −0.949370 + 0.196197i
\(941\) −0.921099 + 5.22381i −0.0300270 + 0.170291i −0.996134 0.0878522i \(-0.972000\pi\)
0.966107 + 0.258144i \(0.0831108\pi\)
\(942\) 0 0
\(943\) −16.7973 20.0183i −0.546996 0.651884i
\(944\) 27.2192 0.885911
\(945\) 0 0
\(946\) 2.35048 0.0764208
\(947\) 14.4581 + 17.2305i 0.469825 + 0.559916i 0.947968 0.318366i \(-0.103134\pi\)
−0.478143 + 0.878282i \(0.658690\pi\)
\(948\) 0 0
\(949\) −5.28795 + 29.9895i −0.171654 + 0.973500i
\(950\) −0.284644 4.85884i −0.00923506 0.157641i
\(951\) 0 0
\(952\) 3.28002 0.578356i 0.106306 0.0187446i
\(953\) 3.69060 2.13077i 0.119550 0.0690223i −0.439032 0.898471i \(-0.644679\pi\)
0.558583 + 0.829449i \(0.311345\pi\)
\(954\) 0 0
\(955\) −17.1821 13.5811i −0.556000 0.439475i
\(956\) −44.4653 16.1840i −1.43811 0.523430i
\(957\) 0 0
\(958\) 0.133200 0.158741i 0.00430349 0.00512870i
\(959\) 41.1937 + 34.5656i 1.33021 + 1.11618i
\(960\) 0 0
\(961\) −2.57434 0.936985i −0.0830434 0.0302253i
\(962\) 3.80453 + 2.19655i 0.122663 + 0.0708195i
\(963\) 0 0
\(964\) −14.4943 25.1049i −0.466830 0.808573i
\(965\) 1.27077 + 43.4210i 0.0409075 + 1.39777i
\(966\) 0 0
\(967\) 1.30770 + 3.59289i 0.0420529 + 0.115539i 0.958942 0.283604i \(-0.0915300\pi\)
−0.916889 + 0.399143i \(0.869308\pi\)
\(968\) −7.14774 1.26034i −0.229737 0.0405089i
\(969\) 0 0
\(970\) 1.36989 + 2.22009i 0.0439845 + 0.0712828i
\(971\) −57.0974 −1.83234 −0.916171 0.400787i \(-0.868737\pi\)
−0.916171 + 0.400787i \(0.868737\pi\)
\(972\) 0 0
\(973\) 20.0225i 0.641890i
\(974\) −2.91763 + 2.44819i −0.0934870 + 0.0784449i
\(975\) 0 0
\(976\) −3.89136 + 22.0690i −0.124559 + 0.706411i
\(977\) −9.83942 27.0336i −0.314791 0.864881i −0.991672 0.128789i \(-0.958891\pi\)
0.676881 0.736092i \(-0.263331\pi\)
\(978\) 0 0
\(979\) −3.04740 17.2826i −0.0973952 0.552356i
\(980\) 5.25302 2.08792i 0.167802 0.0666961i
\(981\) 0 0
\(982\) 1.95726 + 1.13002i 0.0624586 + 0.0360605i
\(983\) −14.8222 + 40.7237i −0.472756 + 1.29889i 0.442773 + 0.896634i \(0.353995\pi\)
−0.915529 + 0.402252i \(0.868228\pi\)
\(984\) 0 0
\(985\) 9.62657 + 10.8136i 0.306728 + 0.344550i
\(986\) 1.96898 + 1.65217i 0.0627052 + 0.0526159i
\(987\) 0 0
\(988\) 7.60169 20.8855i 0.241842 0.664455i
\(989\) −9.26022 + 16.0392i −0.294458 + 0.510016i
\(990\) 0 0
\(991\) −23.9951 41.5607i −0.762230 1.32022i −0.941699 0.336457i \(-0.890771\pi\)
0.179469 0.983764i \(-0.442562\pi\)
\(992\) −13.8395 + 2.44028i −0.439406 + 0.0774791i
\(993\) 0 0
\(994\) −5.07449 + 1.84696i −0.160953 + 0.0585821i
\(995\) 36.5703 + 12.1112i 1.15936 + 0.383951i
\(996\) 0 0
\(997\) 21.4919 + 25.6130i 0.680655 + 0.811173i 0.990192 0.139715i \(-0.0446185\pi\)
−0.309537 + 0.950887i \(0.600174\pi\)
\(998\) 6.03495i 0.191033i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.p.a.199.9 96
3.2 odd 2 135.2.p.a.49.8 96
5.4 even 2 inner 405.2.p.a.199.8 96
15.2 even 4 675.2.l.h.76.9 96
15.8 even 4 675.2.l.h.76.8 96
15.14 odd 2 135.2.p.a.49.9 yes 96
27.11 odd 18 135.2.p.a.124.9 yes 96
27.16 even 9 inner 405.2.p.a.289.8 96
135.38 even 36 675.2.l.h.151.8 96
135.92 even 36 675.2.l.h.151.9 96
135.119 odd 18 135.2.p.a.124.8 yes 96
135.124 even 18 inner 405.2.p.a.289.9 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.8 96 3.2 odd 2
135.2.p.a.49.9 yes 96 15.14 odd 2
135.2.p.a.124.8 yes 96 135.119 odd 18
135.2.p.a.124.9 yes 96 27.11 odd 18
405.2.p.a.199.8 96 5.4 even 2 inner
405.2.p.a.199.9 96 1.1 even 1 trivial
405.2.p.a.289.8 96 27.16 even 9 inner
405.2.p.a.289.9 96 135.124 even 18 inner
675.2.l.h.76.8 96 15.8 even 4
675.2.l.h.76.9 96 15.2 even 4
675.2.l.h.151.8 96 135.38 even 36
675.2.l.h.151.9 96 135.92 even 36